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Background: Antimicrobial resistance (AMR) is a rising health threat with 10 million annual casualties estimated by
2050. Appropriate treatment of infectious diseases with the right antibiotics reduces the spread of antibiotic resist-
ance. Today, clinical practice relies on molecular and PCR techniques for pathogen identification and culture-based
antibiotic susceptibility testing (AST). Recently, WGS has started to transform clinical microbiology, enabling predic-
tion of resistance phenotypes from genotypes and allowing for more informed treatment decisions. WGS-based
AST (WGS-AST) depends on the detection of AMR markers in sequenced isolates and therefore requires AMR refer-
ence databases. The completeness and quality of these databases are material to increase WGS-AST performance.

Methods: We present a systematic evaluation of the performance of publicly available AMR marker databases
for resistance prediction on clinical isolates. We used the public databases CARD and ResFinder with a final data-
set of 2587 isolates across five clinically relevant pathogens from PATRIC and NDARO, public repositories of
antibiotic-resistant bacterial isolates.

Results: CARD and ResFinder WGS-AST performance had an overall balanced accuracy of 0.52 (±0.12) and 0.66
(±0.18), respectively. Major error rates were higher in CARD (42.68%) than ResFinder (25.06%). However, CARD
showed almost no very major errors (1.17%) compared with ResFinder (4.42%).

Conclusions: We show that AMR databases need further expansion, improved marker annotations per antibiotic
rather than per antibiotic class and validated multivariate marker panels to achieve clinical utility, e.g. in order to
meet performance requirements such as provided by the FDA for clinical microbiology diagnostic testing.

Introduction

Antimicrobial resistance (AMR) is a rising health threat estimated
to cause 700 000 annual deaths, with 10 million annual casualties
expected by 2050.1 Appropriate antibiotic therapy improves pa-
tient outcomes and is a major factor in reducing the emergence of
antibiotic resistance.2,3 Current clinical practice predominantly
uses antibiotic susceptibility testing (AST) from bacterial culture,
with long turnaround times ranging between 24 and 72 h, errors
arising in inoculum preparation or culture conditions and limita-
tions related to individual species–antibiotic combinations.3–5

With the reduction in WGS costs and runtimes, several
researchers have assessed WGS-based AST (WGS-AST) for clinical
practice, for example in Escherichia coli and Klebsiella pneumoniae,
as well as using different computational approaches.3,6–9

The increasing availability of WGS data from clinical strains has
helped to robustly identify antibiotic resistance determinants

and to curate them in dedicated databases.10 Public databases
like the Comprehensive Antibiotic Resistance Database (CARD),11

ResFinder12 and its companion database PointFinder,13 ARG-
ANNOT,14 as well as others, have emerged as AMR repositories and
software tools have been developed for WGS-AST based on these
databases.

Stoesser et al.3 and Zankari et al.13 used ResFinder and its sister
database PointFinder for WGS-AST on clinical isolates of E. coli, K.
pneumoniae, Salmonella and Campylobacter jejuni. They showed
that in silico AMR predictions may suffer from high false-
susceptible (false-negative) and/or false-resistant (false-positive)
rates. In resistance phenotyping, a false-negative result is consid-
ered a very major error (VME) and a false-positive result a major
error (ME). A VME might result in use of an ineffective therapeutic
agent for treatment, leading to treatment failure; an ME might
limit therapeutic options and complicate treatment. The more ser-
ious effect of VMEs is reflected in FDA stipulations for diagnostic
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test approval, where the FDA requires VMEs <1.5% and MEs <3%
for approval of a new AMR diagnostic test or device.15

As the coverage and quality of databases underlying WGS-AST
are essential for clinically relevant AMR diagnostic tests,9,16 we
evaluated the performance of public AMR marker reference
databases for the prediction of resistance in bacterial isolates to
spotlight current pitfalls and areas for improvement. Most studies
that apply genotype to phenotype prediction focus on samples
from a particular species or a single cohort. Here, we present a
large-scale study encompassing bacterial isolates from multiple
species and cohorts to investigate the utility of publicly available
markers for AST prediction from WGS. To maximize the amount of
data available for assessment, categorical phenotypes were used
as provided by the public databases. A limitation may thus be that,
with the increase of AMR, interpretive breakpoints have changed
over time and isolates treated as susceptible may be considered
resistant at present. As opposed to other studies that focus on
smaller datasets or single pathogens together with expert manual
curation of results,3,17 we evaluated the performance of AMR
marker databases on a large and diverse dataset using default
settings to assess the status quo and outline concrete steps to im-
prove clinical utility of those databases without time-consuming
result curation.

Materials and methods

Isolates and antibiotics collection

Assembled isolate genomes and categorical resistant/susceptible
phenotypes as per the databases—filtered by antibiotics—were sourced
from PATRIC (the Pathosystems Resource Integration Center) and NDARO
(National Database of Antibiotic Resistant Organisms); accessed 31
January 2019. Details can be found in the Supplementary data (available as
Supplementary data at JAC Online).

In silico phenotype prediction
CARD’s Resistance Gene Identifier (RGI) 4.2.2 with the CARD database 3.0.1
was run with default settings for all isolates to predict resistance pheno-
types. ‘Perfect’ and ‘strict’ hits as per CARD publication were included
according to per model curated similarity cut-offs where a perfect hit is an
exact match to the curated reference sequences and a strict hit is a previ-
ously unknown variant of known AMR genes.18

ResFinder 4.0 (git commit 0007df1) was installed and run using the
ResFinder database (git commit bd77b98) for resistance phenotype predic-
tion for all isolates with default settings (minimum coverage 60%; min-
imum sequence identity 90%). PointFinder (git commit bd50f0b) was run
for E. coli isolates using the PointFinder database (git commit d1413d2)
with the scheme for E. coli.

Evaluation of prediction performance
CARD and ResFinder predictions were compared against in vitro phenotypic
AST results. CARD and ResFinder reported predicted phenotypes by antibiot-
ic class. Observed phenotypes against individual antibiotics, as reported by
PATRIC and NDARO, were mapped to predicted phenotypes by antibiotic
class affiliation to evaluate prediction performance. For example, observed
phenotypes for amikacin, gentamicin and tobramycin were mapped to
CARD’s predictions on aminoglycoside resistance.

Retrieved PATRIC and NDARO phenotypes were labelled as resistant/
susceptible, in line with the resistance/susceptible prediction output from
CARD and ResFinder. Evaluation of prediction performance was treated as
a binary classification task; predicted phenotypes were compared with

observed phenotypes. An ME was defined as a resistant prediction discrep-
ant with an observed susceptible phenotype; a VME was defined as a
susceptible prediction discrepant with an observed resistant phenotype. To
evaluate prediction performance, balanced accuracy (bACC)—the average
of sensitivity and specificity—was used, which can be understood as the
average accuracy obtained for each class, thus avoiding inflated perform-
ance statistics in the case of dataset class imbalance.19–21

To evaluate PointFinder in combination with ResFinder for WGS-AST for
the antibiotics ciprofloxacin, cefotaxime and ceftazidime in E. coli, an isolate
was classified as resistant if either tool predicted resistance.

Evaluation of marker performance
We used the Antibiotic Resistance Ontology (ARO) provided by CARD to
group detected CARD AMR markers, i.e. genes and variants, into AMR mark-
er families. For example, all aminoglycoside nucleotide transferase (ANT)
alleles were treated as a marker family, all TEM alleles as TEM b-lactamases
and so on. The aim was to describe the effect of low-resolution annotations
of marker-to-phenotype relationships on predictive performance. While
considerable differences in activity exist for members of groups of, for ex-
ample, b-lactamases, such as TEMs, SHVs and KPCs, those differences were
not annotated conclusively and comprehensively for analysis on the allele
level across evaluated databases.

For the evaluation, the predictive performance of every marker family
for an associated antibiotic resistance listed by CARD ARO was independ-
ently evaluated on all isolates. Standard metrics such as sensitivity, specifi-
city and positive predictive value (PPV) were calculated.

To assess the performance of entire AMR marker groups, marker
families were further aggregated using resistance mechanism-related
ontology terms that are close to the root term of CARD’s ARO. This aggrega-
tion resulted in four ‘marker groups’ that covered all markers detected:
(i) efflux-related AMR genes and mutations; (ii) b-lactamases; (iii)
aminoglycoside-modifying enzymes (AMEs); and (iv) fluoroquinolone
resistance-associated genes and mutations. Predictive performance of
each marker group was calculated as the average performance of the
marker families represented by the marker group for all species–antibiotic
combinations evaluated above.

Mapping of ResFinder compound class predictions to
compounds
We downloaded marker–phenotype associations available from ResFinder
at https://bitbucket.org/genomicepidemiology/resfinder_db. Associations
were used to predict antibiotic resistance using detected markers as per
ResFinder output in analysed isolates per antibiotic rather than antibiotic
class. Markers without phenotype associations for individual antibiotics
were excluded.

Data availability statement
Genotype and phenotype data were downloaded from the public reposito-
ries NDARO and PATRIC and were publicly available at the time of this
study.

Results

Selection of species and antibiotics

A total of 4278 isolate genomes and their resistance phenotypes
were collected from PATRIC22 and NDARO,23 two public repositories
of microbial isolate data, for assessment of WGS-AST based on pub-
licly available AMR markers from CARD11 and ResFinder12 (Table 1).
Regarding antibiotic selection, 17 antibiotics were selected as repre-
sentatives from penams, cephalosporins and other b-lactams,
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tetracyclines, quinolones and aminoglycosides. Details regarding se-
lection criteria that resulted in a final dataset size of 2587 isolates
are listed in the supplementary material.

Resistance phenotype prediction

Despite the large number of isolates per species, the proportion
of resistant to susceptible isolates, as deposited in PATRIC/
NDARO, was often skewed to either extreme for a given anti-
biotic. This strong class imbalance (Figure S2) was reported be-
fore by Drouin et al.24 for PATRIC data. Therefore, averaged
bACC was applied to assess resistance phenotype prediction

for the five analysed species. Overall, bACC ranged from 0.50
to 0.73 (Figure 1).

ResFinder showed slightly better performance than CARD. CARD
predictions suffered from overclassification and failure to identify
susceptible isolates, where bACC ranged from a minimum of 0.13
for aztreonam resistance in Acinetobacter baumannii to a max-
imum of 0.51 for tobramycin resistance in the same species.
Notably, CARD predicted all E. coli and Pseudomonas aeruginosa
isolates to be resistant to all tested antibiotics, resulting in a bACC
measure of 0.50 across all tested antibiotics (n = 17 and n = 11, re-
spectively). In contrast, ResFinder predictions had a bACC of 0.49
for piperacillin/tazobactam resistance in P. aeruginosa but in many
instances achieved a bACC of 1.00 (Figure 2). Across all antibiotic–
species combinations, CARD’s predictions showed an average
bACC of 0.52 and ResFinder’s predictions an average bACC of 0.66.
CARD’s predictions resulted in more MEs than ResFinder’s predic-
tions, with CARD’s average ME rate at 0.42. ResFinder showed
fewer MEs across all antibiotic–species combinations, where the
average ME rate was 0.25.

We chose E. coli (Figure 3) for a detailed comparison of
ResFinder and CARD prediction performance.25 CARD and
ResFinder results for the remaining species are in Tables S1 and S2.
For E. coli, average bACC using ResFinder was 0.73 and average
bACC using CARD was 0.50. Poor performance was mainly due to

Table 1. The distribution of analysed isolates across different species

Pathogen/species NDARO PATRIC Total Selected

A. baumannii 220 492 712 663

Enterobacter cloacae complex 83 8 91 39

E. coli 185 1517 1702 563

K. pneumoniae 295 820 1115 668

P. aeruginosa 144 514 658 654

Total 4278 2587
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Figure 1. The bACC is shown for every species as the average of all bACCs for the species–antibiotic combinations mentioned in the main text. bACC
was chosen as the evaluation criterion as it avoids performance inflation and provides a balanced representation of false-positive and false-negative
rates even in the case of dataset class imbalance. Error bars indicate SD. CARD predicted all E. coli and P. aeruginosa isolates to be resistant to all
tested antibiotics, resulting in a constant bACC of 0.5 and the absence of the error bars.
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high ME rather than VME rates. ResFinder predictions had an aver-
age ME rate of 29.76% and an average VME rate of 3.99% whereas
CARD predictions had an average ME rate of 65.4% and no VMEs.
ResFinder’s predictions showed better overall performance than
CARD except in the case of fluoroquinolones (Figure 3a and b).

ResFinder’s bACC values of 0.67 for ciprofloxacin and 0.61 for
levofloxacin were attributed to the fact that fluoroquinolone resist-
ance is predominantly mediated by chromosomal mutations and
ResFinder predictions are exclusively based on AMR genes.26,27 We
combined results from ResFinder and PointFinder, the software
developed by the ResFinder team to tackle chromosome
mutation-mediated resistance. This approach could only be
applied to E. coli as PointFinder’s database was implemented only
for E. coli, Salmonella enterica and C. jejuni.13 Combining predic-
tions from ResFinder and PointFinder for ciprofloxacin resulted in
improved prediction performance and a reduced VME rate from
16.5% to 0.5%. Despite abundant literature on gyrA and parC
mutations mediating resistance to fluoroquinolones in general,28

PointFinder exclusively associates gyrA and parC mutations with
ciprofloxacin resistance; consequently levofloxacin resistance was
not analysed (Figure 3c).

To further investigate CARD’s high ME rates, we repeated the
calculation excluding all predictions based on markers with efflux-

related resistance mechanisms. Efflux markers are highly affected
by transcription regulation and detection by WGS is not always a
sufficient indication of their contribution to AMR.29,30 This resulted
in overall improvement in the performance of CARD’s RGI for
aminoglycoside and fluoroquinolone compounds (Figure 3d).
However, for tetracyclines, VME rates increased, where many re-
sistant isolates were predicted to be susceptible, in agreement
with efflux-mediated resistance being the main resistance mech-
anism against tetracyclines.31 For results of using CARD predictions
without efflux markers for all species, see Table S3.

AMR marker performance

To provide an overview of contributions of entire marker groups to
WGS-AST, four groups were built from CARD’s ARO: efflux-related
markers, b-lactamases, AMEs and fluoroquinolone-resistance
genes and mutations. For every group, we evaluated the contribu-
tion to the overall prediction of resistance phenotype using (i) PPV,
i.e. the probability of a subject carrying a resistance marker being
resistant, and (ii) specificity, i.e. the proportion of susceptible iso-
lates that are correctly identified as such (Tables 2 and S4).

Efflux-related AMR markers from CARD were the most abun-
dant marker class in terms of hits per isolate (Table S5). On
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Figure 3. Evaluation of ResFinder and CARD (RGI) antibiotic resistance prediction performance on E. coli. (a) ResFinder prediction performance across
17 antibiotics. (b) CARD prediction performance across 17 antibiotics. (c) ResFinder and PointFinder prediction performance for ciprofloxacin, cefotax-
ime and ceftazidime. (d) CARD prediction performance excluding predictions based on markers related to efflux pump mechanism. ResFinder shows
overall better prediction performance than CARD; PointFinder predictions improve ResFinder predictions and, excluding predictions based on efflux-
related markers, improve CARD predictions except for tetracycline.
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average, an isolate contained 30 hits related to ‘Antibiotic Efflux’
as per CARD ARO, significantly higher than the average hits of
any other class. However, average specificity of an efflux-related
AMR marker is lowest among marker families. P. aeruginosa
isolates had the highest average number of efflux-related AMR
determinants detected per isolate (mean = 44.66) compared with
isolates from the remaining species (mean = 24.15), in agreement
with studies demonstrating a major role of efflux pumps for
P. aeruginosa resistance.32,33 In contrast, fluoroquinolone resist-
ance genes and mutations show the highest specificity and PPV
despite their low abundance (Figure S3). It should be noted that in
addition to single-point mutations related to fluoroquinolone
resistance, CARD also detects double mutations within the same
gene, e.g. gyrA S83L/D87N, in line with scientific literature.34

Increased resistance due to the presence of more than one mech-
anism simultaneously was not accounted for.

For the subsequent analysis, we focused on K. pneumoniae, an-
other cause of highly threatening nosocomial infections.35 With
the rise of b-lactam (mainly meropenems and cephalosporins)
and aminoglycoside resistance in K. pneumoniae,36,37 accurate
and precise detection of resistance is of high clinical relevance and
value. Despite identical resistance profiles of some b-lactamases

based on CARD ARO, we observed variability across some for resist-
ance prediction against associated antibiotics (Figure 4).

Annotation level and prediction performance

To investigate the effect of a higher level of annotation detail,
i.e. marker–compound annotation, we compared the predictions
of ResFinder with default settings against ResFinder predictions
mapped to individual compounds (see the Materials and methods
section). In Figure 5, we show that compound–level annotations
improved prediction performance for cephalosporins as well as
aminoglycosides in K. pneumoniae samples.

Discussion

Ruppé et al.16 reviewed studies performing genotype to phenotype
comparisons from AMR determinants from public databases in an
approach similar to the one presented here. These studies, how-
ever, focused on one or two species, with smaller datasets not
exceeding 400 samples and were mainly derived from a single lo-
cation.10,12,38–40 According to Su et al.,4 including large, diverse test
sets for development and evaluation of WGS-AST tools is critical.
However, most studies have used a sample with limited geograph-
ic and temporal variability. By using datasets from PATRIC41 and
NDARO,23 comprised of genome assemblies and categorical resist-
ant/susceptible phenotypes, we included a dataset from multiple
clinically relevant species with diverse locations and collection
times (Figure S1). A limitation may be that the study used categor-
ical phenotypes as provided by the databases. With the increase of
AMR, interpretive breakpoints have changed over time.42 For
Enterobacteriaceae, for example, breakpoints (mg/L) for cipro-
floxacin changed from susceptible (S) �1, intermediate (I) = 2, re-
sistant (R)�4 when first published by CLSI to S�0.25, I = 0.5, R�1
in 2019. While S/I/R labels could have been recalculated, including
only data with numerical MIC values, this would have drastically
reduced the dataset. Moreover, breakpoint changes were
expected not to affect the study’s main findings. This was vali-
dated exhaustively across all pathogen–compound pairs for which

Table 2. Abundance and WGS-AST performance metrics of the four
main marker families from CARD

Marker group
Average

hits/sample
Average

specificity Average PPV

Efflux-related

markers

30.30 0.12 0.52

b-Lactamases 2.61 0.66 0.76

AMEs 2.51 0.65 0.55

Fluoroquinolone
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Figure 4. Differences in resistance profiles for b-lactamases and AMEs in K. pneumoniae. (a) KPC b-lactamases and NDM b-lactamases are consist-
ently good predictors of resistance across all the analysed cephalosporins whereas OKP b-lactamases and CTX-M b-lactamases show variable resist-
ance prediction performance. (b) AACs, aminoglycoside phosphotransferases (APHs) and ANTs consistently show lower PPVs for amikacin than
tobramycin or gentamicin.
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numeric MIC data could be retrieved. Database labels as per sub-
mission and labels recalculated with breakpoints from 2019 were
95.6% concordant, while bACC of WGS-AST only differed by an
average of 0.7%.

In this study, as well as others,16 culture-based AST is treated
as the gold standard, being the primary method employed by
clinical laboratories.4 However, culture-based AST has its own limi-
tations. For example, a lack of reproducibility and comparability
across laboratories and countries due to biological variability, as
well as differences in technical staff training and standards
provided by EUCAST and CLSI.43,44 Adopting WGS-AST, backed
by standardized and validated sequencing and bioinformatics
pipelines, represents an opportunity to eliminate errors due to
experimental procedure and differences in laboratory conditions
in addition to achieving comprehensive and more accurate
results.4,9

Our analysis highlighted factors that affect WGS-AST accuracy,
starting at the databases, as shown by variable results from
ResFinder and CARD. Poor performance reflected in our results was
due to high rates of ME rather than VME. ResFinder prediction per-
formance was improved by combination with PointFinder, in
agreement with findings by Zankari et al.38 that high VME rates for
fluoroquinolones, for example, were due to the non-consideration
of mutational events. Compared with ResFinder, CARD showed
worse overall performance with lower specificity and higher ME
rates, a result in agreement with a comparison carried out on
Enterobacteriaceae by Pesesky et al.8 However, CARD’s prediction
performance for all antibiotic classes (except tetracyclines)
improved upon removal of general AMR determinants such as ef-
flux pumps and MEs were reduced significantly. These markers are
likely to cause inaccurate predictions as they are affected by gene
regulation where the presence of a gene detected by WGS is not

indicative of its expression due to weak promoters or low copy
numbers.29,40,45 The aforementioned findings highlight two of the
main challenges facing WGS-AST, namely: (i) the impact of refer-
ence databases on downstream results and hence the need for an
exhaustive and up-to-date knowledgebase of AMR determinants
that encompasses AMR genes and variants (chromosomal and
acquired), their prevalence in individual bacterial species and
metadata on compound activity and reported intrinsic resist-
ance;9,16 and (ii) the high false-positive rate due to an inadequate
understanding of aspects such as gene regulation, mutations in
intergenic regions and de novo rRNA mutations. In the latter case,
false positives may arise because naive detection of an AMR-
related gene without considering the aforementioned aspects
may not be sufficient to causally assume resistance. For example,
gene expression is not considered.43,45 It is clear that these chal-
lenges must be addressed to approach the FDA requirements for a
diagnostic test of MEs <3% and VMEs <1.5%.

Our results also highlighted that P. aeruginosa presents a par-
ticularly challenging case for WGS-AST, with its unique and com-
plex resistome being tightly regulated by gene expression.46 bACC
ranged from 0.49 to 0.60, in agreement with Kos et al.47 who
showed that using WGS-based detection of functional genetic tar-
gets alone failed to explain observed resistance phenotypes in that
species.

Another important factor affecting WGS-AST accuracy was the
similarity/identity cut-off used for resistance gene identification.
As our analysis explored the applicability of ResFinder in a standard
manner, we used its default settings. This resulted in much lower
accuracies than other studies applying a more stringent cut-off.
For instance, Zankari et al.38 used a more stringent cut-off in AMR
gene identification (�98%) compared with our ResFinder default
settings (�90%), which can explain the high rate of MEs (27.82%)
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in our results. In another study by Thomas et al.,40 applying a cut-
off of �95% together with focusing on a chosen subset of
ResFinder markers yielded specificity levels approaching 100% for
all antibiotic classes except aminoglycosides. Clausen et al.39

claimed that the 98% sequence identity threshold, as recom-
mended by Zankari et al.,38 was tested to be the ‘optimal thresh-
old’. Our results here suggest that revisiting default parameters for
ResFinder might be advisable.

A key factor determining WGS-AST accuracy was the annota-
tion level of marker–phenotype relationships. Despite sharing an
identical resistance profile on CARD, members of the same family
of enzymes showed different performance in predicting resistance
for different aminoglycosides in the case of AMEs or different ceph-
alosporins in the case of b-lactamases. Individual members of
these enzyme families interact differently with different members
of the antibiotic class. For example, many members of the amino-
glycoside acetyl transferase (AAC) class of AMEs confer resistance
to gentamicin and tobramycin, but not amikacin.48 Similarly, some
members of the TEM class of b-lactamases are ESBLs, affecting all
cephalosporins, whereas others are broad-spectrum b-lactamases
that only affect early cephalosporins.49,50 Allele-specific com-
pound resistance annotations and statistics on marker prevalence
and performance, such as sensitivity and specificity, comprehen-
sively applied across all AMR markers, despite being a determining
factor for accurate phenotype prediction, are not currently avail-
able from any public AMR database.51 In addition, resistance
against antibiotic classes may be affected by the simultaneous
presence of multiple resistance mechanisms. Accumulation of
AMR point mutations or genes can cause incremental MIC shifts,
e.g. if mutations in gyrA and parC are present in combination with
qnr or aac(60)-Ib-cr genes. Readily available data on those com-
binatorial marker–phenotype relationships would further improve
WGS-AST accuracy.

A number of studies applied genotype to phenotype prediction
while relying on a curated subset of markers from CARD, ResFinder
and other resources and obtained better overall prediction per-
formance. For instance, Stoesser et al.3 applied predictions relying
on a curated in-house reference database that contained AMR
determinants from ResFinder and other resources. Consequently,
the sensitivity for predicting resistance for�140 E. coli and K. pneu-
moniae clinical isolates was 0.96 and specificity was 0.97.3

Another study by Gordon et al.17 on a dataset of �1000
Staphylococcus aureus clinical isolates predicted phenotype from
genotype using a curated panel of AMR determinants based on a
literature search that resulted in overall sensitivity and specificity
of 0.97 and 0.99. A similar approach was applied in a recent study
by Feldgarden et al.52 who used AMRFinder, a tool relying on a
high-quality curated AMR gene reference database, combined
with literature research on antibiotic resistance phenotypes. This
resulted in predictions that are consistent with 98.4% of the actual
phenotypes of 6242 isolates from four different species (mostly S.
enterica).52 These studies highlight the effect of marker curation
and high level of detail in phenotype–genotype annotation on
WGS-based phenotype prediction.

Conclusions

To our knowledge, we have presented the first large-scale study to
include a highly diverse dataset of thousands of bacterial isolates

from multiple species, locations and times. Results illustrate that
databases such as CARD and ResFinder serve as reference data-
bases on resistance markers and offer functionality to predict re-
sistance phenotypes from single markers, but may not yield
optimal results using default settings. In this context, several chal-
lenges in genetic phenotype prediction still exist. To achieve FDA
requirements for clinical microbiology diagnostic testing below 3%
MEs and 1.5% VMEs, current AMR databases need to: (i) be further
curated and expanded, (ii) provide AMR marker annotations per
antibiotic rather than antibiotic class, and (iii) use combinations of
individual AMR markers selected for optimal diagnostic perform-
ance in experimentally validated multivariate panels.
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