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Single-cell RNA sequencing (scRNA-seq) has become a powerful tool for scientists of many research dis-
ciplines due to its ability to elucidate the heterogeneous and complex cell-type compositions of different
tissues and cell populations. Traditional cell-type identification methods for scRNA-seq data analysis are
time-consuming and knowledge-dependent for manual annotation. By contrast, automatic cell-type
identification methods may have the advantages of being fast, accurate, and more user friendly. Here,
we discuss and evaluate thirty-two published automatic methods for scRNA-seq data analysis in terms
of their prediction accuracy, F1-score, unlabeling rate and running time. We highlight the advantages
and disadvantages of these methods and provide recommendations of method choice depending on
the available information. The challenges and future applications of these automatic methods are further
discussed. In addition, we provide a free scRNA-seq data analysis package encompassing the discussed
automatic methods to help the easy usage of them in real-world applications.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Since the establishment of single-cell RNA sequencing (scRNA-
seq) technology in 2009 [1], it has become a powerful tool for
researchers in different fields of biological research. Compared with
bulk RNA sequencing, which detects the average gene expression of
samples, scRNA-seq can identify phenotypic heterogeneity of
mixed cell populations in various biological samples [2]. With the
continuous decrease of costs of sequencing and the advancements
of sequencing technologies, scRNA-seq offers the opportunity to
comprehensively sequence and annotate the cell types present in
almost any tissue of a species [3–5], thus enabling the identification
of the biological processes and molecular functions of known or
new cell types. For example, two novel mouse retinal bipolar cell
types, one of which has a non-canonical morphology, were identi-
fied through parallel scRNA-seq of approximately 25,000 bipolar
cells [6]. In addition, Lavin et al. provided a detailed immune cell
atlas of early-stage lung cancer [7] and observed significant
decreases of CD8 effector T cells with an expansion of Tregs regula-
tory and exhausted T cells at the tumor site. Indeed, scRNA-seq has
applications in numerous research fields, such as developmental
biology, biomedical research, neuroscience, aging, etc. [8–10].

Cell type identification using scRNA-seq traditionally involves
two steps. First, the cells are clustered using an unsupervised
method, and then the clusters are annotated to different cell types
based on canonical markers found in the differentially expressed
genes of the cluster [11,12] (Fig. 1A). Many unsupervised scRNA-
seq clustering methods have been proposed, including graph-
based clustering [11,13,14], hierarchical clustering [15–17], and
partition clustering [18–20]. However, even for the most com-
monly used graph-based clustering, many parameters, such as
the nearest neighbor number in graph construction and resolution
in community detection, must be manually defined by the user.
This can significantly influence the outcomes [21]. Differences in
clustering schemes also affect downstream interpretations [22].
Moreover, annotating each cluster can be a very time-consuming
process, particularly, for users who do not have in-depth knowl-
edge on the marker genes of different cell types, since this
approach requires a manual search of literature and various data-
bases. By contrast, the automatic cell type identification methods
do not require manual annotation. Instead, they can be used to pre-
dict the cell types directly from the public resources of scRNA-seq
data. As such, users without sufficient knowledge on cell markers
could benefit greatly. Also, automatic methods are preferred when
the datasets are large and when the re-analysis requires a large
amount of resources [21].

Similar to the fields of trajectories [23] and ligand-receptor
interactions [24] for single-cell sequencing data analysis, many
cell-type identification methods have been established in recent
years. In this review, we quantitatively discuss the performance
of these cell-type identification methods, particularly, regarding
prediction accuracy, F1-score, running time, and new cell-type
identification. We also discuss some unresolved challenges of the
automatic cell-type identification methods and highlight future
research perspectives. Moreover, we integrate currently available
automatic cell-type identification methods into an R package
called AutomaticCellTypeIdentification, which may facilitate the
use of these automatic methods in real-world applications.
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2. Types of automatic cell-type identification methods

Thirty-two published automatic cell-type identification meth-
ods are systematically evaluated (Table 1). Based on the usage of
training datasets, namely, gene-cell or cell-gene expression matrix
or canonical cell markers, the automatic methods can be classified
into three categories (Table 1): eager learning methods (ACTINN,
CaSTLe, CHETAH, clustifyr, Garnett, MarkerCount, MARS, scCaps-
Net, scClassifR, SciBet, scID, scLearn, scmap-cluster, scMatch,
scHPL, scPred, scPretrain, scVI, Seurat, SingleCellNet, SingleR and
Superscan), lazy learning methods (CellAtlasSearch, CELLBLAST,
CellFishing.jl and scmap-cell) and marker learning methods (Cel-
lAssign, DigitalCellSorter, MarkerCount, scCATCH, SCINA, SCSA
and scTyper) (Fig. 1B). The lazy learning methods project cells
based on the training datasets to identify the nearest neighbor
cells, similar to the classical BLAST method [25], and the cell type
is then determined according to the nearest neighbor cells. By con-
trast, eager learning methods gather cell-type information to group
the training datasets first, and then map the testing cells to the
closest pre-annotated group. Marker learning methods utilize
canonical cell markers that are highly expressed in a given cell type
to assign the testing datasets using a mathematic model.

Lazy learning methods include CELLBLAST [26], scmap-cell [27],
CellFishing.jl [28], and CellAtlasSearch [29]. Eager learning meth-
ods account for the majority of the automatic methods, including
scHPL [30], clustifyr [31], MARS [32], scPretrain [33], Superscan
[34], Seurat [11,12], scLearn [35], scCapsNet [36], ACTINN [37],
CaSTLe [38], CHETAH [39], SciBet [40], scID [41], scmap-cluster
[27], scPred [42], SingleCellNet [43], SingleR [44], scVI [45],
scMatch [46], scClassifR [47], and Garnett [48]. scClassifR and Gar-
nett differ from the other eager learning methods in that they use
both canonical markers and training datasets. scClassifR uses
canonical markers to build a classifier for each cell type and Gar-
nett uses canonical markers to identify representative cells to train
a classifier. Since a pre-annotated training dataset is needed for
scClassifR and Garnett, they are categorized as eager learning
methods. Marker learning methods include scTyper [49], Digi-
talCellSorter [50], SCINA [51], SCSA [52], CellAssign [53], and
scCATCH [54]. MarkerCount [55] contains eager learning and mar-
ker learning methods, so it is categorized in both.

Both eager learning and lazy learning methods require training
datasets to train the classifier model. However, eager learning meth-
ods use training datasets that have been categorized into groups
using cell types, which is not the case for lazy learning methods.
Apart from the training datasets provided by the users themselves,
expertly annotated datasets from public resources [56–58] are also
available, thus allowing users to choose the most suitable training
datasets. Canonical cell markers are required for marker learning
methods, which can be found in public cell marker databases, such
as PanglaoDB [59], CellMarker [60], and CancerSEA [61]. To facilitate
automatic cell-type identification, scLearn, CELLBLAST, SciBet, Sin-
gleCellNet, scMatch, Superscan, and Garnett provide processed
training datasets. Moreover, DigitalCellSorter, SCSA, scTyper, and
scCATCH provide canonical cell markers for certain cell types. In
addition, CELLBLAST (https://cblast.gao-lab.org) and SciBet (http://
scibet.cancer-pku.cn) have built user-friendly web servers for query-
ing cell types online, thus making it possible for researchers not
familiar with programming to carry out related research.

https://cblast.gao-lab.org
http://scibet.cancer-pku.cn
http://scibet.cancer-pku.cn


Fig. 1. Workflow of the traditional and automatic cell-type identification methods. A. The workflow of traditional cell-type identification methods showing that the input of
traditional methods are the testing datasets. An unsupervised method is used to cluster the cells, and the differentially expressed genes of each cluster are detected. The cell
types of each cluster are assigned by the canonical markers in the differentially expressed genes. B. The workflow of the automatic cell-type identification methods. The input
of eager learning and lazy learning methods are the training datasets and testing datasets. The input of marker learning methods is the markers of each cell type and the
testing datasets. The training datasets can be downloaded from the data resource centers (GEO, ArrayExpress and GSA). The markers of each cell type can be downloaded from
the marker resource centers (PanglaoDB, CellMarker and CancerSEA). The methods used by eager learning, lazy learning and marker learning methods are classifiers, nearest
neighbor cells, and the scoring functions, respectively. The cell types assigned by the automatic methods can be given to cells or clusters.
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3. Features and models of automatic methods

Most automatic cell-type identification methods, except for
scMatch and deep learning methods [32,33,36,37,45], have a fea-
ture selection procedure, which involves selection of the most ben-
eficial or relevant features in model construction. This process
makes the model more accurate, shortens the training time, avoids
the curse of dimensionality, and enhances generalization. Features
applied to automatic methods for cell-type assignment include
‘‘representative gene” and ‘‘transformed gene”. Many automatic
methods utilize the ‘‘representative gene” feature directly through
different gene selection strategies. For example, CellAtlasSearch,
CHETAH, scID, and Garnett use highly expressed genes derived
from bulk RNA-Seq or scRNA-seq data. High dropout genes [62],
which are genes with a higher number of zero expression than
expected, are used in scmap-cell, scmap-cluster, and scLearn.
Genes with variance higher than the predefined threshold are
regarded as features in Seurat and SingleR. Feature genes in CaSTLe
are selected based on the highest gene expression and mutual
5876
information. Cell type-specific genes evaluating entropy differ-
ences between a specific cell type and other cell types are utilized
in SciBet. Genes with a high expression rate in each cell type are
selected in MarkerCount. Superscan uses the top 1000 genes calcu-
lated by the shap python package as features. Moreover, Digi-
talCellSorter, SCINA, SCSA, CellAssign, scClassifR, and scCATCH
use classical genes obtained from literature as features. As an alter-
native to using genes as features directly, the ‘‘transformed gene”
feature has also proven to be effective for cell-type identification.
For example, principal components in scPred, embedding space
calculated from the high-dimensional expression profile in CELL-
BLAST, random singular values computed by using singular value
decomposition in CellFishing.jl, and gene pairs obtained through
expression relationships between genes in SingleCellNet can all
yield a high prediction accuracy. clustifyr and scHPL don’t contain
steps for feature selection, and high dropout genes and high vari-
ance genes are suggested as features.

Since there are many feature selection methods, it is important
to know which features perform better than others. It has been



Table 1
Summary of automatic methods for cell-type identification.

Name of method Type Feature Classifier Prior
knowledge
provided

Ability to
predict
new cell
type

Language Input format

CellAtlasSearch Lazy
learning

Predefined genes with high
fold change over respective
median expression in at least
one cell type

Nearest neighbor cell based on cosine
similarity of Hamming locality-
sensitive hashing

Information
not
available

Yes Information
not
available

Count matrix

CELLBLAST Lazy
learning

Embedding space calculated
from highly variable genes in
Seurat

Nearest neighbor cell based on
Euclidean distance and Wasserstein
distance

Yes Yes Python Count matrix

CellFishing.jl Lazy
learning

Random singular value
calculated from filtered genes,
whose maximum count
across cells exceeds 10%
quantile

Nearest neighbor cell based on cosine
similarity of Hamming locality-
sensitive hashing

No Yes Julia Count matrix

scmap-cell Lazy
learning

High dropout genes (higher
number of zero expression
than expected) obtained from
the M3Drop package

Nearest neighbor cell based on cosine
similarity

No Yes R Count matrix

ACTINN Eager
learning

All genes except outlier genes
(the highest 1% and the
lowest 1%)

Neural network with three hidden
layers (100, 50, 25 nodes)

No No Python Count matrix

CaSTLe Eager
learning

Genes with high expression
and mutual information

XGBoost No Yes R Count matrix

CHETAH Eager
learning

200 selected genes that had
the largest absolute fold
change between the selected
cell type and other cell types
in a different hierarchical
branch

Hierarchical determination based on
feature gene expression profile

No Yes R Count matrix

clustifyr Eager
learning

User defined features
(features calculated by Seurat
and M3Drop are
recommended)

Cell type similarity based on Spearman
correlation

No Yes R Count or
normalized
matrix

Garnett Eager
learning

Selected genes whose
expression is higher than the
90% quantile of each cell type

Grouped multinomial elastic-net
regularized (a = 0.3) generalized linear
model

Yes Yes R Count matrix

MarkerCount Eager
learning/
Marker
learning

Eager learning: Genes with a
high expression rate in each
cell type
Marker learning: user defined
markers

Self-defined score function No Yes Python Count matrix

MARS Eager
learning

All genes Neural network No No Python Count matrix

scCapsNet Eager
learning

All genes (feature selection is
embedded in the network)

Capsule network No No Python Normalized
matrix

scClassifR Eager
learning

User defined markers of each
cell type

SVM (RBF kernal) No Yes R Count matrix

SciBet Eager
learning

Cell type-specific genes
evaluating entropy
differences between a specific
cell type and other cell types

Maximum likelihood estimation Yes Yes R Normalized
matrix

scID Eager
learning

Genes specifically
upregulated in the cluster of
interest with estimated
discriminative weights

Fisher’s linear discriminant analysis No Yes R Count matrix

scLearn Eager
learning

High dropout genes (higher
number of zero expressions
than expected) obtained from
the M3Drop package

Cell type similarity based on the
transformation matrix from
discriminative component analysis

Yes Yes R Count matrix

scmap-cluster Eager
learning

High dropout genes (higher
number of zero expression
than expected) obtained from
the M3Drop package

Cell type similarity based on cosine
similarity, Pearson correlation and
Spearman correlation

No Yes R Count matrix

scMatch Eager
learning

All genes Nearest cell type (the expression
profiles of cell types from FANTOM5)
by Spearman correlation

Yes No Python Count matrix

(continued on next page)
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Table 1 (continued)

Name of method Type Feature Classifier Prior
knowledge
provided

Ability to
predict
new cell
type

Language Input format

scHPL Eager
learning

User defined features
(features calculated by Seurat
is recommended)

Linear SVM No Yes Python Normalized
matrix

scPred Eager
learning

Highly variable genes in
Seurat

Support vector machine with a radial
kernel or other models in the caret
package (e.g., logistic regression,
decision trees, bagging, neural
networks)

No Yes R Count matrix

scPretrain Eager
learning

All genes Neural network No No Python Count matrix

scVI Eager
learning

All genes Neural network No No Python Count matrix

Seurat Eager
learning

Highly variable genes, for
which the variance of genes is
higher than the threshold

Transfer learning No No R Count matrix

SingleCellNet Eager
learning

Gene pairs from genes
preferentially expressed in
each cell type

Random forest with 1000 trees Yes Yes R Count or
normalized
matrix

SingleR Eager
learning

Highly differentially
expressed genes among each
cell type

Nearest cell type (expression profile of
the cell type could be from microarray,
bulk RNA-seq or scRNA-seq data) by
Spearman correlation

No No R Count or
normalized
matrix

Superscan Eager
learning

1000 genes calculated by the
‘‘shap” python package

XGBoost Yes Yes Python Count matrix

CellAssign Marker
learning

User defined markers Expectation-maximization inference No Yes R Count matrix

DigitalCellSorter Marker
learning

User defined markers Voting algorithm Yes Yes Python Count matrix

scCATCH Marker
learning

Canonical markers of cell
types from CELLMatch

Evidence-based score Yes Yes R Normalized
matrix

SCINA Marker
learning

User defined markers Expectation-maximization inference No Yes R Normalized
matrix

SCSA Marker
learning

Canonical markers of cell
types from CellMarker or
CancerSEA

Self-defined score function Yes Yes Python Differentially
expressed
gene of
clusters

scTyper Marker
learning

Canonical markers of cell
types from CellMarker/
scTyper or user defined
markers

Nearest cell type by cosine distance or
Pearson correlation

No Yes R Normalized
matrix
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shown that for CellFishing.jl, when the features selected by scmap-
cell were used, the Cohen’s kappa scores increased [63]. On the
other hand, for scmap-cell, when the features selected by CellFish-
ing.jl were used, the Cohen’s kappa scores decreased [28]. These
observations thus indicate that the scmap-cell features are better
than the CellFishing.jl ones. scMatch recommends using all genes
derived from scRNA-seq, rather than manually defined cell type-
specific genes or highly expressed genes, as classifier features
[46]. However, according to scmap-cell, high dropout genes per-
form better than highly variable genes or randomly selected genes
in seventeen datasets across different platforms or species [27].
SciBet investigated feature performance of entropy differences,
F-test, and scmap-cell using the same classifier among fourteen
datasets, and the results showed that genes with high entropy dif-
ferences yielded the highest classification accuracy [40]. In
summary, the genes selected through entropy differences perform
better than the other ‘‘representative gene” features.

Similar to the feature selection methods, there are many differ-
ent predict models that can be used for automatic cell-type identi-
fication methods. The most commonly used model is the
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comparison of the similarity of the query cells with the cells or
cell-type groups in the training datasets. For example, nearest
neighbor cells are selected by cosine similarity in scmap-cell and
CellFishing.jl, and the cell type is determined by these nearest
neighbor cells. Cosine similarity is used in CellAtlasSearch and
scTyper, and the cell type is determined using the similarity value.
scMatch, SingleR, clustifyr, and CHETAH use Spearman correlation
to determine cell types, whereas SingleR uses the 80th percentile
of correlation values in each cell type to avoid heterogeneity
[44]. CHETAH uses a self-defined ‘‘confidence score” calculated
by the Spearman correlation to assign cell types [39]. Pearson cor-
relation is used by default in scLearn, and Spearman correlation,
cosine similarity, and Euclidean distance are supported in scLearn
[35]. The scmap-cluster calculates cosine similarity, Spearman cor-
relation, and Pearson correlation simultaneously to define cell
types by method agreement, in which at least two of the similari-
ties must be in agreement with high confidence [27]. In contrast to
directly using gene expression to calculate similarity, CELLBLAST
determines the similarity of cells based on Euclidean distance in
low-dimensional embedding space and Wasserstein distance on



Fig. 2. Performance of the automatic cell-type identification methods using the Tabula Muris datasets. A. Schematic illustration of the automatic methods regarding
reproducibility and applicability. Eleven mouse tissues (limb muscle, liver, thymus, tongue, bladder, mammary gland, spleen, trachea, lung, marrow and kidney) were used to
test the self-projection. In applicability, the Smart-seq2 dataset of limb muscle, liver, thymus, and tongue is used as training datasets. The 10x datasets of bladder, mammary
gland, spleen, trachea, lung, marrow and kidney are used as training datasets. B. The accuracy, F1-score and unlabeling rate in eleven mouse tissues. The heatmap is ordered
by the accuracy in all three types of automatic methods. C. The accuracy, F1-score and unlabeling rate across different platforms. The heatmap is ordered by the accuracy in all
the three types of automatic methods. The labels ‘5’ and ‘15’ in the marker learning methods and some of the eager learning methods indicate that they use the top 5 or top 15
differentially expressed markers.
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posterior distributions [26]. General classifiers are also applied in
the automatic methods, such as random forest in SingleCellNet,
linear SVM in scHPL, SVM with a radial kernel in scPred and
scClassifR, Fisher’s linear discriminant analysis in scID, XGBoost
in CaSTLe and Superscan, maximum likelihood estimation in
5879
SciBet, generalized linear model in Garnett, and transfer learning
in Seurat. Popular deep learning methods, such as fully connected
neural networks (ACTINN, MARS, scPretrain, and scVI) and capsule
networks (scCapsNet), have also been used. For the marker learn-
ing methods, Expectation-Maximization algorithm in CellAssign
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and SCINA and Score function based on marker genes in Digi-
talCellSorter, SCSA, MarkerCount and scCATCH are used to predict
cell types.
4. Cell type prediction performance of automatic methods

There are many evaluation criteria in cell type assignment, for
example, accuracy [12,36,40], F1-score [35,42,53], Cohen’s kappa
[27,28,43], AUC [38,42], unlabeling rate [64], and mean-balanced
[26]. CellAssign evaluates the performance of unsupervised meth-
ods (Seurat, SC3 [15], PhenoGraph [65], densityCut [66], dynamic-
TreeCut [67]), eager learning methods (scmap-cluster, correlation-
based [68]) and marker learning methods (SCINA) on simulated
data. In terms of accuracy and F1-score, CellAssign performs better
than the above mentioned methods [53]. Compared with ACTINN,
scmap, Seurat, SingleR and SVM, clustifyr achieves the highest
accuracy using the Tabula Muris dataset [31]. The accuracy of Sci-
Bet outperforms Seurat and scmap in fourteen datasets [40]. Abde-
laal et al found that linear SVM with rejection has the highest F1-
score by comparing twenty-two automatic methods across tissues
and platforms [64]. scLearn shows better accuracy than linear SVM
with rejection in pancreas and PBMC datasets [35]. Here, we com-
pare currently available automatic methods and discuss their per-
formance. Reproducibility and applicability are used to evaluate
the performance of automatic methods on tissue datasets. Repro-
ducibility inspects whether the automatic methods have prefer-
ence on specific tissues using self-projection (see Methods).
Applicability verifies whether the automatic methods can predict
the cell types of the testing dataset using training datasets
(Fig. 2A). The self-projection of eleven tissues of the Tabula Muris
dataset shows that automatic methods do not seem to have a bias
on specific tissues (Fig. 2B). Most automatic methods achieved high
accuracy and F1-score and low unlabeling rate across tissues
except for marrow, since the marrow dataset consists of mostly
immune cells with deep annotation, which is consistent in the
PBMC data with deep annotation [64]. In eager learning methods,
the mean accuracy of Seurat, scHPL, scPred, CaSTLe, ACTINN, Sin-
gleR, and SingleCellNet is greater than 0.98. The mean F1-score
of Seurat, scHPL, SingleR, SingleCellNet, ACTINN is higher than
0.95. The unlabeling rates of these top automatic methods are
low (<7%). In terms of accuracy, F1-score and unlabeling rate, the
performance of the lazy learning methods CellFishing.jl, CELLBLAST
and scmap-cell is similar to those of the top eager learning meth-
ods. Regarding accuracy and F1-score, the marker learning meth-
ods SCNIA, scTyper, MarkerCount and CellAssign have similar
performance. Compared with the top eager learning methods, the
mean accuracy and F1-score of the marker learning methods are
slightly lower (�4%). The unlabeling rate of the top marker learn-
ing methods ranges from 1% (MarkerCount) to 18% (scTyper).

Eleven tissues in the Tabula Muris dataset contain both 10x and
Smart-seq2 platform datasets, which could be used to test
the applicability of the automatic methods. In terms of
self-projection, some tissues have relatively low accuracy and F1-
score (Fig. 2C), mainly because the cell types in the testing datasets
were not covered in the training datasets (Supplement Table 1). In
kidney, marrow and lung, the numbers of cells in the missing cell
types were high, resulting in low accuracy and F1-score, whereas
in liver, tongue and spleen, the numbers of cells in the missing cell
types were low, resulting in a low F1-score (Fig. 2C). Despite the
effect of unequal cell types between training datasets and testing
datasets, the cross-platform prediction achieves good performance
like self-projection. These results imply that a comprehensive
training dataset may lead to a better performance. In eager learn-
ing methods, clustifyr, scLearn and scHPL perform better than the
other methods regarding accuracy, and scHPL, SciBet and SingleR
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have the highest F1-score. Among the top automatic methods, only
scLearn has a high unlabeling rate. In lazy learning methods,
CellFishing.jl performs better than CELLBLAST and scmap-cell
regarding F1-score, and CELLBLAST has a higher unlabeling rate.
In marker learning methods, SCNIA, scTyper, CellAssign and Mar-
kerCount achieve high performance.

Since the Tabula Muris dataset used only two platforms, it may
not reflect the properties of automatic methods regarding cross-
platform prediction. The PBMC data, however, use training datasets
from seven platforms and testing datasets from six platforms, and
therefore may be more suitable to test the cross-platform predic-
tion of automatic methods [69]. The three indicators (accuracy,
F1-score and unlabeling rate) show a similar pattern across plat-
forms, suggesting that automatic methods may not be significantly
affected by different platforms (Fig. 3A). Regarding the three indi-
cators, marker-based methods (all marker learning methods and
Garnett/scClassify in eager learning methods) differ significantly
from the other methods using 10x-V3 and CEL-Seq2 as training
datasets (Fig. 3A). When using the canonical maker, however, their
performance becomes better (Fig. 3A). The poor performance of
differentially expressed markers was observed previously [64]. In
eager learning methods, the top three methods in terms of mean
accuracy are clustifyr, scLearn and scPred, and the top three meth-
ods in terms of mean F1-score are scPred, Seurat and SingleCellNet.
In marker learning methods, CellAssign, SCSA and MarkerCount
perform better than the other methods in terms of accuracy and
F1-score. Compared with the top eager learning methods, the
mean accuracy and F1-score of marker learning methods are
slightly lower. In lazy learning methods, CellFishing.jl and
scmap-cell perform better than CELLBLAST regarding the three
indicators.

Merely using normal datasets to predict cell types might limit
the application of automatic methods. Therefore, it needs to be
evaluated whether automatic methods can detect malignant cells
in tumorous tissues. In one study, the scRNA data of normal lung
and late-stage lung cancer tissues were used as training and testing
dataset respectively to test the sensitivity and specificity of auto-
matic methods to predict malignant tumor cells [70]. At the same
time, the ability to predict other types of cells was also compared,
and the unlabeled cells predicted by the automatic methods were
regarded as malignant tumor cells. The clustifyr method showed
better performance than the other automatic methods in detecting
malignant tumor cells with nearly 100% specificity and sensitivity
(Fig. 3B). However, the F1-score of clustifyr for normal cells was
not within the top methods, which are consistent with the Tabula
Muris dataset and PBMC dataset (Fig. 2C, Fig. 3A). CellAssign,
CellFishing.jl and scTyper have high sensitivity and low specificity,
which means that the predicted malignant tumor cells have a high
confidence (Fig. 3B). The marker learning methods and lazy learn-
ing methods achieved better performance in the tumor dataset
(Fig. 3B), different from the result using normal tissue or PBMC
datasets.
5. Comparison of the speed of the automatic methods

Massive amount of scRNA-seq data are being continuously gen-
erated. For one example, the Human Cell Atlas project aims to cre-
ate reference maps of all human cells [71]. Thus, the speed of the
automatic cell-type identification methods is a critical factor to
be considered. Using a mouse brain dataset [72], we varied the
training and testing datasets randomly to test the speed of the
automatic methods (Fig. 4A). The fastest method appears to be
scmap-cluster, and the other fast methods include SCINA, Sin-
gleCellNet, SciBet, SingleR and scHPL. The computation time of
all automatic methods increased with larger training or testing



Fig. 3. Performance of the automatic cell-type identification methods using PBMC and tumor datasets. A. Circos plot shows the accuracy, F1-score and unlabeling rate of the
PBMC datasets. The methods are ordered by the accuracy in all three types of automatic methods. ‘‘Cano” in marker learning methods or some of the eager learning methods:
canonical markers. B. The performance of the automatic methods using human normal lung data to predict Tabula Muris lung data. As ACTINN, MARS, SciBet, scVI, Seurat and
SingleR did not predict unlabeled cells, they are not included the calculation of sensitivity and specificity of tumor cells. scClassifR and SingleCellNet are not included since
they did not predicate any unlabeled cells.
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dataset (Fig. 4B, C). The increase of computing time of Sin-
gleCellNet and CELLBLAST is much smoother, suggesting that the
computation time does not increase exponentially. As expected,
the neural network-based methods (scVI, MARS, CellAssign and
CELLBLAST) need more time than the other methods, since a huge
number of parameters is needed to train the model. Overall, auto-
matic methods show excellent performance in terms of speed with
more than half of the methods needing no more than 100 s. The
performance of eager learning methods is better than those of lazy
learning and marker-based methods.
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6. New cell type prediction by different automatic methods

The unlabeled cells are designed to catch the new cell types that
do not exist in the training dataset. The goal of the automatic
methods in predicting new cell types is to lower the false predic-
tion rate and to increase the true prediction rate. For lazy learning
methods, CellFishing.jl and scmap-cell use similar strategies to
identify new cell types through nearest-neighbor cells [27,28].
When the cell type of the K-nearest neighbor (usually 10) cells is
not exactly the same, the cells are assigned to the ‘‘unlabeled” cat-



Fig. 4. Speed of automatic cell-type identification methods. A. Speed of the automatic methods. A fixed size of the testing dataset and varying sizes of the training datasets are
used to test the computation time using different training datasets. Also, a fixed size of the training dataset and varying sizes of testing datasets are used to test the
computation time using different testing datasets. B. The computation time of the automatic methods with the training dataset set at 500, 1000, 2500, 5000 and 10,000 cells,
and the testing dataset set at 5000 cells. The marker learning methods are not included since they do not require training datasets. C. The computation time of the automatic
methods with the training dataset set at 700 cells, and the testing dataset set at 1000, 2000, 5000, 10,000, 20,000 and 50,000 cells.
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egory. scmap-cell has an additional condition when the maximum
similarity of the value of the K-nearest neighbor cells is lower than
the empirical threshold [27]. CELLBLAST first searches the nearest
neighbor cells in a low-dimensional embedding space, then com-
putes its significance on Wasserstein distance [26]. Because
Wasserstein distance of nearest neighbor cells needs to be signifi-
cant in multiple models, some predicted cells may not have nearest
neighbor cells, thus leading to a relatively high unlabeling rate.

For the eager learning methods, scmap-cluster, CHETAH, clusti-
fyr, and scLearn unlabel a cell when the correlation value is less
than the empirical threshold [27,35,39]. Due to the inherent
heterogeneity and complexity of scRNA-seq data and cell types
[73], it is not suitable to apply one empirical threshold to identify
novel cell types [35]. scLearn solves this issue by learning the
thresholds of the last 1% of the similarity distribution for each cell
type from the training dataset[35]. scPred, CaSTLe, scClassifR, and
scID use posterior probability instead of correlation to assign unla-
beled cells. However, posterior probability may misclassify cells
into similar cell types. Therefore, the unlabeling rate could be
underestimated [64]. SingleCellNet randomly selects a small part
of the training dataset as a ‘‘random” cell type [43]. Since the ‘‘ran-
dom” cell type usually does not have a unique gene expression pro-
file, testing datasets thus may exhibit a low chance of showing high
correlation with the ‘‘random” cell type, thus reflecting a consider-
ably low unlabeling rate. SciBet uses a group of datasets as the
background datasets, in which the training dataset is not included.
The predicted cells are classified as unlabeled if they express more
marker genes in the background datasets than in the training data-
set [40]. scHPL computes the distance between original data and
inverse transformed data from the training dataset’s PC space. If
the distance is higher than the threshold determined on the train-
ing data, the cell is considered an unlabeled cell. Instead of predict-
ing unlabeled cells, Superscan assign cell types with high, medium,
and low confidence based on the entropy value of predicting the
probability of each cell type.
Fig. 5. Summary of performance of the automatic cell-type identification methods. Bar g
indicated. For each evaluation criteria, the length of the bars shows the performance of th
on the mean performance of the evaluation criteria. No bar: not evaluated.
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For the marker learning methods, scTyper assumes that the
expression of a cell type specific marker is 1, and the expression of
the other markers 0. Then the value of cosine distance or correlation
of each cell type is calculated. If the value is not significantly higher
than that of the randomly generated sample for each cell type, it will
be assigned as an unlabeled cell. CellAssign, MarkerCount, and Digi-
talCellSorter use posterior probabilities to assign unlabeled cells. The
cell cluster in SCSA and scCATCH is categorized as ‘‘unlabeled” when
the marker genes of the cluster do not match the canonical markers
[52,54]. SCINA assumes that the unknown cell types do not express
any canonical markers [51]. Overall, the unlabeling rates of automatic
methods do not appear to be satisfying in terms of accuracy, which
remains a challenge to be addressed in the future.
7. Summary and outlook

Automatic cell-type identification methods emerged only in
recent years in 2018 [27]. However, the growing usage and rapid
data production of scRNA-seq technology have made scRNA-seq
data analysis a major challenge in the field. In this review, we sys-
tematically compared the features, classifiers, models, predictive
performance, speed and the new cell-type prediction ability of cur-
rently available automatic cell-type identification methods.
Regarding accuracy, F1-score, unlabeling rate, specificity and sensi-
tivity of tumor cells and speed, the best performing methods
among the three types of automatic methods (eager learning, lazy
learning and marker learning) give similar outcomes (Fig. 5).
Among the eager learning methods, clustifyr, scHPL and scPred
show good performance across all indicators. SingleCellNet, SciBet
and Seurat perform well on accuracy, F1-score and speed. Among
the lazy learning methods, CellFishiing.jl appears to be the best
method. For the marker learning methods, SCSA, SCINA, scTyper
and CellAssign show good performance.
raphs of the automatic cell-type identification methods with six evaluation criteria
e automatic method: poor, median or good. The automatic methods are sorted based
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Although the automatic methods can predict cell types of
scRNA-seq data automatically, they still require prior knowledge
(training datasets or canonical cell markers) regarding cell types,
like the traditional marker-based methods. For eager learning
and lazy learning methods, gene expression data of each cell type
are still needed. Marker learning methods require canonical mark-
ers for each cell type. When pre-annotated datasets of tissue or
organs are available [3–5], eager learning and lazy learning meth-
ods are preferable in terms of accuracy and speed. When label
information is not provided in the training datasets or when train-
ing datasets are not available, marker-based (marker learning)
methods are recommended.

Moreover, prior knowledge, such as the number of cell types in
the training dataset, significantly affects the performance of the
automatic methods. To avoid such an issue, a more comprehensive
training dataset is required. In scRNA-seq studies, researchers
might focus on specific types of cells in a tissue, e.g., immune cells
[74] or stromal cells [75]. This may lead to the loss of information
on the other types of cells in the tissue. As such, these subset data-
sets should not be used to predict whole tissue datasets. Further-
more, the ability of the automatic methods to predict new cell
types may not be sufficient at this stage. The unlabeled cell classi-
fication is designed to identify new cell types. However, this clas-
sification could be assigned to cells of similar types. Existing
similarity evaluation, posterior probability evaluation, and design
of pseudo cell types are insufficient for new cell type prediction,
and better approaches are still needed.

In addition, another challenge is the application of automatic
cell-type identification methods in processing datasets involving
embryonic development [76] and tumor studies [77]. For embryo
development datasets, the expression profiles of cell types may
display a high degree of similarity, thus can lead to a high unlabel-
ing rate. In addition, if the time points, in which the cell types fall
into during embryonic development, are considered, processing
such datasets becomes even more complicated. scLearn provides
a solution that assigns cells with synthetic labels (time point and
cell type) by combining two label types into one combined label
[35]. The combination is not restricted to two labels and multiple
labels can be combined, which may improve single-cell data anal-
ysis. In tumors, immune cells can undergo functional changes dur-
ing the transition of normal tissue to malignancy in tumors [78]. It
is therefore important to label heterogeneous immune cells (nor-
mal and abnormal). In CellAssign, malignant B cells were found
to lose IGKC expression and upregulate IGLC compared with nor-
mal B cells. Therefore, CellAssign uses this differentially expressed
marker gene to automatically identify malignant or normal B cells
[53]. Detecting these heterogeneous immune cells through auto-
matic cell-type identification can be highly useful for early-stage
tumor detection. In recent years, other types of single-cell
sequencing technology data, such as spatially resolved transcrip-
tomic data [79] and scATAC-seq data [80], have been integrated
with scRNA-seq data. Based on these data, substantial new compu-
tational developments are expected to further improve the auto-
matic cell-type identification methods.

The automatic cell-type identification methods are being con-
tinuously developed. Meanwhile, the quality of prior knowledge
has become a more and more important factor for automatic cell
type prediction. scLearn, SciBet, SingleCellNet, scMatch, Garnett
and DigitalCellSorter provide well-trained models or markers that
can facilitate the use of these methods. However, the prior knowl-
edge of these methods often comes from a single dataset, which
may miss certain cell types due to the limitations of different
sequencing platforms and experimental approaches [69,81]. CELL-
BLAST provides more comprehensive training datasets by integrat-
ing multiple datasets, which subsequently contains more cell types
compared with a single training dataset [26]. Such integrated data-
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sets therefore may be more commonly used as training datasets in
the future. Yet, for integrated datasets, there are still two issues to
be solved. The first is to try to avoid the influences of different
sequencing technologies during the process of data integration,
for example, by using MNN [82], CCA [12], LIGER [83], Scanorama
[84], et al. The second is to try to unify the currently inconsistent
annotation levels in the training datasets, for example, by the joint
usage of multiple training datasets [85], or by manual curation of
each training dataset. These processes may lead to a more compre-
hensive and integrated datasets that can be a valuable label
resource for marker learning methods. In summary, due to the
potential advantages of good accuracy, fast prediction, and effec-
tive usage of available datasets, automatic cell-type identification
methods have the potential of replacing traditional cell-type iden-
tification methods for normal tissues, and may be more widely
used by researchers in different research fields.

8. Methods

8.1. Data preprocessing

The count matrix and manually annotated labels are down-
loaded from public resources (see Data and code availability). For
the Tabula Muris scRNA-seq dataset, genes not expressed in any
cells were filtered. Cells with the below features were filtered:
the number of expressed genes in the cells is less than 200, the
number of expressed genes in the cells exceed twice the standard
deviation of the mean, the expression of mitochondrial genes in the
cells is more than 20%. Cells with no cell type information were
deleted. Some tissues and organs do not have both 10x and
Smart-seq2 data, such as aorta, brain myeloid, brain non-
myeloid, diaphragm, fat, heart, large intestine and skin tissues.
They therefore were not included in the analysis. Tissues contain-
ing more cell types were selected as training datasets for
cross-platform prediction. The human normal lung and lung tumor
datasets are downsampled (�10,000 cells) with an equal propor-
tion of each cell type by the ‘createDataPartition’ function in the
‘caret’ R package.

8.2. Self-projection

The Tabula Muris scRNA-seq datasets were divided into five
sections subsets according to the cell type labels using the ‘cre-
ateFolds’ function in the ‘caret’ R package. Four subsets were used
as training datasets, and the remaining subset was used as the test-
ing dataset. After five rounds of cross-validation, the mean values
of accuracy, F1-score and unlabeling rates were used to evaluate
the reproducibility of the automatic cell-type identification
methods.

8.3. Evaluation indicators

Accuracy is the ratio of correctly predicted cells divided by the
total labeled cells (excluding the unlabeled cells). F1-score is the
harmonic mean of the precision and recall. In multiple cell type
assignment, F1-score is the mean value of each cell type as listed
below:

Xn

i

1
n
� 2� precisioni � recalli

precisioni þ recalli

Unlabeling rate is the ratio of unlabeled cells (‘unknown’, ‘unas-
signed’, etc.) divided by the total cells. Specificity is the proportion
of negatives in a binary classification that is correctly identified.
Sensitivity is the proportion of positives in a binary classification
that is correctly identified.
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8.4. Markers

The ‘Seurat’ pipeline is used to find cell type specific markers.
The count matrix is normalized using the NormalizeData function,
the markers are selected using the FindAllMarkers function using
the manually annotated labels as ‘active.ident’. The ‘only.pos’ is
set as true. The other parameters are set to default.

The top 5 and 15 genes are used in the marker learning methods
and some of the eager learning methods (Garnett and scClassifty).
Canonical markers of PBMC datasets are downloaded from the
published reports (https://bitbucket.org/jerry00/scumi-dev/
src/master/R/marker_gene/human_pbmc_marker.rda). Highly
expressed genes of each cell type are used as canonical markers.

8.5. Overall performance score

Overall performance of automatic methods consists of accuracy,
F1-score, speed, unlabeling rate, sensitivity and specificity. The
mean accuracy, F1-score and unlabeling rate are calculated using
the mouse tissue datasets, PBMC datasets and human normal lung
datasets. The performance score of mean accuracy and F1-score is
calculated by dividing the maximum value into all methods. The ‘1
– unlabeling rate’ is used as the unlabeling rate performance score.
The speed of predicting 20,000 cells in the testing dataset is calcu-
lated from brain datasets. The reciprocal of the base 10 logarithms
of computing time is used as the speed performance score. The
sensitivity and specificity of tumor cells are calculated using the
lung tumor dataset. The performance score of sensitivity and speci-
ficity are calculated by dividing the maximum value into all meth-
ods. The automatic methods based on 5 and 15 markers are
merged together by computing their mean value. The prediction
of the canonical markers is not included in the overall score.

8.6. Data and code availability

The scRNA-seq data used in this work are available from public
resources: mouse tissues (https://tabula-muris.ds.czbiohub.org/),
PBMC (SCP424 in Single Cell Portal), human normal lung and lung
tumors (GSE131907 in GEO) and brain (GSE116470 in GEO). To
ensure the reproducibility and extensibility of the automatic cell-
type identification functions described in this work, we integrated
these methods into the R package AutomaticCellTypeIdentification
with the same usage formats. All codes are available at https://
github.com/xiebb123456/AutomaticCellTypeIdentification.

Automatic cell-type identification methods evaluated
Name of
method
Version
 URL
CELLBLAST
 v0.3.8
 https://github.com/gao-lab/Cell_
BLAST
CellFishing.jl
 v0.3.2
 https://github.com/bicycle1885/
CellFishing.jl
scmap-cell
 v1.6.0
 https://github.com/hemberg-
lab/scmap
ACTINN
 master
 https://github.com/mafeiyang/
ACTINN
CaSTLe
 v1.0.0.2
 https://github.com/yuvallb/
CaSTLe
CHETAH
 v1.2.0
 https://github.com/jdekanter/
CHETAH
Garnett
 v0.1.19
 https://github.com/cole-
trapnell-lab/garnett
SciBet
 v0.1.0
 https://github.com/zwj-tina/
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a (continued)
Name of
method
Version
 URL
scibetR

scID
 v2.1
 https://github.com/BatadaLab/

scID

scLearn
 v1.0
 https://github.com/bm2-lab/

scLearn

scmap-cluster
 v1.6.0
 https://github.com/hemberg-

lab/scmap

scPred
 v1.9.0
 https://github.com/

powellgenomicslab/scPred

scVI
 v0.4.1
 https://github.com/YosefLab/

scvi-tools

Seurat
 v3.2.2
 https://github.com/satijalab/

seurat

SingleCellNet
 v0.1.0
 https://github.com/pcahan1/

singleCellNet

SingleR
 v1.1.1
 https://github.com/dviraran/

SingleR

CellAssign
 v0.99.21
 https://github.com/

Irrationone/cellassign

DigitalCellSorter
 v1.1
 https://github.com/sdomanskyi/

DigitalCellSorter

SCINA
 v1.2.0
 https://github.com/jcao89757/

SCINA

SCSA
 master
 https://github.com/bioinfo-

ibms-pumc/SCSA

scTyper
 v0.1.0
 https://github.com/omicsCore/

scTyper

scHPL
 V0.0.2
 https://github.com/

lcmmichielsen/scHPL

MARS
 master
 https://github.com/snap-

stanford/mars

clustifyr
 v1.5.0
 https://github.com/

rnabioco/clustifyr

scClassifR
 v1.1.1
 https://github.com/grisslab/

scClassifR

MarkerCount
 master
 https://github.com/combio-dku/

MarkerCount/tree/master
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