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Abstract: Metabolic fatty liver disease caused by high-starch diet restricted the intensive and sus-
tainable development of carnivorous fish such as largemouth bass. In this study, the combination
liver proteomic and lipidomic approach was employed to investigate the key signaling pathways
and identify the critical biomarkers of fatty liver in largemouth bass. Joint analysis of the correlated
differential proteins and lipids revealed nine common metabolic pathways; it was determined that
FABP1 were significantly up-regulated in terms of transporting more triglycerides into the liver,
while ABCA1 and VDAC1 proteins were significantly down-regulated in terms of preventing the
transport of lipids and cholesterol out of the liver, leading to triglyceride accumulation in hepatocyte,
eventually resulting in metabolic fatty liver disease. The results indicate that FABP1, ABCA1 and
VDAC1 could be potential biomarkers for treating metabolic fatty liver disease of largemouth bass.

Keywords: metabolic liver disease; integrated analysis; proteomics; lipidomics; largemouth bass

1. Introduction

Largemouth bass (Micropterus salmoides), originally a popular sport fish in North
America, is now reared in many other countries worldwide and also is an important
freshwater carnivorous species in China for its high market value as a food [1–4]. At
present, more than 80% of cultured largemouth bass are fed on chilled fish [5]. However,
the high costs of chilled fish as well as the potential role as disease vectors hinder the
healthy development of largemouth bass aquaculture worldwide [2].

Previous studies discovered that fishes (especially carnivorous ones such as large-
mouth bass) generally have a low ability to use carbohydrate in compound feed [6–8].
Starch is the cheapest energy source in practical diet ingredients, and it contributes to
good binders for aquatic feeds [9]. Traditional puffed floating feeds usually require at
least 20% starch to obtain adequate swelling and floating properties. However, researchers
demonstrated that excess dietary carbohydrate could cause fat deposition, glucose and lipid
metabolism disorder, hepatopathy, apoptosis and finally result in liver damage [8,10–13].
Previous studies suggested that the starch content in the diet should be lower than 10%
to ensure the liver health of largemouth bass [14,15]. Therefore, high carbohydrate is
recognized as the primary factor that induced metabolic liver disease (MLD) in largemouth
bass [8,9]. MLD of largemouth bass was the first limiting factor for its sustainable devel-
opment worldwide [7]. Thus, it is crucial to understand the processes and progression of
MLD, as well as the key factors in largemouth bass.
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Proteomic technologies could be used for identifying and quantifying target proteins to
comprehensively explore the etiology of liver disease, due to their high-resolution and high-
throughput advantages [16]. Currently, it has become a powerful tool for understanding
pathology of liver disease [17]. By identifying groups of changed proteins, we could gain
insight into potential pathways and regulatory networks that might contribute to the devel-
opment of MLD. Many studies have found that proteomics could be used for biomarker
identification for early diagnosis in MLD [18–20]. To date, no study has ever comprehen-
sively investigated the protein expression changes in fishes of MLD. Lipids are essential
components for maintaining various homeostasis, physiological and cellular processes
in animals [21]. Lipid metabolism disorders would lead to many major health problems,
such as obesity and nonalcoholic fatty liver disease (NAFLD) [22]. Lipidomics, based on
UPLC-MS/MS technology, is a novel omics strategy for investigating lipid metabolism and
identifying lipid biomarkers [23,24], which enables large-scale and comprehensive studies
of lipids [25]. However, there is a lack of studies that systematically assess the protein and
lipid changes in the diseased liver of fish for the discovery of the biomarkers of metabolic
liver disease.

In this study, we constructed a fatty liver model of largemouth bass by feeding high
levels of dietary starch (16.2%) to investigate the complex biological processes and patho-
genesis of MLD with proteomic and lipidomic techniques. The mass spectrometry tech-
nique was used for proteome-level quantification analyses. Some characteristic changes
to different proteins and lipid metabolites are documented for the first time in this study
and provide a comprehensive multi-omics framework for MLD biomarker discovery in
largemouth bass.

2. Materials and Methods

During the experiment period, all fishes were maintained in compliance with the
Laboratory Animal Welfare Guidelines of China (Decree No. 2 of Ministry of Science and
Technology, issued in 2021).

2.1. Experimental Diets

Two experimental diets were formulated to be isonitrogenous and isoenergetic. A
basal diet was used as the control containing 10.8% starch (named the Normal group),
whereas another diet was prepared with 16.2% starch (named the MLD group). Each diet
was extruded into 2 mm diameter pellets using a twin-screwed extruder (EXT50A, Yang
gong Machine, Beijing, China). The diet formulation and analyzed chemical composition
are shown in Table 1.

Table 1. Formulation and composition of experimental diets (%).

Ingredients (in Dry Matter Basis, %) Normal Group MLD Group
a Fish meal 30.0 30.0

Tapioca starch 5 5
Wheat flour 9.0 18

Microbial protein 4 4
Cottonseed concentrate protein 23.5 22.6

Wheat gluten meal 4 4
Soybean meal 2 -

Spay-dried blood cell powder 4 4
α-cellulose 4.6 -

Ca(H2PO4)2 1.7 1.7
Lecithin oil 2.0 2.0

Fish oil 3.5 3.5
Soybean oil 3.5 3.5

Kelp powder 1.5 0
L-Threonine 0.1 0.1

DL-Methionine 0.2 0.2
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Table 1. Cont.

Ingredients (in Dry Matter Basis, %) Normal Group MLD Group
b Vitamin and mineral premix 1.4 1.4

Total 100 100

Nutrients compositions

Crude protein 50.83 51.15
Ether extract 12.36 12.33

Crude ash 10.08 10.04
Moisture 6.10 7.43

Gross energy (MJ/Kg) 20.45 20.15
a Fish meal: crude protein content was 68.8%; soybean protein concentrate: crude protein content was 65.2%;
cottonseed protein concentrate: crude protein content was 61.5%. b Vitamin and mineral premix (mg/kg diets):
VA 20 mg, VK3 20 mg, VD3 10 mg, VE 400 mg, VB1 10 mg, VB2 15 mg, VB6 15 mg, VB12 (1%) 8 mg, VC (35%)
1000 mg, Calcium pantothenate 40 mg, Inositol 200 mg, Niacinamide 100 mg, Biotin (2%) 2 mg, Folic acid 10 mg,
Corn gluten meal 150 mg; Choline chloride (50%) 4000 mg; FeSO4·H2O 300 mg, ZnSO4·H2O 200 mg, MnSO4·H2O
100 mg, CoCl2·6H2O (10%Co) 5 mg, KI (10%) 80 mg, Na2SeO3 (10% Se) 10 mg, MgSO4·5H2O 2000 mg, Zeolite
4995 mg, NaCl 100 mg, Antioxidant 200 mg, CuSO4·5H2O 10 mg.

2.2. Experimental Fish, Feeding and Sampling

Largemouth bass were obtained from the Tangshan Aquafarm (Tangshan, Hebei, China).
The experiment was conducted in the indoor circulating water system at the National
Aquatic Feed Safety Evaluation Base (Nan Kou, Beijing, China). Prior to the formal exper-
iment, the fish were acclimatized for 4 weeks by being fed the Normal diet. The water
temperature was maintained at 21–25 ◦C, pH = 7.2–8.0, dissolved oxygen (DO) >6.0 mg/L,
ammonia nitrogen content <0.3 mg/L and NO2

− < 0.1 mg/L. The fish were fed until apparent
satiation twice a day (8:00 am and 4:00 pm) for 10 weeks. Food intake was measured daily.

At the end of the growth trial, fishes from each group were randomly selected and
anaesthetized with chlorobutanol (300 mg/mL) after 24 h starvation. The specific growth
rate (SGR), final body weight (FBW) and feed conversion ratio (FCR) were detected by
weighing the fish at the end of the 10 weeks. The body weight, body length, liver and
viscera weight of the fish were recorded individually to calculate condition factor (CF),
hepatosomatic index (HSI), viscerosomatic index (VSI) and hepatic liquid (HL), respectively.
Blood samples were drawn from the caudal part of the sedated fish using anticoagulant
syringes with 2% NaF and 4% potassium oxalate and centrifuged at 4000× g rpm for 10 min
at 4 ◦C to obtain serum. Two parts of liver samples near to the bile duct were collected for
histology examination (fixed in 4% paraformaldehyde solution) and biochemical criterion
analysis (frozen in liquid nitrogen). All samples (except for histological samples) were
stored at −80 ◦C until analysis.

2.3. Hematological and Liver Homogenate Parameters

Hematological parameters included total protein (TP), total cholesterol (TC), triglyc-
eride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein choles-
terol (LDL-C), alkaline phosphatase (AKP), aspartate aminotransferase (AST), alanine
aminotransferase (ALT), total bile acid (TBA) and glucose (GLU). Hepatic total antioxida-
tive capability (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px),
catalase (CAT) and malondialdehyde (MDA) were determined by assay kits (Nanjing
jiancheng Co., Nanjing, China) following the protocols given by the supplier. The reactive
oxygen species (ROS) was determined by assay kit (Beyotime Biotechnology, Shanghai,
China) following the protocols given by the supplier.

2.4. Histopathological Examination of the Liver Tissue

After 24 h of fixation, all liver samples were dehydrated by the standard procedures,
and the samples were embedded in paraffin and cut to 6 µm sections. Liver sections were
stained following the protocols of hematoxylin and eosin (H&E) staining and observed
with light microscopy (Leica DM2500, Leica, Solms, Germany).
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2.5. Proteomics Analysis
2.5.1. Protein Extraction

The sample (3 mm × 3 mm) was grinded with liquid nitrogen into cell powder and
then transferred to a 5 mL centrifuge tube. After that, four volumes of lysis buffer (8 M urea,
1% Triton-100, 10 mM dithiothreitol and 1% Protease Inhibitor Cocktail) were added to the
cell powder, followed by sonication three times on ice using a high-intensity ultrasonic
processor. The remaining debris was removed by centrifugation at 20,000× g at 4 ◦C for
10 min. Finally, the protein was precipitated with cold 20% TCA for 2 h at −20 ◦C. After
centrifugation at 12,000× g 4 ◦C for 10 min, the supernatant was discarded. The remaining
precipitate was washed with cold acetone three times. The protein was redissolved in
8 M urea and the protein concentration was determined with BCA kit according to the
manufacturer’s instructions.

2.5.2. Trypsin Digestion

For digestion, the protein solution was reduced with 5 mM dithiothreitol for 30 min at
56 ◦C and alkylated with 11 mM iodoacetamide for 15 min at room temperature in darkness.
The protein sample was then diluted to urea concentration less than 2 M. Finally, trypsin
was added at 1:50 trypsin-to-protein mass ratio for the first digestion overnight and 1:100
trypsin-to-protein mass ratio for a second 4 h digestion.

2.5.3. TMT Labeling

After trypsin digestion, peptide was desalted with Strata X C18 SPE column (Phe-
nomenex) and vacuum dried. Peptide was reconstituted in 0.5 M TEAB and processed
according to the manufacturer’s protocol for TMT kit. Briefly, one unit of TMT reagent was
thawed and reconstituted in acetonitrile. The peptide mixtures were then incubated for 2 h
at room temperature and pooled, desalted and dried by vacuum centrifugation.

2.5.4. LC-MS/MS Analysis

The hydrolysated peptides were separated by HPLC connected with a reverse capillary
column. The specific steps and related conditions were as follows [19,26,27]: (1) sample
desalination: 0.1% TFA cleaning for 5 min (20 µL/min); (2) gradient elution: 2–35% ACN
gradient elution for 45 min (350 nL/min), 80% ACN elution for 15 min; (3) the eluent
composition of HPLC: A, 0.1% formic acid solution (v/v). B, 0.1% formic acid acetonitrile
solution (v/v); (4) the peptides were subjected to NSI source followed by tandem mass
spectrometry (MS/MS) in Q ExactiveTM Plus (Thermo Fisher Scientific Co., LTD, Shanghai,
China) coupled online with the UPLC. The electrospray voltage applied was 2.0 kV. The
m/z scan range was 350 to 1000 for full scan, and intact peptides were detected in the
Orbitrap at a resolution of 35,000. Peptides were then selected for MS/MS using NCE
setting as 27 and the fragments were detected in the Orbitrap at a resolution of 17,500.
A data-independent procedure alternated between one MS scan followed by 20 MS/MS
scans. Automatic gain control (AGC) was set at 3E6 for full MS and 1E5 for MS/MS. The
maximum IT was set at 20 ms for full MS and auto for MS/MS. The isolation window for
MS/MS was set at 2.0 m/z.

2.5.5. Protein Identification

Protein identifications were performed by using the ProteinPliot software (AB Sciex).
For protein quantitation, proteins were required to contain at least two unique peptides.

To demonstrate the reproducibility of the replicates, protein differential expressions
between various biological replicates were compared. Then p-value was calculated by
using the two-sample and two-tail t-test. When p-value < 0.05, the change of differential
expression exceeding 1.3 was regarded as the threshold for significant up-regulation, and
that less than 0.77 was regarded as the threshold for significant down-regulation.
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2.6. Lipidomics Analysis
2.6.1. Lipid Extraction

For the lipidomics analysis, the total lipids were extracted from the liver in the Normal
and MLD groups. Liver tissues (20 mg) were homogenized in a 2 mL centrifuge tube with
1 mL extracting solution (methyl tertiary butyl ether: methyl alcohol = 3:1, v/v, including
internal standard mixture). After homogenization, 200 µL deionized water was added and
then centrifuged for 10 min at 12,000× g r/min, 4 ◦C. The supernatant solution was dried
under nitrogen and redissolved in 200 µL mobile phase B for further analysis.

2.6.2. UPLC-MS/MS Analysis

Lipid profiles were determined using UPLC-MS/MS (AB Sciex, Framingham, MA,
USA). Samples (2 µL) were separated on Thermo AccucoreTMC30 column (2.6 µm,
2.1 mm × 100 nm i.d.) with a flow rate of 0.35 mL/min and column temperature of
45 ◦C. The mobile phase consisted of a mixture of acetonitrile/water (60:40, v/v) (A) and
a mixture of acetonitrile/isopropanol (10:90, v/v) (B), both containing 0.1% acetic acid
and 10 mmol/L ammonium formate. The elution gradient was set stepwise as follows:
0–2 min, 20–30% B; 2–4 min, 30–60% B; 4–9 min, 60–85% B; 9–14 min, 85–90% B; 14–17.3 min,
90–95% B; 17.3–20 min, 95–20% B.

2.6.3. Lipid Identification and Quantitation

The data were analyzed by multi-reaction detection mode (MRM). Conditions of MS
were set as follows: ion spray voltage: +5500 V (positive) and −4500 V (negative); collision
energy (CE): 35 V (positive) and −35 V (negative); temperature of electrospray ionization
(ESI): 500 ◦C; gas 1 (GS1): 45 psi; gas 2 (GS2): 50 psi; curtain gas: 35 psi.

Fifteen standard solutions with different concentrations were prepared for quantitative
analysis (concentration: 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5,
10 nmol/mL). Table 2 lists the lipid types and information of internal and external standards.

Table 2. Lipid types and information of part of internal and external standards.

Lipids Abbreviation CAS Standards Type

1 Lysophosphatidyl choline LPC (13:0) 20559-17-5 Internal
2 Cholesterol heptadecanoate CE (17:0) 24365-37-5 Internal
3 Ceramide C4 Cer (d18:1/4:0) 74713-58-9 Internal
4 Diester of glycerol dodecanoate DG (12:0/12:0) 60562-15-4 Internal
5 Lysophosphatidyl ethanolamine LPE (14:0) 123060-40-2 Internal
6 Phosphatidylcholine PC (13:0/13:0) 71242-28-9 Internal
7 Phosphatidyl ethanolamine PE (12:0/12:0) 59752-57-7 Internal
8 Diphosphatidyl glycerol PG (12:0/12:0) 322647-27-8 Internal
9 Phosphatidylserin PS (14:0/14:0) 105405-50-3 Internal

10 Triglyceride dodecyl TG (12:0/12:0/12:0) 555-44-2 Internal
11 Phosphatidyl inositol PI (16:0/16:0) 34290-57-8 Internal
12 Palmitic acid -d31 FFA (16:0)-d31 39756-30-4 Internal
13 Cholesterol linoleate CE (18:2) 604-33-1 External
14 Ceramide C17 Cer (d18:1/17:0) 67492-16-4 External
15 Diester of glycerol hexadecanoate DG (16:0/16:0) 30334-71-5 External
16 Lysophosphatidyl choline LPC (17:0) 50930-23-9 External
17 Lysophosphatidyl ethanolamine LPE (16:0) 53862-35-4 External
18 Phosphatidyl choline PC (17:0/17:0) 70897-27-7 External
19 Phosphatidyl ethanolamine PE (17:0/17:0) 140219-78-9 External
20 Phosphatidyl glycerol PG (17:0/17:0) 799268-52-3 External
21 Phosphatidylserine PS (17:0/17:0) 799268-51-2 External
22 Sphingomyelin SM (d18:1/17:0) 121999-64-2 External
23 Triglyceride heptadecanoate TG (17:0/17:0/17:0) 2438-40-6 External
24 Phosphatidyl inositol PI (16:0/18:1) 50730-13-7 External
25 Palmitic acid FFA (16:0) 57-10-3 External
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2.7. Statistical Analysis

Independent t-test was performed by data of growth performance. All data are
presented as the mean value ± standard error of the mean (S.E.M). p < 0.05 was considered
significantly different. The correlation and linear regression analysis of biological repetitions
were carried out using GraphPad Prism 8.0 (Graph- Pad Software Inc., San Diego, CA, USA).

Functional annotations of the proteins and genetic ontology were conducted using the
Blast2GO program. The related pathways of each protein and bioinformation mining were
analyzed by searching the KEGG pathway database.

R software was used for Principal Component Analysis (PCA), cluster analysis, group-
ing Principal Component Analysis, differential metabolite screening and KEGG functional
annotation of different samples.

3. Results
3.1. High-Starch Diet (HSD) Induced Fatty Liver of Largemouth

Fish liver sections were examined after H&E staining and Sirius red staining for
collagen. Typical phenotypes of normal liver and fatty liver are shown in Figure 1. The
results showed that HSD led to enlarged lipid droplets and vacuolated cells.
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Figure 1. Liver histopathology, enlarged lipid droplets (marked with red boxes) were clearly observed
in MLD group. (MLD: metabolic liver disease).

Both Normal and MLD groups showed high survival (99%) and there was no signif-
icant difference between the two groups. Compared with the Normal group, fish in the
MLD group showed significantly higher HSI and HL (p < 0.05) but significantly lower SGR
and FBW (p < 0.05, Table 3).

LDL-C indicators (in plasma and liver, Tables 4 and 5) and the hepatic function
indicators (AKP, AST and ALT) increased significantly in the MLD group (p < 0.05, Table 4).
Higher ROS level and lower CAT content were recorded in the MLD group (Table 6).
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Table 3. Changes of MLD on morphometric parameters of largemouth bass (means ± SEM).

Items Normal MLD

CF (g/cm3) 2.03 ± 0.09 2.01 ± 0.08
VSI (%) 7.17 ± 1.86 7.36 ± 0.20
HSI (%) 1.66 ± 0.08 b 2.36 ± 1.17 a

FBW (g) 105.83 ± 1.68 b 95.54 ± 1.30 a

SGR 2.00 ± 0.31 b 1.80 ± 0.03 a

FCR 0.98 ± 0.01 1.00 ± 0.18
HL 6.54 ± 0.29 b 7.39 ± 0.10 a

a, b Within the same column, values with different superscripts are significantly different (p < 0.05). The same as
below, n = 8; CF (condition factor, g/cm3) = 100 × average body weight/average body length3; VSI (viscerosomatic
index, %) = 100 × visceral weight/whole body weight; HSI (hepatosomatic index, %) = 100 × liver weight/whole
body weight; FBW: final body weight, n = 8; SGR (specific growth rate, %) = 100 × [ln (FBW/initial body
weight)]/days, n = 8; FCR (feed conversion rate) = FIabs/[(final total weight − initial total weight)/days]; Where,
FIabs is the daily absolute feed intake; HL (hepatic liquid, %) = fat weight of liver/liver weight.

Table 4. Changes of MLD on plasma liver function parameters of largemouth bass (means ± SEM).

Items Normal MLD

TP (g/L) 16.49 ± 0.47 15.69 ± 0.50
GLU (mmol/L) 5.71 ± 0.35 b 4.25 ± 0.45 a

TG (mmol/L) 5.64 ± 1.18 5.48 ± 0.45
TC (mmol/L) 7.70 ± 0.79 8.16 ± 0.62

HDL-C (mmol/L) 1.75 ± 0.38 1.64 ± 0.32
LDL-C (mmol/L) 2.00 ± 0.20 b 2.24 ± 0.13 a

AKP (U/L) 49.10 ± 5.56 b 77.34 ± 5.13 a

AST (U/L) 5.87 ± 1.05 b 11.15 ± 1.88 a

ALT (U/L) 5.87 ± 1.04 b 12.65 ± 1.97 a

TBA (umol/L) 74.41 ± 1.12 b 78.11 ± 4.49 a

a, b Within the same column, values with different superscripts are significantly different (p < 0.05). The same as
below; TP, total protein; GLU, glucose; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; AKP, alkaline phosphatase; AST, aspartate aminotrans-
ferase; ALT, aminotransferase; TBA, total bile acid. Within the same row, values with different superscripts are
significantly different.

Table 5. Effects of MLD on hepatic lipid metabolism of largemouth bass (means ± SEM).

Items Normal MLD

TG (mmol/g·prot) 0.17 ± 0.01 b 0.21 ± 0.05 a

TC (mmol/g·prot) 0.15 ± 0.02 0.15 ± 0.01
TBA (umol/mg·prot) 2.33 ± 0.28 2.33 ± 0.65
LDL-C (umol/g·prot) 30.03 ± 2.92 b 43.92 ± 4.89 a

LDL-C/TC 0.22 ± 0.03 0.29 ± 0.03
a, b Within the same column, values with different superscripts are significantly different (p < 0.05).

Table 6. Effects of MLD on hepatic antioxidant responses of largemouth bass (means ± SEM).

Items Normal MLD

ROS (U/mg·prot) 66.78 ± 4.92 b 88.14 ± 4.85 a

T-AOC (umol/g·prot) 76.78 ± 5.96 89.14 ± 9.02
CAT (U/mg·prot) 46.62 ± 2.07 a 31.13 ± 3.42 b

GSH-Px (U/ug·prot) 4.07 ± 0.51 4.38 ± 0.57
SOD (U/mg·prot) 182.40 ± 9.45 168.75 ± 19.81

MDA (nmol/mg·prot) 2.69 ± 0.71 3.00 ± 0.38
a, b Within the same column, values with different superscripts are significantly different (p < 0.05).

3.2. Proteomics Analysis

Liver proteome profiles of largemouth bass with fatty liver (n = 8) and normal liver were
compared (n = 8) (Table S1). This revealed an obvious shift in the proteome composition,
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reflected by 99 significantly differentially abundant proteins (Fold change >1.3 or <0.77), of
which 38 proteins were up-regulated and 61 down-regulated (Figure 2A).
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Figure 2. Significantly different expressions between MLD and Normal groups. (A) Protein sig-
nificantly different expression between MLD and Normal groups (red means up-regulated, blue
means down-regulated). (B,C) Differentially expressed proteins in GO functional classification
(B: up; C: down). (D) The subcellular localization of differentially expressed proteins. (E,F) KEGG
enrichment pathways of different expressed proteins (E: up-regulated; F: down-regulated).

To investigate the functions of the identified and quantified proteins, we annotated
their functions and features, gene ontology (GO), subcellular localization, GO-based en-
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richment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein
domain and involvement in a protein complex of the characteristics we annotated [26].

For the biological process category, the differential proteins between the Normal and
MLD groups were related to cellular processes, biological regulation processes, metabolic
processes, response to stimulus processes, multicellular organismal processes, localization
processes and development processes. For the cellular component category, these differen-
tial proteins were mainly enriched in the organelle, membrane, macromolecular complex
and membrane-enclosed lumen. For the molecular function category, fatty liver induced
by high-starch diet was primarily enriched in functional clusters, such as catalytic activity,
transporter activity and structural molecule activity. (Figure 2B,C).

Subcellular structure localizations of differentially expressed proteins were predicted
and classified, the results showed that most of these differential proteins were located in
the nucleus, cell membrane, cytoplasmic cells and external matrix, and a few were located
in mitochondria and endoplasmic reticulum. Forty were located in the cytoplasm of the
99 differential expressed proteins, with 23 in the extracellular matrix, 14 in the nucleus,
7 in the cell membrane, 6 in the cytoplasm and nucleus, 5 in the mitochondria, 2 in the
endoplasmic reticulum and 2 in other cellular structures (Figure 2D).

For the KEGG pathway analysis, differential proteins were primarily associated with
enrichment in pathways related to the fat digestion and absorption, gastric acid secretion,
ABC transport, cholesterol metabolism, glycolysis/gluconeogenesis, PPAR and MAPK
(Figure 2E,F). The differential pathways that may be related to fatty liver metabolism and
the important differentially expressed proteins in these pathways are listed in Table 7.

Table 7. Selected KEGG pathway analysis of differentially expressed proteins related to metabolic
fatty liver.

KEGG Pathway Related Proteins
(Up-Regulated)

Related Proteins
(Down-Regulated)

Protein processing in
endoplasmic reticulum RRBP1 TRAPα, PDIA4

Fat digestion and absorption FABP1 ABCA1, MTTP
ABC transporters ABCA1

Cholesterol metabolism ABCA1, VDAC1, AK1R1D1
PPAR signal pathway HRAs, FABP1 PEPCK

FoxO signaling pathway; HRAS PEPCK
mTOR signaling pathway HRAs

Glycolysis/Gluconeogenesis PEPCK
Phosphatidylinositol

signalingsystem PI4Kβ

Metabolic pathways FA-CoA, UGT, lipocalin PEPCK, CBS, L2HGDH, B3GNT3,
PI4Kβ, CYP2U1, AK1R1D1

Insulin signaling pathway HRAs, GNAQ PEPCK
Thyroid hormone synthesis GNAQ PDIA4
Primary bile acids synthesis AK1R1D1

Themogenesis HRAs NPR-A

3.3. Lipidomics Analysis

For liver lipid analysis, 15 lipid species including phosphatidylcholine (PC), triacylglyc-
erol (TG), phosphatidylethanolamine (DPPE), lysophosphatidyl choline (LPC), ceramide
(Cer), sphingomyelin (SM), lysophosphatidylethanolamine (LPE), diacylglycerol (DG), free
fatty acid (FFA), phosphatidylserine (PS), acyl carnitine (CAR), cholesteryl ester (CE), phos-
phatidylinositol (PI), phosphatidyl glycerol (PG) and lipid peroxidn (LPO) were detected
with lipidomics analysis (74 PCs, 69 TGs, 55 DPPEs, 37 LPCs, 36 Cers, 32 SMs, 21 LPEs,
17 DGs, 16 FFAs, 15 PSs, 14 CARs, 14 CEs, 13 PIs, 10 PGs, 10 LPOs). The major lipid
compositions were analyzed (Table 8 and Figure 3).
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PCA analysis showed discrimination between the MLD group and the Normal group
(Figure 4A), indicating that there was difference in the lipid composition between the two
groups. OPLS-DA analysis was applied to screen out the differential metabolites between
the two groups. Using the criteria of VIP ≥ 1 and FC ≥ 1.5 or ≤ 0.67, 164 significantly
differential lipid species were identified in the Normal versus the MLD group (Figure 4B).
As shown in the heatmap (Figure 4C), the differential lipid species were mainly enriched in
TC, PC, DPPE, Cer, SM, PI and DG classes, and all of them were upregulated in the MLD
group. Notably, the top 20 differential upregulated lipids were mainly TGs, including TG
(51:0), TG (51:1), TG (54:1), TG (50:0), TG (52:0), TG (49:1) and TG (54:0). However, the three
downregulated lipids were mainly LPC (20:2), Cer (d34:1) and PE (P-34:2) (Table 9).

Table 8. Major lipid composition in the liver of largemouth bass.

Classification Subclass Composition

Fatty acyl
Free fatty acid FFA(18:1), FFA(16:0), FFA(18:2), FFA(18:0), FFA(16:1), FFA(20:1),

FFA(14:0), FFA(22:1), FFA(20:2), FFA(24:1)

Acyl carnitine CAR18:1, CAR16:1, CAR16, CAR18:2, CAR18, CAR14,
CAR12-OH, CAR14:1, CAR18:1-OH, CAR12

Glyveride
Diacylglycerol DG(34:1), DG(36:2), DG(36:3), DG(34:4), DG(34:0), DG(40:7),

DG(32:1), DG(34:2), DG(32:0), DG(36:0)

Triacylglycerol TG(52:2), TG(54:3), TG(52:3), TG(54:5), TG(50:2), TG(54:2),
TG(52:4), TG(50:3), TG(58:8), TG(50:1)

Glyceryl phosphatide

Lysophosphatidyl choline LPC(22:6), LPC(18:2), LPC(16:0), LPC(18:1), LPC(18:0),
LPC(20:5), LPC(16:1), LPC(20:3), LPC(22:5), LPC(18:3)

Lysophosphatidyl ethanolamine

PE(40:6), PE(40:7), PE(38:6), PE(36:2), PE(38:4), PE(36:3),
PE(42:7), PE(34:2), PE(P-38:5), PE(40:8), LPE(22:6), LPE(18:0),

LPE(18:1), LPE(16:0), LPE(18:2), LPE(20:5), LPE(20:4), LPE(22:5),
LPE(20:1), LPE(20:0)

Phosphatidyl choline PC(34:1), PC(34:2), PC(38:6), PC(36:3), PC(36:1), PC(32:1),
PC(40:6), PC(O-40:7), PC(36:2), PC(O-38:6)

Phosphatidyl glycerol PG(40:8), PG(36:2), PG(34:1), PG(36:3), PG(40:7), PG(36:1),
PG(36:4), PG(38:3), PG(34:2), PG(34:3)

Phosphatidylinositol PI(38:4), PI(38:5), PI(40:6), PI(38:6), PI(36:2), PI(40:7), PI(38:3),
PI(36:1), PI(36:3), PI(40:5)

Phosphatidylserine PS(40:6), PS(38:6), PS(40:7), PS(36:2), PS(36:1), PS(40:5), PS(38:4),
PS(38:5), PS(38:3), PS(34:1)

Sphingolipid
Sphingomyelin SM(d42:2), SM(d34:1), SM(d42:1), SM(d40:1), SM(d36:1),

SM(d32:1), SM(d41:1), SM(d42:3), SM(d42:5), SM(d35:0)

Ceramide Cer(d42:2), Cer(d42:1), Cer(d34:1), Cer(d40:1), HerCer(d34:1),
Cer(d32:1), Cer(d41:1), Cer(d36:1), CerP(d36:1), Cer(d44:2)

Cholesterol Cholesteryl ester CE(22:6), CE(18:0), CE(18:1), CE(18:2), CE(20:5), CE(22:5),
CE(20:4), CE(16:0), CE(22:3), CE(20:2), CE(20:1)



Metabolites 2022, 12, 759 11 of 21

Metabolites 2022, 12, x FOR PEER REVIEW  11  of  22 
 

 

Phosphatidylinositol 
PI(38:4), PI(38:5), PI(40:6), PI(38:6), PI(36:2), PI(40:7), PI(38:3), PI(36:1), 

PI(36:3), PI(40:5) 

Phosphatidylserine 
PS(40:6), PS(38:6), PS(40:7), PS(36:2), PS(36:1), PS(40:5), PS(38:4), PS(38:5), 

PS(38:3), PS(34:1) 

Sphingolipid  Sphingomyelin 
SM(d42:2), SM(d34:1), SM(d42:1), SM(d40:1), SM(d36:1), SM(d32:1), 

SM(d41:1), SM(d42:3), SM(d42:5), SM(d35:0) 

  Ceramide 
Cer(d42:2), Cer(d42:1), Cer(d34:1), Cer(d40:1), HerCer(d34:1), Cer(d32:1), 

Cer(d41:1), Cer(d36:1), CerP(d36:1), Cer(d44:2) 

Cholesterol  Cholesteryl ester 
CE(22:6), CE（18:0）, CE(18:1), CE(18:2), CE(20:5), CE(22:5), CE(20:4), 

CE(16:0), CE(22:3), CE(20:2), CE(20:1) 

 

Figure 3. Major lipid in the liver of largemouth bass (Mean ± SEM, n = 8). (A) PC: phosphatidyl‐

choline.  (B)  TG:  triacylglycerol.  (C)  PE:  phosphatidylethanolamine.  (D)  LPC:  lysophosphatidyl 

choline.  (E) Cer: ceramide.  (F) SM:  sphingomyelin.  (G) LPE:  lysophosphatidylethanolamine.  (H) 

Figure 3. Major lipid in the liver of largemouth bass (Mean ± SEM, n = 8). (A) PC: phosphatidylcholine.
(B) TG: triacylglycerol. (C) PE: phosphatidylethanolamine. (D) LPC: lysophosphatidyl choline. (E) Cer:
ceramide. (F) SM: sphingomyelin. (G) LPE: lysophosphatidylethanolamine. (H) DG: diacylglycerol.
(I) FFA: free fatty acid. (J) PS: phosphatidylserine. (K) CAR: acyl carnitine. (L) CE: cholesteryl ester.
(M) PI: phosphatidylinositol. (N) PG: phosphatidyl glycerol. (O) LPO: lipid peroxidation.
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Figure 4. The lipidomics analysis of largemouth bass liver. (A) Principal component analysis (PCA)
score plots. (B) OPLS-DA analysis (red points and green points represent VIP ≥ 1 and VIP ≤ 1,
respectively) and (C) heatmap. (Mean ± SEM, n = 8). (D) Heatmap of all lipids and proteins (red
represents high correlation coefficient; green represents low correlation coefficient). (E) Heatmap
of correlation coefficient of differential lipids and differential proteins (red represents a positive
correlation between proteins and lipids and green represents a negative correlation). Each row and
column represents a protein and a metabolite, respectively.

A total of 29 differential metabolic pathways were found with KEGG pathway enrich-
ment analysis. These metabolic pathways mainly involved fat digestion and absorption,
cholesterol metabolism, vitamin digestion and absorption, sphingolipid metabolism and
insulin resistance, all of which are related to lipid metabolism (Table 10).
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Table 9. Top 20 differential up-regulated and down-regulated metabolites.

Metabolites Class VIP p-Value Log2FC Type

TG (51:0) TGs 1.22 N/A 4.50 up
TG (51:1) TGs 1.22 0.09 3.44 up
TG (54:1) TGs 1.11 0.09 2.93 up
TG (50:0) TGs 1.25 0.07 2.79 up
TG (52:0) TGs 1.19 0.13 2.64 up
TG (49:1) TGs 1.29 0.03 2.62 up
TG (54:0) TGs 1.09 0.16 2.53 up
TG (52:1) TGs 1.17 0.06 2.49 up
TG (48:0) TGs 1.32 0.03 2.43 up
TG (46:0) TGs 1.34 0.02 2.39 up
TG (56:0) TGs 1.09 0.12 2.37 up
TG (52:7) TGs 1.52 0.02 2.33 up
TG (53:2) TGs 1.07 0.06 2.26 up
TG (58:7) TGs 1.32 0.04 2.21 up
TG (44:0) TGs 1.18 0.03 2.14 up
TG (56:9) TGs 1.21 0.07 2.02 up

TG (58:10) TGs 1.14 0.05 1.92 up
DG (38:6) DGs 1.33 0.00 2.03 up
PI (38:5) PIs 1.54 0.00 2.25 up

PE (P-40:5) PEs 1.47 0.02 2.37 up
LPC (20:2) LPCs 1.32 0.03 0.96 down
Cer (d34:1) Cers 1.16 0.05 0.72 down
PE (P-34:2) PEs 1.17 0.05 1.38 down

Table 10. Differential metabolic pathways.

Pathways ko_ID Unique Compound

Metabolic pathways ko01100 99
Insulin resistance ko04931 36

Sphingolipid signaling pathway ko04071 21
Fat digestion and absorption ko04975 29

Cholesterol metabolism ko04979 29
Glycerophospholipid metabolism ko00564 50
Vitamin digestion and absorption ko04977 29

Regulation of lipolysis in adipocytes ko04923 28
Necroptosis ko04217 21

Neurotrophin signaling pathway ko04722 8
Adipocytokine signaling pathway ko04920 8

Sphingolipid metabolism ko00600 25
AGE-RAGE signaling pathway in diabetic complications ko04933 8

Leishmaniasis ko05140 8
Glycerolipid metabolism ko00561 33

Inositol phosphate metabolism ko00562 5
Phosphatidylinositol signaling system ko04070 5

Long-term depression ko04730 5
Choline metabolism in cancer ko05231 32
Arachidonic acid metabolism ko00590 27

Linoleic acid metabolism ko00591 27
alpha-Linolenic acid metabolism ko00592 27

Retrograde endocannabinoid signaling ko04723 40
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis ko00563 13

Autophagy—other ko04136 13
Autophagy ko04140 13

Pathogenic Escherichia coli infection ko05130 13
Kaposi sarcoma-associated herpesvirus infection ko05167 13

Thermogenesis ko04714 28
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3.4. Integrative Proteomic and Lipidomic Analysis

To best observe the correlation between lipid metabolites and proteins, all the lipids
and proteins were analyzed by clustering analysis as illustrated in a heatmap (Figure 4D).
The result indicated that there are correlations between many lipids and proteins. All the
differential proteins and differential lipids were selected, and the heatmap clustering was
drawn. As shown in Figure 4E, these differential proteins were negatively correlated with
differential lipids, including aldo-keto reductase family 1 member D1 (AK1R1D1), phospho-
enolpyruvate carboxykinase (PEPCK), ATP binding cassette transporter A1 (ABCA1), beta-
1,3-N-acetylglucosaminyltransferase 3 (B3GNT3), L-2-hydroxyglutarate dehydrogenase
(L2HGDH), cytochrome P450 2U1 (CYP2U1), mercaptopyruvate transferase, phosphatidyli-
nositol 4-kinase beta (PI4K2β), hexose transferase, cystathionine beta-synthase (CBS) and
voltage-dependent anion channels1 (VDAC1). These differential proteins were positively
correlated with differential lipids, namely hexose tetraphosphate kinase, natriuretic peptide
receptor-A (NPR-A), fatty acid binding protein 1 (FABP1), UDP-glucuronosyltransferase
(UGT), fatty acid acetyl-CoA synthase (FA-CoA) and Guanine nucleotide-binding protein
G(q) subunit alpha (GNAQ). Among these differential lipid metabolites, we observed
that the strongest relationships with differential proteins were triglyceride (TG) and phos-
phatidylcholine (PC).

The above correlated differential lipids and differential proteins were simultaneously
mapped to the KEGG pathway, and were enriched into nine common metabolic pathways,
as shown in Table 11. Four KEGG pathways with the highest concentration were selected
for subsequent analysis, including thermogenesis (ko04714), fat digestion and absorption
(ko04975), cholesterol metabolism (ko04979) and metabolic pathways (ko01100).

Table 11. Nine KEGG enrichment pathways of lipidomics and proteomics.

Pathway Number of
Lipids

Number of
Proteins

Differential
Lipids

Differential Proteins
(Up-Regulated)

Differential Proteins
(Down-Regulated)

Themogenesis 27 2 TG NPR-A, HRAs
Fat digestion and absorption 27 2 TG FABP1 ABCA1

Cholesterol metabolism 27 2 TG ABCA1, VDCA1

Metabolic pathways 48 17 TG NPR-A, FA-CoA, UGT PI4Kβ, AK1R1D1,
PEPCK, L2HGDH, CBS

Arachidonic acid metabolism 11 2 TG CYP2U1
Inositol phosphate metabolism 3 2 TG ITPK1 PI4Kβ

Phosphatidylinositol
signaling system 3 2 TG ITPK1 PI4Kβ

Long-term depression 3 2 TG GNAQ, HRAs
Sphingolipid signaling pathway 2 2 SM GNAQ, HRAs

4. Discussion

Carnivorous fish have a low starch utilization rate, and high digestible starch intake
leads to accumulation of liver glycogen and persistent high blood sugar, finally causing fish
liver disease [28,29]. Generally, the level of digestible carbohydrate above 10% reduced the
growth performance of largemouth [9,15,30,31], induced glycogen and lipid accumulation
and dysfunction of antioxidant capabilities, leading to MLD in largemouth [9,32]. In this
study, compared with the Normal group (starch content: 10.8%), the MLD group (starch
content: 16.2%) decreased the growth performance of largemouth bass and induced liver
lipid accumulation, liver function injury, oxidative stress and higher hepatosomatic index,
which is similar to the non-alcoholic fatty liver symptom. Therefore, we used HSD to
construct the fatty liver phenotype in largemouth bass successfully.

4.1. Proteomic Analysis

The differentially expressed proteins induced by a high-starch diet of largemouth
bass were mainly involved in endoplasmic reticulum protein processing, fat digestion and
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absorption, cholesterol metabolism, phosphatidylinositol signal system and insulin signal
transduction, which affected the occurrence and development of fatty liver through the
comprehensive action of multiple metabolic pathways.

Endoplasmic reticulum (ER) is an important site involved in the regulation of sub-
stance transport, metabolism and protein synthesis in eukaryotic cells [33]; ER stress caused
by various reasons is closely related to the occurrence and development of diseases [34].
The evidence implied that ER played a role in the development of steatosis and nonal-
coholic steatohepatitis. ER stress occurred in liver and adipose tissue in patients with
non-alcoholic fatty liver disease [35,36]. RRBP1 (reticulum ribosome-binding protein 1) is
one of the important proteins involved in the ER unfolded protein reaction, and abnormal
up-regulated expression of RRBP1 has been found in the study of human cancer-related
diseases [37–39]. Xiong found that the expression of RRBP1 in liver cancer tissues was
significantly higher than that in normal liver tissues, and the expression of RRBP1 in liver
cancer tissues with metastasis was significantly higher than that in liver cancer tissues
without metastasis, indicating that RRBP1 is closely related to liver cancer metastasis in the
state of liver injury [40]. In this study, RRBP1 was found to be highly expressed in liver in
the MLD group, indicating that it may have an important relationship with liver injury and
the development of MLD. In addition, TRAPα (translocon-associated protein subunit alpha)
is a typical glycosylated membrane protein which plays an important role in the process
of signal modification recognition and the transport of new peptide chains. It synergizes
with AMPK (adenosine monophosphate activated protein kinase) and ROS pathway to
cause resistance to oxidative stress-induced apoptosis [41]. TRAPα also plays an important
role in maintaining cell homeostasis and may become a target drug for intervention in
related diseases [42]. The low expression of TRAPα may be due to the abnormality in the
modification and transport of the peptide chain, resulting in liver damage, which affects the
normal progress of subsequent life activities and leads to the occurrence and development
of fatty liver. At present, the TRAPα sequence of fish is relatively conserved, but the
research on its related functions is still in the blank stage and needs to be further studied.

The pathway of fat digestion and absorption has the important function of maintaining
the homeostasis of lipid metabolism. In this study, we found the differential expression
of three important proteins FABP1, MTTP (microsomal triglyceride transfer protein) and
ABCA1 in its pathway. FABP1 is expressed mainly in the liver and could combine with long-
chain fatty acid to regulate lipid absorption and fatty acid metabolism in the cytoplasm [43].
FABP1 activity changed significantly in the occurrence and development of fatty liver,
liver cirrhosis, liver cancer and other liver diseases [44–46]. In this study, HSD induced
fatty liver of largemouth bass, leading to significant upregulation of FABP1. Similar
results also showed that FABP1 levels were higher in patients with non-alcoholic fatty
liver disease [43,47]. Therefore, FABP1 is expected to become a diagnostic marker of
liver injury [48–50]. The MTTP is a key protein for lipid excretion in liver and affects
the metabolism of lipids and lipoproteins, leading to the occurrence and development of
many diseases [51–54]. Specific knockout of the MTTP gene in hepatocytes leads to the
accumulation of a large amount lipids in mouse hepatocytes, and eventually results in
hepatic steatosis and fatty liver [55]. Some evidence showed that the variability of MTTP
is associated with the development of NAFLD, raised lipid and risk of atherosclerotic
cardiovascular disease [56,57]. A previous study indicated that in the NAFLD of rat induced
by a high-fat diet, the expression level of MTTP is markedly decreased [58]. Similarly, HSD-
induced fatty liver of largemouth bass decreased MTTP level in liver in our results. ABCA1
played an essential role in the regulation of high-density lipoproteins (HDLs) and reverse
cholesterol transport [59]. ABCA1 overexpression increased the concentration of cholesterol
and high-density lipoprotein and decreased hepatic lipid contents [60,61]. The deposition of
cholesterol in tissues induced the absence of ABCA1 [62,63]. A previous study reported that
decreased hepatic ABCA1 expression can cause steatohepatitis in obese adult patients [61].
It also presented the evidence that the expression level of ABCA1 was significantly lower in
the NAFLD patients than in the healthy controls [64]. Consistent with these observations,
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ABCA1 was down-regulated in the MLD group induced by HSD. These findings suggest
that the expression level of ABCA1 was associated with the development of fatty liver
disease. In this study, the differential expression of FABP1, ABCA1 and MTTP in the liver
of largemouth bass in the MLD group showed a high-starch diet increased hepatic lipid
contents and affected fat digestion and absorption pathways, and eventually promoted the
development of metabolic fatty liver.

4.2. Lipidomic Analysis

Significant changes in hepatic lipids are important pathophysiological markers of fatty
liver [65]. Lipidomic studies of the mouse liver have shown that NAFLD is associated with
an increase in TG [66]. Similar results were observed in our HSD treatment largemouth
bass. In this study, most TG species were increased by HSD. During the occurrence of
fatty liver, the up-regulation of TGs is attributed to the rate of TG synthesis in the liver
exceeding the catabolic rate of TGs [67,68]. Therefore, preventing TG accumulation in liver
may contribute to the attenuating effect of fatty liver disease [66,69].

KEGG pathway enrichment analysis indicated that the insulin-resistance pathway
was significantly enriched. Many studies believe that NAFLD is closely related to insulin
resistance [70–72]. The relationship between NAFLD and insulin resistance is bidirectional.
Insulin resistance may promote the development of NAFLD, while NAFLD may promote
the development of insulin resistance [71,73]. The related research results of our team also
found that the persistent hyperglycemia of largemouth bass after a meal is caused by insuf-
ficient insulin secretion (unpublished), which is also the reason for the starch intolerance
of largemouth bass. Therefore, insulin resistance is a key factor in the development and
progression of NAFLD [74] and may be the direction of targeted intervention of MLD in
largemouth bass in the future.

Interestingly, in this study we also found that differential lipids were mainly enriched
in the sphingolipid metabolism signaling pathway. Liver is the center of ceramide pro-
duction and usually contains much higher sphingolipid than all other tissues, especially
ceramide and sphingomyelin [75–77]. Therefore, liver is prone to sphingolipid toxicity [78].
For example, sphingolipid content was significantly increased in the liver of rats fed with a
high-fat diet [79]. Mice exposure to exogenous microbiome sphingolipids no longer had
lipid accumulation and rescued diet-induced hepatic steatosis [80]. Evidence suggested
sphingolipid levels contribute to the development of NAFLD in a variety of ways, including
inflammation, insulin resistance and oxidative stress [78].

4.3. Integrative Proteomic and Lipidomic Analysis

In this study, using integrative proteomic and lipidomic analysis, we demonstrated
the hepatic TG accumulation was important for the development progress of fatty liver
induced by HSD. Theoretically, the primary cause of lipid accumulation is the increased
uptake of free fatty acids (FFAs) by the liver [56,81]. Undoubtedly, regulation of TG
accumulation is important for improving fatty liver disease [82]. Many studies have shown
that overexpression of FABP1 enhances fatty acid uptake [83–85]. Researchers also found
FABP1-deficient mice were protected from TG accumulation in liver induced by a high-fat
diet [86,87]. It is expected that reducing the expression or function of FABP1 could inhibit
TG accumulation in liver and ameliorate NAFLD [85]. In this study, we similarly observed
HSD increased the expression level of FABP1, resulting in more TG accumulation in liver,
ultimately leading to fatty liver in largemouth bass.

Meanwhile, accumulated evidence suggested cholesterol homeostasis and hepatic
cholesterol accumulation associated with the risk of liver cirrhosis and other liver dis-
eases [88–90]. ABCA1 could prevent cholesterol accumulation by transporting cholesterol
and phospholipids from cells to apolipoproteins [91–93]. Recently, a report showed that
ABCA1 were tightly associated with the lipid variables and lipid metabolism [94]. Human
studies also suggest the elevation of TG levels usually develop fatty liver disease, and
there is an inverse association between TG concentrations and dysfunctional ABCA1 [95].
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In addition, a study also reported when the function of ABCA1 is diminished, the TG
secretion from liver increased, suggesting there is a strong association between ABCA1 and
fatty liver disease [59]. Consistent with this finding, this study also showed the content of
ABCA1 was significantly reduced, which exacerbated the accumulation of cholesterol in
the liver and worsened metabolic fatty liver disease.

Furthermore, VDAC1 was involved in cholesterol transport and was thought to be
part of a complex process that mediates fatty acid transport [96–98]. A lack of VDAC1
caused mitochondria to stop oxidizing fatty acids [99]. It is also indicated that the absence
of ABCA1 lead to steatosis in metabolic liver disease [100,101]. Recent study had found
hepatocyte fat droplet and glycogen accumulation in high-fat diet-treated mice. However,
the VDAC1-based peptide decreased serum TG content and hepatocyte fat droplets and
increased hepatocyte glycogen accumulation [98]. Moreover, VDAC1 could interact with
many proteins, such as metabolism, apoptosis and anti-oxidation-related proteins [102,103],
so it could be regarded as a potential therapeutic for metabolic liver disease, such as
NAFLD [98]. Here, we demonstrated that the reduction in VDAC1 expression led to
cholesterol and lipid accumulation in liver of largemouth bass induced by HSD. Importantly,
in addition to hepatic TG accumulation, abnormal transport of cholesterol also plays a
critical role in the occurrence and development of fatty liver disease.

5. Conclusions

We successfully induced metabolic fatty liver phenotype of largemouth bass with
high-starch diet. We found that three differential proteins (FABP1, ABCA1 and VDAC1)
in fat digestion and absorption and cholesterol metabolism pathways played important
roles in the occurrence and development of MLD in largemouth bass after the combination
of targeted lipidomics and proteomics analyses. The three differential proteins may be
promising targets for therapeutic intervention in fatty liver disease. Our findings propose
the possible key regulatory factors in the occurrence and development of metabolic fatty
liver, which provide a theoretical basis for the efficient use of compound feed and targeted
nutritional regulation in commercial aquaculture.
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