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Abstract

With the advent of deep sequencing techniques, it is now possible to track the evolution of viruses with ever-increasing de-
tail. Here, we present Flexible Inference from Time-Series (FITS)—a computational tool that allows inference of one of three
parameters: the fitness of a specific mutation, the mutation rate or the population size from genomic time-series sequenc-
ing data. FITS was designed first and foremost for analysis of either short-term Evolve & Resequence (E&R) experiments or
rapidly recombining populations of viruses. We thoroughly explore the performance of FITS on simulated data and high-
light its ability to infer the fitness/mutation rate/population size. We further show that FITS can infer meaningful informa-
tion even when the input parameters are inexact. In particular, FITS is able to successfully categorize a mutation as advan-
tageous or deleterious. We next apply FITS to empirical data from an E&R experiment on poliovirus where parameters were
determined experimentally and demonstrate high accuracy in inference.
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1. Introduction

Evolutionary biology has traditionally relied on inferring evolu-
tionary processes using data from one time point, namely from
the present. With the advent of evermore accurate next-genera-
tion sequencing (NGS) techniques, it is now possible to observe
virus evolution in action—either through Evolve and
Resequence (E&R) experiments (Acevedo et al. 2014; Foll et al.
2014; Stern et al. 2017) or from clinical samples obtained from
patients (Ramachandran et al., 2011; Dunn et al., 2015; Zanini
et al., 2015). Recent development of novel NGS techniques
allows detection of ultra-rare alleles, even at frequencies of 10�4

or lower (Jabara et al. 2011; Meacham et al. 2011; Lou et al. 2013;
Yang et al. 2013; Acevedo et al. 2014; Zhou et al. 2015; Gelbart
et al. 2018; Salk et al. 2018). This allows tracking the fate of a
mutation from the moment it is created, in particular in RNA vi-
ruses that have high mutation rates.

The dynamics of allele frequency over time depends on the
following factors: (1) the relative fitness (w) of the allele as com-
pared to the wild-type (WT) allele, (2) the population-wide mu-
tation rate (l), and (3) the population size (N) (Kimura, 1964)
(Fig. 1A). These factors hence determine the probabilities of al-
lele frequency trajectories (Fig. 1B). For large enough popula-
tions, an allele of low fitness will remain at low frequencies
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based on mutation-selection balance, where for haploid popu-
lations we expect the frequency f to be equal to l

1�w.
Accordingly, a genome bearing a lethal mutation (w = 0) that is
able to be packaged yet is unable to initiate a new infection is
expected to be maintained at exactly the mutation rate l—it is
re-introduced each generation with a probability of l and elim-
inated by selection at the end of each generation. The popula-
tion size will alter the extent to which random genetic drift
affects the trajectory, with small populations being more sus-
ceptible to random fluctuations of frequencies than large pop-
ulations. The mutation rate l determines the rate at which
new mutations are introduced into the population at each
generation. For viruses, a generation is defined here as a
replication cycle.

There have been many notable advances in the development
of approaches to infer selection and/or population size from
time-series data (Bollback et al. 2008; Illingworth et al. 2012;
Acevedo et al. 2014; Renzette et al. 2014; Feder et al. 2014; Foll
et al. 2014, 2015; Ferrer-Admetlla et al. 2016; Jónás et al. 2016;
Khatri 2016; Steinrücken et al. 2014; Schraiber et al. 2016;
Terhorst et al. 2015; Topa et al. 2015). However, many of these
methods either ignore genetic drift, are not designed for very
low frequency alleles, or allow for only two alleles per locus.
Recent advances in sequencing accuracy revealed that in virus
populations, all four alleles (nucleotides) often co-segregate at
the same position at very low frequencies (Acevedo et al. 2014).
As we show below, considering this extra information can im-
prove the inference.

Here, we introduce Flexible Inference from Time-Series
(FITS), a user-friendly tool that allows the user to infer either
the fitness of a mutation, or the mutation rate or the population
size, from time-series data. FITS builds upon previous work (Foll
et al. 2014) but incorporates several important improvements
such as allowing for recurrent mutation and allowing for the in-
ference of mutation rates and population size, and not only fit-
ness. FITS also allows running single locus simulations under a
Wright–Fisher model with selection, mutation, and drift, as de-
scribed in the Section 2.1. Particularly, FITS is available either
through a user-friendly graphical user interface (GUI, Fig. 1C) or
as a command-line tool, allowing parallel processing of
genome-wide data.

2. Methods
2.1 Overview—inferring parameters using ABC

FITS relies on the rejection-Approximate Bayesian Computation
(ABC) method, which has gained popularity in recent years
(Beaumont 2010; Csilléry et al. 2010; Sunnåker et al. 2013). We
start off with empirical data of allele frequencies over time.
Possible values for the factor in question (fitness, mutation rate,
or population size) are sampled from a prior distribution and
used for simulating trajectories (Fig. 1B). Simulations begin with
the frequency of the first time-point given by the user in the in-
put data file; this first time point will define the WT allele (most
common allele) versus the mutant allele/s.

Simulated trajectories are generated using the two-step
Wright–Fisher with selection model with k alleles. The first step
of the model applies selection. The frequency of allele i at gen-
eration t þ 1 before random genetic drift is f tþ1

i ¼
Pk

j¼1
wi
w f t

i lj!i,
where wi is the relative fitness of allele i, w is the mean fitness

of the population with alleles frequencies !f t, and lj!i is the

mutation rate from allele j to i. Next, random genetic drift is
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Figure 1. FITS overview. (A) An allele frequency trajectory is affected by the allele’s

fitness, mutation rate, and population size. FITS can infer the value of one of these

factors if information is present about the other two. (B) Rejection-based ABC in

FITS works by simulating trajectories, using sampled values for the missing factor

from a prior distribution. Distance from the observed data (black line) is then mea-

sured for each trajectory and used as a summary statistic. The sampled values

used to generate the trajectories closest to the observed data (shaded area) consti-

tute an approximation for the posterior distribution. (C) FITS offers a user-friendly

graphical user interface. The basic input required from the user is a data file with

observed allele frequencies, and a parameters file, defining the parameters to be

used for inference. Here, we see inference results for fitness, where the mutant al-

lele is found to be advantageous. (D) FITS can account for bottlenecks in the size of

the replicating population (parameter bottleneck_size), as well as sampling effects

(e.g. a sample taken for sequencing) (parameter sample_size).
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applied, by using binomial sampling: Pr Xtþ1
i ¼ x j f t

i ; N
� �

¼

N
Nx

� �
f tþ1
i Nx 1� f tþ1

i

� �N�Nx
where x denotes the number of alleles

of type i sampled at generation tþ 1, leading to an allele fre-
quency of x=N after both selection and drift. When performing
serial passaging, a population bottleneck may be imposed upon
the population every generation or every few generations, based
on the user input. Furthermore, only a fraction of the genomes
may be sampled for sequencing. FITS is able to account for both
these bottlenecks (Fig. 1D) by performing additional binomial
sampling steps.

After running the simulations, we measure the ‘1distance be-
tween the observed and simulated trajectories. Namely, for each
generation t 2 f1 . . . ng, the simulated frequency of each non-WT
allele i 2 f1 . . . k� 1g is subtracted from the observed frequency

and the absolute value is taken: ‘1 ¼
Pn
t¼1

Pk�1

i¼1
f t
i;sim � f t

i;obs

���
���. The top 1

per cent trajectories (i.e., with the minimal distance) are used
as an approximation of the posterior distribution of the in-
ferred factor (Sunnåker et al. 2013; Foll et al. 2014). From this
distribution, we take the median as a point estimate for the in-
ferred factor (Csilléry et al. 2010; Aeschbacher et al. 2013; van
der Vaart et al. 2015). Finally, we test whether the posterior
distribution is significantly narrower than the prior distribu-
tion (see Fig. 1B). This is done by applying Levene’s test (van
der Vaart et al. 2015). In the next sections, we will discuss how
FITS can be used to infer (1) fitness, (2) mutation rates, or (3)
population size. We also discuss how to use FITS to infer infor-
mation from multiple independent loci.

2.2 Inferring fitness values

The relative fitness of an allele is a measure of its advantageous
(w > 1), deleterious (0 � w < 1) or neutral (w ¼ 1) effect on the

reproductive success of the allele-bearing individuals, relative
to individuals with the WT allele (for which w :¼ 1). FITS
assumes that w 2 [0, 2], assuming that most advantageous
alleles tend to be no more than twice as fit as the WT. FITS may
assume a uniform prior distribution in this interval, for which
the user may define the bounds. Since fitness tends to be biased
toward deleterious mutations (Sanjuán 2010; Huber et al. 2017;
Peck and Lauring 2018), FITS uses as default a prior distribution
that is based on empirical measurements of the fitness of distri-
bution effects in viruses (Sanjuán et al. 2004, 2010) (see
Supplementary Fig. S1). FITS also offers the ability to input a
binned user-defined distribution as a prior.

2.3 Inferring the fitness category

Often a user may be less interested in the exact fitness value of
an allele but will be more interested in broadly classifying an al-
lele as deleterious, advantageous, or neutral. Therefore, we de-
fine an allele as advantageous (ADV) if at least 95 per cent of its
posterior distribution is greater than 1, and deleterious (DEL) if at
least 95 per cent of its posterior distribution is smaller than 1.
This classification is based on the measure of significance for a
posterior distribution previously proposed (Beaumont and
Balding 2004), referred to as a “Bayesian P-value” (Foll et al.
2014). We can potentially classify an allele as neutral (NEU)
when 95 per cent of the posterior distribution is equal to 1. Yet,
we realize that even if an allele is neutral the posterior distribu-
tion will likely include values near one but not equal to 1. When
more than 50 per cent (but less than 95%) of the posterior distri-
bution is positioned within the appropriate interval, FITS am-
bivalently classifies the allele as ?ADV, ?NEU, or ?DEL.

2.4 Inferring mutation rates

Many models utilize a single mutation rate l to describe the
probability of an allele to change, that is for every single allele,
l ¼ Pr Ai ! Aj 6¼i

� �
. Nevertheless, several studies have recently

measured mutation rates that vary quite a lot between different
pairs of alleles (Abram et al. 2010; Acevedo et al. 2014; Zanini
et al. 2017). FITS has been therefore designed to infer the muta-
tion rate between any pair of alleles separately, given input on
the fitness of the allele and the population size. FITS samples a
value for the exponent (n) from a uniform prior, such that
lAi!Aj

¼ 10n. This allows obtaining a general idea of the order of
magnitude of the mutation rate; more exact inference is chal-
lenging as we show below and may often be unnecessary when
one is interested in a general estimate of mutation rates. Setting
the range of the prior to [�7, �2] captures most mutation rates
of viruses (Sanjuán et al. 2010; Acevedo et al. 2014). When possi-
ble, we recommend using multiple loci with mutations known
to bear the same fitness effects (e.g. synonymous mutations) for
inferring mutation rates.

2.5 Inferring population size

The population size (N) affects the extent to which either ge-
netic drift or selection exert their effect on the allele frequency
trajectory. We sample the exponent (n) from a uniform distribu-
tion, such that N ¼ 10n, once again allowing the user to obtain
the order of magnitude of the population size rather than an ex-
act value which is very challenging to infer. A range of [2, 8]
should capture many experimental and natural settings. We
note that for large values of N the allele frequency trajectory
will differ ever so slightly, regardless of the precise value of N.
For this reason, the aim of FITS is not necessarily to give an

Box 1. Limitations of FITS

FITS is designed to allow inference of fitness/mutation rate/popula-
tion size from single-position time-series allele frequency data.
Single position data is typical for next generation sequencing of
virus populations, which is usually based on short reads, render-
ing the inference of haplotypes very difficult. FITS therefore does
not take into account linkage among sites and we recommend us-
ing FITS in the following cases:

• Viruses (or other microbes) whose recombination rates are higher
than the combined action of selection and mutation, and thus
linkage will be broken down. This is true under some conditions
for many (but not all) RNA viruses (Worobey and Holmes 1999).

• E&R experiments or in vivo data that are based on one to few
founder viruses evolving for limited number of generations. For
example, given a mutation rate of 10-5 for poliovirus and a clonal
population at the beginning of the experiments, we expect that
>90 per cent of the virus genomes will bear only one mutation af-
ter seven replication cycles, and >70 per cent after fourteen cycles
as explored herein. Notably, for organisms with lower mutation
rates this will be true for many more generations.

We recommend cautions when using FITS if:
• There is a high probability that there are many linked mutations

on the same genome. This will occur, for example, if selection is
strong enough to exceed the rate by which recombination breaks
down linked sites (see discussion).

• The data is unreliable (for example, small sample size leading to
uncertainty in allele frequency estimates, or sequencing errors
that mask expected mutation frequencies).

T. Zinger et al. | 3

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vez011#supplementary-data


accurate estimate of N, but rather to give upper or lower bounds
on N.

2.6 Joint inference with multiple independent loci

FITS allows inferring a joint fitness value, mutation rate, or pop-
ulation size for multiple independent loci. In this case, the other
two input parameters are assumed to be shared across all loci.
Simulations are performed for each locus independently as de-
scribed above, and the ‘1 distance is calculated. Next, however,
the median of all ‘1 distances is used as a summary statistic to
generate the posterior distribution for the missing parameter
(see Fig. 2).

3. Results
3.1 Simulated datasets

In order to validate the accuracy of FITS, we tested it using sim-
ulated data. We began by simulating frequency trajectories us-
ing FITS under a biallelic model over 15 generations, with
different combinations of parameter values: N ¼ f104; 105; 106g,
l ¼ 10�6; 10�5; 10�4g

�
and w ¼ f0; 1:0; 1:5g. Simulations all be-

gan from an initial mutant allele frequency of zero, mimicking a
situation where the population starts off without genetic varia-
tion. This is the case in many virus infections that are initiated
by a very limited number of virus particles (Keele et al. 2008;
Bull et al. 2011) and for many experimental setups (Pepin and

Wichman 2008; Acevedo et al. 2014; Lind et al. 2015; Stern et al.
2017; Hiltunen et al. 2018). For each parameter combination, 100
replicate datasets were generated, yielding a total of 2, 700 data-
sets. We then used FITS to infer parameters using these
datasets.

3.2 Accuracy of fitness estimates

We analyzed how many datasets yielded a posterior distribu-
tion significantly narrower than the prior distribution based on
Levene’s test (van der Vaart et al. 2015). Results show that infer-
ence tends to be most reliable when Nl � 1, with 99 per cent to
100 per cent of datasets analyzed yielding a narrowed posterior
(Supplementary Fig. S2A). This most likely derives from the fact
that when Nl < 1, a new mutation may not be created at all,
and allele frequencies will remain at zero for most generations,
regardless of the fitness. Therefore, FITS outputs a warning on
unreliable inference when given input parameters where
Nl < 1. We next turned to testing the effect of the number of
simulations (i.e. the number of samples from the prior distribu-
tion) on reliability of inference (Nakagome et al. 2013). Indeed,
we saw significantly more narrowed posteriors when increasing
the number of simulations from 104 to 105 (t-test, P = 0.0002).
However, increasing from 105 to 106 simulations did not lead
to a significant improvement (t-test, P = 0.27, Supplementary
Fig. S2B).
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Figure 2. Results of FITS on simulated data. (A) Accuracy of fitness inference for a total of 2,700 simulated biallelic and quadrallelic datasets. Plotted separately are

inferences for transitions under the biallelic model (bi), transitions or transversion under the quadrallelic model (quad Ts, quad Tv), and quadrallelic data that were
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We went on to test the accuracy of FITS for the biallelic
model on a subset of the simulated data, in which N ¼ 105 and
l ¼ 10�5 (Fig. 2A). Results of FITS were found to be quite satisfac-
tory: the fitness of lethal alleles (true fitness equals to 0) was in-
ferred as 0.05 6 0.09 (mean and SD), the fitness of neutral alleles
(simulated fitness equal to 1) was inferred as 0.9 6 0.1 and the
fitness of advantageous alleles (simulated fitness equal to 1.5)
was inferred as 1.4 6 0.1 (Fig. 2A). Thus, the fitness of lethal
alleles was slightly overestimated whereas neutral and advan-
tageous alleles were slightly underestimated. Finally, we tested
using the ‘2 (Euclidean) distance as an alternative summary sta-
tistic and did not notice any improvement in inference
(Supplementary Fig. S3).

We next sought to test the performance of FITS using the
quadrallelic model (using four alleles). Our goal was to mimic as
much as possible a biologically plausible dataset of virus alleles
(Supplementary Table S1), with different mutation rates for tran-
sitions (10�5) and transversions (10�6), based on a transition/
transversion ratio that is often around ten (Stoltzfus and Norris
2016). For the transition allele, 99 per cent of the posteriors were
narrowed compared to 24 per cent for each of the transversion
alleles. In general, FITS inferred the fitness of lethal transitions
as 0.05 6 0.08 and lethal transversions as 0.8 6 0.03, the fitness
of neutral transitions as 0.9 6 0.1 and neutral transversions as
0.9.60.1 and the fitness of advantageous transitions as 1.5 6 0.1
(Fig. 2A). As expected by our results on the effects of Nl, the ac-
curacy of inference was strongly affected by the type of the mu-
tation, with fitness of transition alleles inferred more accurately.
To test if it is better to neglect transversions, we ‘collapsed’ our
quadrallelic data into two alleles, by removing the transversions
and normalizing the transitions and WT frequencies to one
(Fig. 2A). This led to inferior inference of the lethal alleles, since
they tended to be overestimated, suggesting that despite the in-
accuracy in inferring transversions, taking the additional infor-
mation present in transversions into account helps to increase
the accuracy of the transitions.

Our results show that fitness values of neutral and advanta-
geous alleles are slightly underestimated. This effect seems to be
related to the stochastic effects of copy number: in the initial
generations, the copy number of a newly born mutation is al-
most always very low (depending on N), and thus an allele may
be lost and regenerated over several generations till it ‘takes off’
due to selection. This will lead to lower allele frequencies in gen-
eral, which will resemble simulations with lower fitness values.

3.3 Classifying allele fitness

Although FITS gives a point estimate as an output, for many
researchers, the category of the allele’s fitness (DEL, ADV) is
more important than the exact value. We thus set out to see
how accurately FITS categorizes alleles. In order to do so, we
generated datasets by simulating trajectories for 20 different fit-
ness values ranging from zero to two, assuming N ¼ 105 and
l ¼ 10�5. For each fitness value, we generated 100 replicates and
used FITS to classify the fitness of the mutant allele (Fig. 2B).
Our results showed that in general, FITS is able to quite accu-
rately classify the allele, in particular when including the am-
bivalent ?ADV and ?DEL labels as well. Reassuringly we found
that the mutant allele was classified as advantageous only
when it was indeed so. Only a few datasets (7/100) yielded
the ?ADV ambivalent labeling, and none yielded ADV when the
actual fitness value was w � 1. This is consistent with FITS’
conservative estimation of advantageous alleles, which is a de-
sired behavior for many users.

Finally, we set out to test FITS on simulated datasets based
on multi-locus models that also take into account factors such
as recombination and linked selection. We used FFPopSim
(Zanini and Neher 2012), using the program’s parameters of an
HIV population replicating for 180 generations (�1 year). We
tested the inference of FITS under two scenarios: dense sam-
pling of the first ten generations or sparse sampling every ten
generations of generations 10 through 180 (Fig. 3A). In general,
FITS was quite successful in estimating the distribution of fit-
ness values, with increased accuracy when more generations
were taken into account (Fig. 3A). Deleterious alleles appeared
to be sometimes underestimated, manifested as residual plots
shifted to the left (Fig. 3B). Neutral and advantageous alleles
were mostly inferred quite accurately (Fig. 3B) although we
noted a consistent slight underestimation that become more
pronounced when more generations were taken into account,
possibly due to background selection. When focusing on classi-
fication of alleles into DEL/ADV, we noted that for alleles with
simulated fitness up to 0.98, 39 per cent were classified correctly
as DEL based on ten generations (this goes up to 93% if consider-
ing also ?DEL), and 99 per cent were classified correctly based
on 180 generations. For advantageous alleles with fitness of 1.02
and higher, 12 per cent were classified correctly based on ten
generations (this goes up to 82% if considering also ?ADV), and
71 per cent were classified correctly based on 180 generations
(this goes up to 82% if considering also ?ADV).

3.4 Sampling effects

We considered that often the sample of genomes sequences
may not correctly represent the allele frequencies in the popula-
tion, as has been previously noted (Illingworth et al. 2017). This
will be especially pronounced for rare alleles, which may likely
not be sampled at all if the sample size is very small. In such
cases, we would like to avoid incorrect inference by FITS. To
this end, FITS can take into account the sample size in the sim-
ulations it performs. We tested FITS inference of fitness on a
population size of 105, a mutation rate of 10�5, yet with a sample
size of 200, manifested by setting the FITS parameter sample_size
to 200. Out of 100 datasets with w = 0 and with w = 1, we noted
that Levene’s test failed in more than half of the inferences or
gave borderline results (P value that bordered 0.01). Moreover,
the posterior distribution in these cases often spanned most of
the range of the prior distribution. This was in stark contrast to
all our previous results where Levene’s test most often gave
highly significant results (P < 10�5) and a quite tight posterior
distribution. We hence suggest that users take caution when ob-
serving results with a borderline Levene’s test result and a wide
spread of the posterior distribution.

3.5 Comparison with other tools

To further evaluate the accuracy of FITS, we set out to compare
it with previously published tools. We attempted to analyze our
simulated datasets using WFABC (Foll et al. 2015) and failed to
get sufficient/reliable results for comparison under the condi-
tions of large population size and rare alleles as explored herein
(Supplementary Material). We further attempted to run another
fitness inference method based on maximum-likelihood
(Lacerda and Seoighe 2014). As stated by the authors, this
method is less suitable for mutant allele frequencies approach-
ing 0 or 1. We ran the R code (supplied by the authors) on our
datasets and indeed got very inaccurate values (see
Supplementary Table S2) for lethal and neutral alleles;
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advantageous alleles (w = 1.5) were inferred accurately. The in-
ability to perform full direct comparison between FITS and the
methods described emphasize FITS’s novelty in its ability to cor-
rectly handle rare alleles.

3.6 Mutation rate accuracy

In order to infer the mutation rate, one must begin by studying
an allele whose fitness is known. This may be assumed to be
the case for synonymous mutations, which are most often neu-
tral, or for an allele where external information is available re-
garding fitness. Here, we tested the ability of FITS to infer
mutation rates given a neutral allele, by simulating datasets
with varying mutation rates, while retaining N ¼ 105 and
w ¼ 1:0. Forward and back mutation rates were set to be the
same value. Not surprisingly, FITS was mostly unable to infer
the back mutation rate, as manifested in only 12 out of 300 data-
set analysis yielding narrowed posterior distributions for the
back mutation (compared to 300 out of 300 for the forward mu-
tation). This is likely because in our context, back mutations op-
erate on the mutant allele, which exists at a very low copy
number. We therefore focused only on inference of the forward
mutation rate. Mean values across individual loci for the for-
ward mutation rate exponent were measured at �4.0 6 0.07,
�5.1 6 0.3, and �6.1 6 0.4 for log10l ¼ �4;�5;and � 6, respec-
tively (Fig. 2C). We next used our joint multiple loci approach,
which estimates one posterior distribution for all loci at once.
The median of this distribution is shown as triangles in Fig. 2C;
Estimates are very accurate for the higher mutation rates, but
this approach appears to be less accurate for low mutation rates
as compared to aggregating results from single loci. Similar ac-
curacy was found when simulating deleterious alleles and using
them to infer the mutation rate (Supplementary Fig. S4).

We next set out to compare mutation rate inferences of FITS
to inferences obtained using alternative methods on empirical
data. Acevedo et al. (2014) used highly accurate sequencing to
infer the frequency of lethal mutations in poliovirus type 1 and

based on mutation–selection balance used these frequencies to
infer mutation rates. We used FITS to infer mutation rates ei-
ther by inferring the mutation rate for each synonymous muta-
tion independently and displaying boxplots with the median as
the inferred mutation rate, or by using our multiple loci ap-
proach (see Section 2.6; Supplementary Fig. S5). We used synon-
ymous mutations only. In general, the two methods agreed
quite well on the mutation rates across almost all of the differ-
ent transversions. However, there was discrepancy in the infer-
ence of the transitions: FITS inferred the transition rate as
�10�5, whereas Acevedo et al. inferred it as �10�4. This discrep-
ancy held even when synonymous mutations were filtered us-
ing various filters (high- or low-frequency mutations, mutations
that reside in secondary structures, different metrics and sum-
mary statistics; Supplementary Fig. S6). Finally, we tested the
difference in inference under a biallelic model versus a quadral-
lelic model and found that the quadrallelic inference led to less
variance in the inferred rates, leading to a better separation be-
tween transitions and transversions (Supplementary Fig. S7).

3.7 Population size accuracy

The fitness of the allele (as well as the mutation rate) must be
also known in order to infer the population size. Once again, we
here mimicked inference given a neutral allele, by simulating
w ¼ 1 and l ¼ 10�5 over 100 datasets and inferred the popula-
tion size using FITS (Fig. 2D). In terms of narrowed posterior dis-
tributions, we got fractions of 100/100, 98/100, and 87/100 for
N ¼ 104; 105;and 106; respectively. Our point estimates of popu-
lation size were 3.71 6 0.66, 5.41 6 0.55, and 6.49 6 0.5 for
log10N ¼ 4; 5; and 6; respectively.

3.8 FITS inference given noisy input parameters

In many setups, population parameters may be imprecisely es-
timated. For example, virus population size may actually be
smaller or larger by an order of magnitude due to either a

A B

Figure 3. FITS inference on simulated multi-locus populations of HIV. Blue: inference based on the first ten generations; Orange: inference based on 180 generations;

Green: “true” distribution, as simulated by FFPopSim. (A) Density plots of simulated (“true”) versus inferred fitness values. (B) Residual density plots showing inference

errors, defined as the difference between the inferred fitness value and the simulated “true” fitness value, segregated based on the “true” fitness value as given by

FFPopSim.
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simple experimental error or due to inherent difficulty to infer
it. Therefore, it is of great interest to see how FITS is affected by
incorrect input parameter values.

We took a subset of the simulated datasets used for demon-
strating the accuracy of FITS and ran the fitness inference again,
intentionally using wrong values for the population size (Fig. 4A)
and mutation rate (Fig. 4B). When focusing on incorrect popula-
tion size used as input, we observed that our inference of fitness
remained quite robust for both neutral and advantageous alleles.
Fitness was slightly underestimated in these cases when the in-
put population size was an order of magnitude lower than the
true value, making FITS more conservative in estimation of adap-
tive alleles. For lethal alleles, we observed very accurate inference
even when the input population size was too high. However, FITS
overestimated the fitness of lethal alleles when the input popula-
tion size was too low: lethal alleles were on average estimated as
having a fitness of 0.2 6 0.1 when the input population size was
half of the real size and 0.8 6 0.1 when the input population size
was one tenth of the real size.

On the other hand, inputting wrong mutation rates to FITS
had a more complex effect on the accuracy. For neutral and ad-
vantageous alleles, giving as input an extremely low mutation
rate had little effect, and FITS quite accurately inferred the fit-
ness values in these cases. However, too high an input for the
mutation rates caused FITS to strongly underestimate the fit-
ness values of neutral and advantageous alleles. In fact, neutral
alleles were often estimated as lethal if the mutation rate given
as input was an order of magnitude higher than the real value
(0.1 6 0.2). This is consistent with predictions from mutation–
selection balance theory: a lethal allele is expected to be main-
tained at a frequency of the mutation rate. If the erroneously
given mutation rate is very high, neutral alleles will remain be-
low this mutation rate over the short time frame simulated and
will hence be classified as lethal. While this is a critical point to
notice, it still emphasizes that FITS remains conservative for ad-
vantageous alleles and will not report false positives. Similar to
the case with inaccurate population sizes, fitness of lethal
alleles tends to also be overestimated when too low a mutation
rate is given as input. The consequences of inference with in-
correct input values are summarized generally in Table 1.

In summary, when the mutation rate or population size are
twice as high or twice as low as the real value (i.e. same order of
magnitude), the inference of FITS is still quite robust. However,
when FITS receives as input a parameter that is an order of
magnitude higher or lower than the real value, this has a pro-
nounced effect on inference of lethal (and presumably also non-
lethal deleterious) alleles. Importantly, FITS remains conserva-
tive with advantageous alleles and tends to not overestimate
their fitness.

3.9 Case Study – OPV2 Quadrallelic Analysis

We next set out to use FITS to analyze empirical data obtained
from sequencing of oral poliovirus type 2 (OPV2) that we have
previously performed (Stern et al. 2017). Briefly, OPV2 was seri-
ally passaged at 39.5˚C for seven passages, corresponding to
fourteen generations. During the experiment, a population of
N ¼ 106 infectious virus particles (plaque-forming unit (PFU))
were seeded onto about 107 cells grown in tissue culture. Each
passage was sequenced using highly accurate CirSeq sequenc-
ing (Acevedo et al. 2014), allowing the detection of mutations at
a frequency as low as 10�6. Coverage (number of reads covering
a locus) spanned between 105 and 106 across all sequenced
passages.

We used FITS as follows: first, we ran FITS on each locus (in-
dependently) to infer the fitness of each allele, assuming a pop-
ulation size of 106. Mutation rates given as input were based on
estimates obtained previously based on linear regression of syn-
onymous mutation frequencies, under the assumption that
they are mostly neutral (Stern et al. 2017). Next, in order to test
how FITS infers mutation rates, we ran FITS independently on
each presumably neutral synonymous mutation. Accordingly,
FITS was given w ¼ 1 as input, and once again N was set to 106.
Results were compared to the linear regression results obtained
previously. Finally, we used FITS to also infer the population
size, by running FITS independently on each (once again pre-
sumably neutral) synonymous mutation. Accordingly, FITS was
given w ¼ 1 as input, and the mutation rates were set to the val-
ues obtained from the linear regression. The results of all these
analyses are described below.

3.10 Inferring fitness of each mutation in the genome of
OPV2

We first ran an analysis with FITS using the biallelic model, ap-
plied to transition mutations only. Next, we ran an analysis us-
ing the quadrallelic model, applied to loci where all four
nucleotides were observed. FITS was run on each locus inde-
pendently. The results of both analyses give the distribution of
fitness effects (DFE; Fig. 5) of the virus. Notably, this is a unique
in-depth view of genomic evolution, enabled due to (1) the very
high sequencing depth in the experiment, (2) the very high rate
of mutation of the viral populations, and (3) the highly accurate
sequencing approach used. Our results show a clear difference
in the distribution of fitness effects obtained with transitions
versus transitions þ transversions. Transversions tended to be
enriched with more non-lethal deleterious variants, whereas
transitions were far less deleterious in general (Fig. 5). Indeed,
this is in line with the genetic code structure, since transitions
will more often create synonymous mutations, and when creat-
ing non-synonymous mutations, transitions often create more
similar amino acids (Sella and Ardell 2002).

3.11 Inferring the population-wide mutation rates and
population size of OPV2

We next set out to infer the mutation rate for the transition
mutations of OPV2. Only loci where a synonymous transition
mutation was observed were used for the analysis. The forward
mutation rate estimates ranged between 10�6 and 10�5. This is
in agreement with the transition mutation rates we inferred
previously using linear regression (Stern et al. 2017), which
spanned 5� 10�6 � 10�5. In a similar manner, we inferred the
population size of the virus, based on independent inference of
the population size at each locus where a synonymous

Table 1. Summary of possible inference errors obtained when input-
ting incorrect mutation rates or population sizes.

True
category

Input error Result

ADV Too low N Underestimation; may look like neutral
LETHAL Too low N Overestimation; may look like neutral
ADV Too high l Underestimation; may look like neutral
NEU Too high l Underestimation; may look like deleterious
LETHAL Too low l Overestimation; may look like neutral
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transition mutation was observed. Inferred population sizes
ranged mostly between 105 and 106, which is largely in agree-
ment with the experimental protocol used to seed 106 PFUs at
each passage (Stern et al. 2017).

4. Discussion

We have developed FITS, a generic method that allows analyzing
time-series data, and inferring the key parameters that shaped
the evolutionary trajectory of an allele in an experiment or in real
life settings. The program was designed with recent evolutionary
experiments of RNA virus populations in mind (Acevedo et al.
2014; Stern et al. 2014, 2017). These experiments monitor a popu-
lation of viruses that begins as a clonal entity and accumulates
genetic diversity rapidly due to the high rate of mutation of the
RNA viruses. In the initial setup of the experiment, genetic drift
plays a prominent role, since mutations are born and present at
low copy numbers (Supplementary Fig. S8). However, FITS is ge-
neric enough to be used to analyze other types of data, essentially
any evolutionary experiment that tracks the population fre-
quency of a trait over time.

Some of the key advantages of FITS include the fact that
through the simulations, FITS is able to mimic the true biology
of an allele as it is created and spreads in the population. FITS
incorporates the mutation rate, allowing the introduction of
new mutations along time. This is especially vital for new

arising mutations. Moreover, by directly modeling stochastic
effects, FITS takes into account fluctuations in allele frequen-
cies, which may be quite prominent in the first few generations.
FITS is able to model four alleles, and we show that neglecting
this information may result in some overestimation of lethal
alleles and less robust estimation of mutation rates. On the
other hand, we see no added value for the incorporation of back
mutations (data not shown), suggesting that this is a parameter
that the user does not need to supply. Reassuringly, our results
show a very high level of accuracy even in some cases of very
noisy simulated data. Finally, our results suggest FITS can suc-
cessfully infer neutral and advantageous alleles even in the
case where mutations are not independent, as shown by our
simulations of HIV genomes. We do note that we seem to over-
estimate deleterious and lethal alleles; presumably this might
occur due to hitchhiking effects. Nevertheless, these alleles are
still categorized as deleterious alleles by FITS. In general, we
hope the fact that we have delineated the conditions where
FITS tends to err, will allow users to be cautious when interpret-
ing the result.

Our results on mutation rate inference were sometimes dif-
ferent than those obtained previously based on mutation–selec-
tion balance of lethal alleles in poliovirus (Acevedo et al. 2014).
While Acevedo inferred transition rates of �10�4, FITS inferred
transition rates around 10�5. One reason why this discrepancy
may arise from the same data is the fact that FITS takes into ac-
count the time-series nature of the data whilst Acevedo et al. do
not. In fact, the sequencing protocol includes a stage where very
high multiplicity of infection (MOI) infection is performed; such
high MOI may allow for complementation and hence an in-
crease in the frequencies of lethal mutations (Stern et al. 2014).
Accordingly, taking into account the change in frequency across
time may mitigate the artificial inflation of frequencies at each
time point. We further note that varying transition rates be-
tween 10�5 and 10�4 have been reported previously for poliovi-
rus (de la Torre et al. 1990, 1992; Sanjuán et al. 2010), and
suggesting that the ‘real’ value of the transition mutation rate is
unclear and may depend on the method of measurement and
inference.

It is important to delineate the limitations of FITS, which
represent the assumptions of the Wright–Fisher model used for
simulations and the framework used herein. It has been re-
cently suggested that some of the Wright–Fisher assumptions,
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such as a Poisson distribution of offspring, may not be appropri-
ate for viruses (Sackman et al. 2019); this awaits further experi-
mental investigation. Next, FITS assumes that loci evolve
independently, and hence each locus is analyzed separately; ac-
cordingly, phenomena such as linkage, or epistasis, are not
taken into account. We note that while we promote FITS for use
with viruses with high recombination rates, strong selection
that exceeds the recombination rate, as has been observed pre-
viously for CTL escape in HIV (Kessinger et al. 2013; Garcia et al.
2016), may still lead to strong effects of linkage and hence po-
tentially erroneous inference by FITS. Future work will be re-
quired to perform direct modeling of non-independent
evolution among sites in FITS. A second limitation of FITS has
to do with the amount of information present in the experi-
ment. Our simulation results showed that when the copy
number of the allele is low, as reflected by a low Nl, or when
sampling results in loss of information on the allele copy
number, there is not enough information to infer fitness with
FITS. Moreover, reliable accurate sequencing is central when
inferring parameters such as the mutation rate or low fitness
alleles that segregate at very low frequencies. Importantly,
one of the features of FITS is the ability of the program to de-
tect unreliable inference, both when Nl is too low, and also
when the posterior distribution yields no additional informa-
tion over the prior distribution, and to output a warning to
the user.

We note that FITS is designed to infer parameter values re-
garding one specific locus in a genome. However, FITS should
be more robust when multiple loci are used to infer a specific
parameter that is supposedly shared across many loci, such as
the population size or mutation rate of a specific category of
sites. This is also true for fitness—while naturally a user may be
interested in the fitness of one particular allele, fitness inferred
for a class of alleles (e.g. a particular type of non-synonymous
mutations) will likely yield more robust results. This is evident
when viewing the empirical data inferences from individual
mutations (Supplementary Fig. S5) that often span an order of
magnitude. When using more loci, a clearer view emerges as to
where the mass of the distribution resides (e.g. the median)
(Supplementary Figs S5 and S6). Notably, we also allow for joint
inference using multiple loci, which most often agreed with the
median of the individual inferences. However, we noted that
when the number of loci was limited (<20), the joint inference
approach often yielded less satisfactory results than site by site
inference (data not shown).

To summarize, FITS is a generic tool that may be used for
inferring fitness, mutation rates, or population size. We sug-
gest that when genomic data is available, an iterative ap-
proach may be used: first, synonymous loci can be used to
infer the mutation rates and the population size. Next, the in-
ferred mutation rates and population size can be used as in-
put to infer the fitness of each mutation. Finally, the
mutations inferred as neutral can used to re-assess the muta-
tion rates and population size. Future work will be required to
test whether such an iterative scheme is robust and whether
multiple parameters can be inferred at once. To the best of
our knowledge FITS is the first available tool for inferring mu-
tation rates and population sizes (but see (Ferrer-Admetlla
et al. 2016) who allow inference of population-size scaled se-
lection), and the first user-friendly tool for inferring fitness of
mutations in virus populations. We have made a great effort
in making FITS intuitive for understanding and for use, hope-
fully making this another milestone in making the tools of

contemporary computational biology available to all
virologists.
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