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Abstract

Objective

To understand the value of information on vaccine inventory levels during an influenza pan-

demic, we propose a simulation study to compare vaccine allocation strategies using: (i)

only population information (pro-rata, or population-based, PB), (ii) both population and vac-

cine inventory information (population and inventory-based, PIB).

Methods

We adapt an agent-based simulation model to predict the spread of the disease both geo-

graphically and temporally. We study PB and PIB when uptake rates vary geographically.

The simulation study is done from 2015 to 2017, using population and commuting data from

the state of Georgia from the United States census.

Findings

Compared to PB under reasonable scenarios, PIB reduces the infection attack rate from

23.4% to 22.4%, decreases the amount of leftover inventory from 827 to 152 thousand, and

maintains or increases the percentage of vaccinated population.

Conclusions

Our results indicate the need for greater vaccine inventory visibility in public health supply

chains, especially when supply is limited, and uptake rates vary geographically. Such visibil-

ity has a potential to decrease the number of infections, help identify locations with low

uptake rates and to motivate public awareness efforts.

PLOS ONE | https://doi.org/10.1371/journal.pone.0206293 October 25, 2018 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Li Z, Swann JL, Keskinocak P (2018)

Value of inventory information in allocating a

limited supply of influenza vaccine during a

pandemic. PLoS ONE 13(10): e0206293. https://

doi.org/10.1371/journal.pone.0206293

Editor: Jeffrey Shaman, Columbia University,

UNITED STATES

Received: December 28, 2017

Accepted: October 10, 2018

Published: October 25, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Most data relevant to

this study is publicly available from census.gov.

Additional data related to vaccine costs are from

the literature and can be accessed directly from

Reference 32 and 33. Census population/age data:

https://factfinder.census.gov/faces/tableservices/

jsf/pages/productview.xhtml?pid=DEC_00_SF1_

DP1&prodType=table. Georgia county-to-county

workflow data: https://www.census.gov/

population/www/cen2000/commuting/#GA.

Georgia education level data: https://factfinder.

census.gov/faces/tableservices/jsf/pages/

productview.xhtml?pid=DEC_00_SF3_

http://orcid.org/0000-0003-2686-546X
https://doi.org/10.1371/journal.pone.0206293
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206293&domain=pdf&date_stamp=2018-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206293&domain=pdf&date_stamp=2018-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206293&domain=pdf&date_stamp=2018-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206293&domain=pdf&date_stamp=2018-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206293&domain=pdf&date_stamp=2018-10-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206293&domain=pdf&date_stamp=2018-10-25
https://doi.org/10.1371/journal.pone.0206293
https://doi.org/10.1371/journal.pone.0206293
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF1_DP1&amp;prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF1_DP1&amp;prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF1_DP1&amp;prodType=table
https://www.census.gov/population/www/cen2000/commuting/#GA
https://www.census.gov/population/www/cen2000/commuting/#GA
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF3_DP2&amp;prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF3_DP2&amp;prodType=table
https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=DEC_00_SF3_DP2&amp;prodType=table


Introduction

Influenza in the United States has led to thousands of deaths annually over the past decade

[1], and historically, there has been a world-wide pandemic about every 30 to 40 years [2]. The

last declared pandemic was due to the H1N1 virus in 2009, leading to an estimated average of

363,550 deaths world-wide [3]. Timely vaccination can prevent the spread and reduce the bur-

den of the disease.

Influenza vaccine supply is often limited, especially during a pandemic [1]; hence, vaccine

allocation decisions can play a significant role in the overall impact of vaccination on reducing

the disease burden. In the United States, the most recent emergency vaccine distribution

campaign (2009–2010) was coordinated by the Centers for Disease Control and Prevention

(CDC). As new batches of vaccine became available, they were allocated to each state propor-

tional to the state’s population (i.e., population-based or “pro-rata” allocation) [4]. The

states then distributed the vaccine inventory locally, and providers administered vaccines to

individuals.

During the 2009–2010 influenza pandemic, states were encouraged to collect and report data

about the vaccines administered to the general population [5]. However, very few states collected

detailed information on how many vaccines were administered in each location (e.g., a county

or a census tract) [6]. As a result, states did not have a good visibility into the uptake rates and

vaccine inventory levels geographically. This lack of visibility in the vaccine supply chain caused

some areas to end the influenza season with excess inventory [7, 8] (i.e., leftover vaccine) while

other areas (especially those with high uptake rates) experienced unmet demand [9, 10].

This study aims to quantify the value of information on (or visibility into) vaccine inven-

tory, i.e., tracking inventory levels geographically and over time, and how the use of such

information in vaccine allocation decisions can improve the overall impact of vaccination.

Information on the quantity of vaccines administered versus leftover in inventory in different

locations could inform the decision makers on how to allocate the next batch of vaccines geo-

graphically; it could also motivate initiatives to improve access to vaccines and inform decision

makers about public awareness campaigns. Such visibility could be achieved in various ways,

e.g., through vaccine registries.

Combining shipment and registry information would provide visibility into administered

and leftover vaccine inventory. For example, the state of Oregon collects immunization data

from both public and private health care providers to create vaccination records for individuals

and reports immunization rates by county for the seasonal influenza vaccine [11]. Ultimately,

it is expected that the value of inventory visibility is most important when the vaccine supply

is limited, which is often the case during an influenza pandemic. Vaccine inventory informa-

tion, updated geographically and over time, could help reduce the disease burden by decreas-

ing the number of infections, reduce the leftover inventory (vaccine wastage) while meeting

the demand of the population in a fair and equitable manner.

Relevant literature

Some of the literature on the allocation of limited vaccine supply focus on prioritizing certain

sub-populations by age or other health risks and evaluating the benefits of targeting a limited

vaccine supply [12–15], in line with the vaccine recommendations from the Advisory Com-

mittee for Immunization Practice (ACIP) in the United States, where the risk groups may be

specific to an influenza strain. Some researchers have quantified the benefit from the availabil-

ity and allocation of vaccines early in a pandemic [16, 17]. Prior work addressing the geo-

graphical allocation of a limited vaccine supply is scarce. Matrajt et al. propose a mathematical

model to distribute vaccine in a network of cities in Southeast Asia connected by the airline
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transportation network; they find that a city-specific allocation strategy can reduce the attack

rate substantially but at the expense of fairness [18]. Araz et al. consider the allocation of lim-

ited vaccine between and within the counties in the state of Arizona in the United States based

on expected epidemic waves [19]. They find that a pro-rata strategy is effective when consider-

ing both the infection attack rate and the lead time for receiving vaccine inventory. Other

authors consider shipping vaccines in two phases, where vaccines in the second phase may be

sent to regions where the epidemic is not yet contained [20].

This paper proposes a modified pro-rata allocation strategy with respect to the “demand”

for vaccine, by utilizing vaccine inventory information and allocating the available vaccine

supply to any location where the individuals continue to request the vaccine. This is particu-

larly important when uptake rates and vaccine coverage vary across population groups or

geographically [11, 21–25]. The proposed population and inventory-based strategy thus main-

tains fairness with respect to the underlying demand from the population. Note that when the

uptake rates are similar across geographical regions, the proposed strategy is equivalent to the

traditional pro-rata (population-based) strategy; however, the proposed strategy is more effec-

tive (in terms of reducing the number of infections and leftover inventory, while maintaining

fairness) when the uptake rates vary geographically.

Methods

Disease simulation

We adapt a simulation-based disease spread model and use data from the state of Georgia in

the United States with heterogeneous population mixing to predict the spread pattern of the

disease both geographically and temporally. We use a detailed Susceptible-Exposed-Infected-

Recovered (SEIR) model that tracks the disease status of an individual as the disease spreads

through a census-tract level contact network by interactions in households, workplaces,

schools, and communities. The results presented in the main body of the paper are based on

running scenarios with 10 million agents, i.e., one agent corresponding to one person in the

population in the state of Georgia. (Additional results are presented in the Appendix based on

running scenarios with 1 million agents, i.e., one agent corresponding to approximately 10

persons in the population.) The model is flexible and can be run with data from other loca-

tions. We consider vaccine uptake, vaccine inventory and its allocation, leftover vaccine, and

total attack rate at the census tract level.

The method builds upon a previously-established agent-based simulation model [26–28].

Two main assumptions of the model are as follows (see S1 Appendix for details on how the

contact network is generated):

1. Every individual is in one of following states at a given time: susceptible (S), exposed (E),

pre-symptomatic (IP), asymptomatic (IA), symptomatic (IS), hospitalized (H), recovered

(R), or dead (D).

2. The entire population has three levels of mixing: (i) community (day and night), (ii) peer

groups (day), and (iii) household (night).

At the start of a simulation run, the entire population contact network is generated and

every individual is susceptible. An initial infection is introduced randomly to 10 agents from

census tracts inside Fulton County (which is in the Metropolitan Atlanta Area). An infected

individual’s disease status changes to exposed (E). With pre-defined probabilities, the disease

progresses within infected individuals and spreads to previously healthy individuals across the

network. Once recovered (R) from the disease, the individual remains in that state.
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To assess the effect of vaccination under different vaccine allocation strategies, we expand

this simulation model by adding the option of vaccination; within 14 days of vaccination, a

person becomes immune to the disease (i.e., moves to the recovered state) with a positive prob-

ability [1].

The simulation outputs include the spatial and temporal estimates of the spread of the

disease under different vaccine allocation strategies. The total infection attack rate (IAR) repre-

sents the cumulative percentage of the population who have been infected during the epi-

demic. The peak prevalence is the maximum percentage of the population infected at a given

time.

An important parameter in the model is R0, the reproductive number, which measures the

transmission potential of the virus (i.e., the expected number of secondary infections caused

by a typical infection). The analysis is presented for R0 = 1.5; similar insights are obtained for

R0 = 1.8 and R0 = 2.0.

Vaccine allocation and uptake

Since the capacity for the influenza vaccine is limited during a pandemic, vaccine supply

becomes available in batches over time. Vaccine allocation begins in a “vaccination start week”

and continues (e.g., on a weekly basis) until all the vaccine inventory is depleted or unmet

demand reaches zero. Beginning with the vaccination start week, batches of vaccine arrive at

each census tract in amounts that depend on the vaccine allocation strategy and the total vac-

cine availability.

The uptake rates often differ from one geographical location to another [1]. At the begin-

ning of the simulation, we randomly select a subset of individuals (according to the uptake

rate) in each census tract as willing to receive the vaccine. During each week, available vaccine

is administered (randomly) to the individuals in that census tract who would like to be vacci-

nated, have not been infected previously, and are asymptomatic.

We consider two cases, where census tracts do and do not keep track of and report the

remaining vaccine inventory levels on a weekly basis. When inventory levels are known geo-

graphically, they can inform the allocation strategy. The general principle is that areas with

unused inventory could potentially receive less vaccine in the next allocation period.

We consider two strategies for allocating vaccine:

1. Population-Based (or pro-rata) Strategy (PB) delivers available vaccine in each period pro-

portional to the population size of each census tract. This is similar to the practice followed

by many states during 2009–2010 [4].

2. Population and Inventory-Based Strategy (PIB) allocates vaccine (in proportion to the

remaining unvaccinated population in each census tract) only to those census tracts that

have zero inventory, i.e., those that already administered all the vaccine that was shipped

earlier.

PIB is motivated by a strategy used by organizations for allocating a limited supply of

resources [29, 30]. When the uptake rates are equal in all census tracts, PB and PIB are equiva-

lent. Detailed descriptions of both strategies are presented in S2 Appendix.

Each strategy is evaluated based on several criteria including the disease spread (e.g., IAR),

operational aspects (e.g., vaccines shipped, administered, or leftover), and the “service level”

(vaccine administered divided by the total number of susceptible individuals willing to receive

the vaccine).
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Experiments

We ran experiments simulating various scenarios with different parameters including vaccina-

tion start week (week 4 or 7), total vaccine supply (20%, 40%, 60%, or 80% of the population),

vaccine distribution horizon over which the vaccine is delivered to census tracts (in 4, 8, or 12

weeks), and three different uptake rate settings:

1. UTR1: half of the census tracts have uptake rate 25% and the other half 75%.

2. UTR2: half of the census tracts have uptake rate 0% and the other half 100%.

3. UTR3: the uptake rate of each census tract is randomly chosen from a uniform distribution

between 0% and 100%.

We summarize all experimental parameters and provide justifications for their choice in

Table A in S3 Appendix. To account for randomness, we generate five distinct contact net-

works and within each network we perform five simulation runs (replications) for each uptake

rate setting (see S3 Appendix for the analysis of the number of replications needed) [31].

Hence, there are a total of 5×5 = 25 simulation runs for each of the 2×2×3×4 = 48 parameter

combinations.

Results

We present results comparing the scenarios of no vaccination, and vaccine allocation under

PB and PIB for R0 = 1.5 and UTR1, focusing on IAR and the percentage of leftover (i.e., allo-

cated but not administered) vaccine inventory. Results on UTR2 and UTR3 are presented in S4

Appendix. Unless stated otherwise, the results presented in this section are the average for the

instances where the vaccination start week is 4 and the vaccine distribution horizon is 8 weeks.

No vaccination versus vaccination under the population-based strategy

Without vaccination, the peak prevalence is 3.2%, which occurs around week 10, and the IAR

is 52.0% (averaged over 25 simulation runs). The prevalence in every census tract is positive

(i.e., no census tract remained free of the disease), and census tracts around the city of Atlanta

have a higher IAR than rural census tracts.

When vaccine is available for 40% of the population and distributed under PB, the peak

prevalence (1.6%) and IAR (26.8%) are lower and the peak occurs earlier compared to the

no vaccination case (see S5 Appendix for further details). Vaccination under PB has a lower

peak prevalence and IAR when vaccine is distributed earlier and over a shorter time horizon.

Selected comparisons on peak prevalence and IAR under various parameters of vaccination

are presented in S6 Appendix. Detailed results for all combinations of vaccination start week,

vaccine distribution horizon, and total available vaccine supply are presented in Tables A-I in

S4 Appendix.

Vaccination under population-based versus population and inventory-

based strategies (PB versus PIB)

IAR relative to the total population under PIB is on average -0.1 to 0.9 percentage points lower

than that under PB (Fig 1). These results, except for when the vaccine supply is 20% of the pop-

ulation, are significant under a two-sample t-test with a 95% confidence level. IAR under

UTR1 is generally lower than that under UTR2 and UTR3 for both PB and PIB, when all other

parameters are the same. The average percentage points difference in IAR between PB and PIB
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(PB—PIB) ranges from 4.0 to 6.4 under UTR2 and 0.9 to 1.6 under UTR3. Detailed compari-

sons on IAR and t-test results are shown in S4 Appendix.

Additional results (presented in S5 Appendix) indicate that an earlier vaccination start

week and shorter vaccine distribution horizon reduce the IAR. The reductions are generally

stronger for the PIB strategy.

Fig 2 shows the number of vaccines shipped and administered under PB and PIB. The

solid, striped, and combined columns represent the vaccines administered, leftover, and

shipped during the entire vaccine distribution horizon, respectively.

Under PIB, the total shipment is lower or the same, but the total amount of vaccine admin-

istered is higher compared to PB; hence, vaccine utilization (and service level) is higher, and

the leftover inventory is lower under PIB. For example, when the vaccine supply is equal to

40% of the population, both PB and PIB ship all the available vaccine, but PIB administers 674

thousand more doses than PB. As a result, the leftover inventory is 20.7% of the total shipped

under PB versus 3.8% of the total shipped under PIB.

The cost of the leftover vaccine inventory is estimated using information from a previous

study in New York City [32, 33]. The (per dose) vaccine production cost is $5.0 to $10.0, distri-

bution cost is $1.5 to $5.0, and disposal cost is $0.1 to $1.0. When the vaccine supply is enough

to cover 40% of the population, PIB ships the same amount of vaccine and results in 667 thou-

sand (95% CI on PIB-PB, 664 to 669, p< 0.0001) less doses of leftover vaccine (or equivalently,

more doses of administered vaccine) compared to PB (Fig 1). Hence, the estimated cost sav-

ings under PIB versus PB range from $4.4 to $10.7 million dollars.

We also calculate the service levels under PB and PIB. “Demand” refers to the number of

people who were willing to receive the vaccine (calculated by multiplying the population in an

area with the uptake rate), and “Served” refers to the number of people who were vaccinated.

Fig 1. IAR under PB and PIB strategies, where the vaccination start week is 4 and the vaccine distribution horizon is 8 weeks. Error bars are the

standard errors over the 50 replications for each scenario.

https://doi.org/10.1371/journal.pone.0206293.g001
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Service level is defined as Served
Demand� 100%:When the vaccine supply is sufficient to cover 40% of

the population, the mean service levels under PB and PIB for census tracts with 75% uptake

rate are 58.6% and 75.9% (95% CI of the percentage points difference on PIB-PB, 13.3 to 21.3,

p< 0.0001), respectively. For census tracts with 25% uptake rate, the average service level for

PB and PIB are 93.2% and 95.0% (-2.1 to 5.8, p = 0.3411), respectively. Additional results and

details are presented in S6 Appendix.

Discussion

The results indicate that PIB dominates PB across multiple metrics. Given a fixed amount of

vaccine supply, more vaccine is administered to the population (higher service levels), result-

ing in similar or lower IAR under PIB versus PB. Since PIB ships the vaccine (over time, as

new batches become available) to those areas where there is still demand for the vaccine, versus

shipping it to areas where the demand is saturated, it ships less vaccine, and hence, incurs a

lower transportation cost and lower amount of leftover inventory, compared to PB. Note that

the percentage of population vaccinated in any geographic area is higher under PIB versus PB;

hence, the benefits of PIB are realized while maintaining fairness.

IAR under PIB is similar to or lower than that under PB. A 0.8% drop in IAR (with vaccine

supply of 40% in Fig 2) implies approximately 100 thousand fewer influenza cases in the state

of Georgia. In general, the reduction in IAR under PIB versus PB positively correlates with the

variability in the uptake rates across locations (IAR reduction is the highest under UTR2 and

the lowest under UTR1), i.e., the higher the variability in the uptake rates, the higher the bene-

fits of PIB over PB. Additional results and discussions on the changes in IAR when the uptake

rates are correlated geographically or when considering herd immunity can be found in S6

Appendix.

Fig 2. The amount of vaccine shipped, administered, and leftover in inventory, as a percentage of the total population, where the vaccination

start week is 4 and the vaccine distribution horizon is 8 weeks. Error bars are the standard errors over the 50 replications for each scenario.

https://doi.org/10.1371/journal.pone.0206293.g002
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Leftover (unused, and potentially wasted) vaccine inventory often incurs extra cost (includ-

ing storage and disposal), as experienced during the last phase of the H1N1 influenza vaccine

campaign [34–36]. These costs are even higher if the leftover vaccine is treated as a hazardous

waste, as was required in some states for vaccine containing thimerosal. Inventory visibility

enables the implementation of allocation strategies such as PIB, reducing the amount and the

cost of leftover vaccine inventory, and the potential negative environmental impact.

Visibility in inventory has additional benefits that have not been explored in this study. For

example, inventory information can be used to learn the uptake rate in each census tract, and

states could design policies or information campaigns for areas with low uptake rates to create

awareness, which could result in an increase in vaccination rates across the population and

greater reductions in IAR. The lower number of infections along with the cost savings enabled

by PIB would free up valuable resources which could be invested elsewhere to improve the

availability and access to public health services.

Overall, this study suggests that visibility of inventory information in public health supply

chains can have many benefits. Some states have adopted systems and practices to increase vis-

ibility in supply chains [11], and others may want to consider the potential benefits and costs

of such practices. Ultimately, investments towards increasing the visibility in public health

supply chains could increase effectiveness (reducing the disease burden) and efficiency (saving

cost), while promoting equity (fairness).

Limitations

We assume that the uptake rates, i.e., the willingness to receive the vaccine, are constant over

time (but we allow the uptake rates to vary by location). In practice, uptake rates may vary

over time, e.g., they may be lower towards the end of the epidemic. Since we limit the vaccine

distribution horizon to several weeks around the peak (where one would expect the awareness

about the epidemic to be high) it is reasonable to assume that the uptake rates would be some-

what stable during the vaccine distribution horizon. Uptake rates could lag behind the actual

demand of the vaccine at the beginning of the pandemic. For example, poor logistics or limited

vaccine availability could slow the distribution of vaccine to individual vaccine providers, or

the public may not realize the availability of the vaccine due to inadequate marketing or public

outreach. If the vaccine supply is very limited at the beginning, and people try to get vaccinated

but are not able to do so after repeated tries, they may give up after a while and this could also

reduce uptake rates. On the other hand, the severity of the epidemic could cause uptake rates

to increase over time as the public becomes more informed about the spread and the danger of

the disease. The benefits of inventory visibility could be even higher when the uptake rates

vary over time. For example, a decreasing trend in uptake rates might prompt a local govern-

ment to increase efforts in generating public awareness regarding the benefits of vaccination,

and conversely, and increasing trend could be communicated to the upper levels of the vaccine

supply chain to ensure inventory availability.

The current model considers a single type of influenza vaccine. In practice, there may be

multiple types of vaccines, and there may be some overlap between the populations who are

eligible to receive different types of vaccines. We expect that the PIB strategy would perform

better than the PB strategy, even if the uptake rates differ among various vaccine types and

geographical locations. In the models, we track the vaccine inventory in a semi-aggregate fash-

ion for computational efficiency (e.g., vaccine inventory levels are computed for about 1,600

census tracts in the model vs. more than ten thousand providers in practice). There are well-

known results in the supply chain management literature indicating that as the number of
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locations holding the inventory increases, stocking levels and costs increase (to meet a desired

service level), or alternatively, service levels decrease for a given fixed amount of inventory.

Hence, in practice, given a high number of inventory locations and potentially higher variabil-

ity between uptake rates among different locations, we expect that PIB could be even more

beneficial compared to PB.

Although we have demonstrated that PIB can reduce the cost associated with vaccine distri-

bution and leftover inventory, it is still necessary to estimate the cost of implementing an infor-

mation system that could track vaccine inventory at a local level to assess when PIB would be

cost-saving compared to PB. Such a system may be relatively easy to implement, e.g., as an

add-on to vaccine registries across the states.
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