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Neuronal action potentials or spikes provide a long-range, noise-resistant means
of communication between neurons. As point processes single spikes contain little
information in themselves, i.e., outside the context of spikes from other neurons.
Moreover, they may fail to cross a synapse. A burst, which consists of a short, high
frequency train of spikes, will more reliably cross a synapse, increasing the likelihood
of eliciting a postsynaptic spike, depending on the specific short-term plasticity at that
synapse. Both the number and the temporal pattern of spikes in a burst provide a coding
space that lies within the temporal integration realm of single neurons. Bursts have been
observed in many species, including the non-mammalian, and in brain regions that range
from subcortical to cortical. Despite their widespread presence and potential relevance,
the uncertainties of how to classify bursts seems to have limited the research into the
coding possibilities for bursts. The present series of research articles provides new
insights into the relevance and interpretation of bursts across different neural circuits,
and new methods for their analysis. Here, we provide a succinct introduction to the
history of burst coding and an overview of recent work on this topic.

Keywords: neural code, neural network, neuronal dynamics, rapid discharge, neural information transmission,
data analysis

INTRODUCTION

Neurons communicate with other neurons in the form of all-or-none action potentials (spikes).
These spikes are the brain’s language for encoding information, both extracted from external stimuli
and sent by internal sources. Depending on the stimulus, the brain area and the cell-type, spike
trains can be regular, irregular, or show intricate temporal patterns. There is a long-lasting and
ongoing debate about how much information is transferred in the precise timing of individual
spikes, the time-scale of the neural code and the role of noise and trial-to-trial variability (Bair
et al., 1994; London et al., 2010), i.e., the debate about whether the brain uses a ‘‘timing’’ or a ‘‘rate’’
code (ill-defined as these terms may be).

A particularly salient spike pattern that has been widely observed is the burst: a group of
action potentials generated in rapid succession, followed by a period of relative quiescence. Bursts
add an extra dimension to the coding debate: are bursts just generated to increase the reliability
using unreliable synapses, or is there information in the number (Eyherabide et al., 2009) or
firing rate (Izhikevich et al., 2003) of spikes within a burst? Does the precise pattern of spikes
within a burst carry information, or is it just the binary information that there was a burst-event
(Miles and Wong, 1986)?
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Bursting is observed in many different species and systems
(Figure 1), including the CA3 of the rodent hippocampus (Traub
and Wong, 1981; Miles and Wong, 1986; Traub et al., 1989), the
electrosensory system of the weakly electric fish (Gabbiani et al.,
1996), mammalian midbrain dopaminergic neurons (Wang,
1981; Grace and Bunney, 1984; Grace and Onn, 1989; Tepper
et al., 1995; Hyland et al., 2002) thalamocortical relay (TCR)
neurons in the mammalian thalamus (Jahnsen and Llinás, 1984;
Williams et al., 1997).

Even though the mechanisms responsible for bursting are
diverse, a few general conclusions have been drawn about its
functional role:

1. Bursts increase the reliability of information transfer,
especially in the presence of unreliable synapses (Lisman,
1997; Csicsvari et al., 1998).

2. Bursts and spikes can form a parallel code, in which they code
for different stimulus features in the same spike train (Oswald
et al., 2004), where bursts typically represent lower frequency
features than single spikes.

3. Because bursts have a stronger effect on their targets than
single spikes, bursts can play a role in preparing their targets
for subsequent inputs, a mechanism called a ‘‘wake-up call’’
(Sherman, 2001) or attentional ‘‘searchlight’’ (Crick, 1984).

4. When bursts are generated by dendritic spikes, they often
signal the coincidence of two or more dendritic targeting
processes, such as coincident sensory input and motor cortex
activity (Xu et al., 2012).

The mechanisms responsible for generating bursts vary
strongly between systems, or even within the same system,
between different conditions. Burst mechanisms can either be
intrinsic (single neuron) or network properties (Figure 2A),
will influence burst statistics (e.g., within-burst inter spike
intervals (ISIs), spike amplitude and burst duration) as well
as burst ‘‘encoding properties’’, i.e., to which input-features do
neurons respond with a burst as opposed to a single spike.
The nature and amount of information transferred by bursts
therefore depends on the mechanisms responsible for burst
generation.

We hypothesize that bursts may be a general principle of
neural communication to place particular emphasis with the goal
of changing the systems focus via rate increases and synaptic
short-term facilitation or long-term representation through
synaptic modification.

ABOUT THIS FRONTIERS TOPIC

In this research topic, we invited authors to contribute
their expertise from both experimental and computational
backgrounds to provide novel insights into why and when
systems rely on bursts for their information transmission. In line
with the widespread occurrence of burst, the contributions span
a wide range of topics and systems, as summarized below.

Chan et al. (2016) address the interaction between input
and output correlations for different synaptic dynamics using
numerical simulation of a pair of neurons. They find that slow
synaptic filtering lead to bursts in the output, which results

in increased output correlation and synchrony on longer time-
scales.

Detecting bursts is not trivial, especially not on a network level
in developing networks, when burst properties change over time.
Välkki et al. (2017) present a new adaptive method for detecting
network bursts that takes multiple spike trains into account. It
provides the possibility to perform network-wide burst analysis,
which provides a more complete picture of the bursting activity.
They demonstrate that the resulting activity patterns can be
automatically separated, which makes it a valuable tool for
analyzing the effect of different drugs on the network activity.
Moreover, they show that their burst-detection algorithm can be
used as a network classifier, a valuable tool for investigating for
instance the effects of pharmaceutical manipulations.

Elices and Varona (2017) study the role of connectivity
on bursting rhythms in a central pattern generator (CPG)
network responsible for the oscillatory activity that is needed for
rhythmic motor patterns such as walking. Using conductance-
based neuron models they show how asymmetries in these
networks shape the (ir)regularity of the network activity. Such
an asymmetry plays an important role in setting the balance
between robustness and flexibility. Moreover, multistability
of the intrinsic neural activity organizes the CPG: multi- or
bistability is essential for switching between activity patterns
responsible for different motor programs.

Dashevskiy and Cymbalyuk (2018) investigate the bistability
between a silent and a bursting state in the leech heart
interneuron and show that the range of the bistable regime
strongly depends on a specific type of voltage dependent
membrane ion current: the h-current. Network structure as
well as intrinsic neuron properties (e.g., h-current conductance),
affect the switching between motor programs, thereby providing
a large range of parameters that inputs and neuromodulators
can work on. Bursting plays an important role in synchronizing
networks and facilitating information transmission.

Bursts are also highly relevant in predictive coding (Mumford,
1992; Rao and Ballard, 1999). Here, Constantinou et al. (2016)
demonstrate that hippocampal bursts encode current and future
characteristics (instantaneous value, phase, slope and amplitude)
of the local field potential (LFP). Future LFP values can be
represented because of temporal correlations in the LFP signal.
Since LFPs mainly reflect the input to the network, bursts
in the hippocampus reflect the future input and perform
predictive coding. Saab and Feldman Barrett (2016) discuss
the possibility that the cortex and thalamus together form a
predictive coding network (Barrett and Simmons, 2015; Rao and
Ballard, 1999). They argue that in the context of pain, thalamic
bursts carry an error signal instead of the prediction of future
input.

Zakharov et al. (2016) address the relation between bursting
and different synaptic receptors in the ventral tegmental area
(VTA). In the VTA burst firing plays a unique role. In vivo, VTA
dopaminergic neurons show burst firing (Bunney et al., 1973;
Grace and Bunney, 1984). In awake, freely moving animals, these
bursts are more frequent than under anesthesia (Hyland et al.,
2002) and individual neurons can switch between bursting and
tonic spiking (Cooper, 2002; Hyland et al., 2002). Burst firing
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FIGURE 1 | Bursts are emitted by neurons from many subcortical and cortical areas of the brain. Usually only a subset of cells in each area display bursts, and their
hypothesized functions differ across brain areas. Areas labeled in black are covered in this review article, while those in gray are not. We show the main areas where
bursting has been analyzed, however, this is likely not complete. Image credit brain: www.imagui.com.

FIGURE 2 | The genesis, function and analysis of neural bursting in relation to this research topic. (A) The biophysics of burst generation is complex and ranges from
ion channel dynamics in single cells (left) via dendritically generated bursts to dynamics of whole networks (right). An overview of those mechanisms is provided in
Section Burst generation. Zakharov et al. (2016) present novel insights into intrinsic and Elices and Varona (2017) into network burst generation. (B) Detection and
analysis of bursts first requires that a burst is identified and separated from other sets of spikes. Multiple approaches for this analysis exist and are discussed in
Section Burst definition and detection. In the present Research Topic, Välkki et al. (2017) present a novel approach for performing network-wide burst detection at
higher accuracy. (C) What a burst encodes, constitutes the central question in research on bursts. Half of the submissions in this Research Topic address this
question from different angles and in different systems. We provide an overview of both the coding principles and more specific information for specific systems in
Section Functional meaning of bursts. (D) The value of bursts has frequently been highlighted in their ability to transmit information more securely (e.g., by
overcoming synaptic failures, top) or by communicating information more selectively (e.g., by being matched to specific short-term plasticity dynamics, bottom).
Since this topic has been reviewed before, we do not address it here.

of dopaminergic neurons is associated with a larger release of
dopamine at their targets and has been associated with reward-
related stimuli (Cooper, 2002), which has been implicated in
several psychiatric disorders and drug abuse (for recent reviews

see Grace, 2016; Oliva and Wanat, 2016). It is proposed that
bursts in dopaminergic neurons are caused by activation of
NMDA receptors and disinhibition (Tepper et al., 1995), for a
review see Overton and Clark (1997). Zakharov et al. (2016)
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show that the coactivation of AMPA receptors with NMDA
receptors can increase the firing frequencies within bursts, or
obscure bursts because of a depolarization block, depending on
the NMDA receptor mediated conductance and the AMPA-to-
NMDA current ratio. In particular, the increase in the AMPA-
to-NMDA current ratio, such as seen in the application of drugs
of abuse, results in an impediment to evoke bursts.

Metzen et al. (2016) review the current knowledge about
the functional role of bursts during sensory processing in the
weakly electric fish (Gabbiani et al., 1996; Krahe and Gabbiani,
2004). These animals use a weak, oscillating electric field for
communication (Hagedorn and Heiligenberg, 1985; Doiron
et al., 2003) and for prey localization (Nelson andMaciver, 1999).
Bursts are used in almost every level of sensory processing of the
electric fields, from peripheral electroreceptor afferents through
their targets, midbrain pyramidal cells to their targets, hindbrain
neurons. In their review article, the authors hypothesize that
bursts play a ‘‘feature detection’’ role, as in the mammalian
thalamus (see below) and are more reliable than single spikes.
Moreover, bursts and single spikes signal different stimulus
features in a ‘‘parallel code’’.

In the present review article, we provide a primer to the
mechanisms of burst generation, their analysis and introduce
a number of prominent examples. We conclude with a set of
hypotheses on the relevance of bursts in neural processing and
plasticity.

BURST GENERATION

The characteristics of information transfer by bursts depend
on the burst encoding, i.e., on the pluriform mechanisms
responsible for burst generation. Generally, bursts can be
generated as a result of the intrinsic properties of a single neuron,
or as a result of local network activity and not surprisingly both
mechanisms can interact.

Intrinsic (Single Neuron) Bursting
Neurons that generate bursts in isolation, using intracellular
mechanisms, are called intrinsic bursters. They need a slowly
depolarizing mechanism on top of which much faster action
potentials are generated. The slow depolarization can be caused
by specific ionic currents, such as the T-type calcium current in
TCR neurons (Jahnsen and Llinás, 1984; Williams et al., 1997)
or the NMDA-mediated synaptic currents (Schiller et al., 2000).
Izhikevich and Hoppensteadt (2004) dynamically classified
all combinations of two co-dimension 1 bifurcations (i.e., a
classification of somatic slow-fast systems) that can lead to an
intrinsic burst (Izhikevich, 2000), i.e., they classified how somatic
currents interact to generate a burst (Figure 3B). Samengo
et al. (2013) showed the computational consequences of the
most common classes of bursters. The type of bifurcation
that leads to bursting determines whether a burst is the
result of integration (parabolic bursters), resonance (elliptic
bursters), or an intermediate mechanism (square-wave bursters),
as illustrated by the differences between the burst-triggering
properties (Figure 3A): whereas parabolic and square-wave
bursts are triggered by unimodal positive currents, elliptic

bursts are triggered by oscillating currents. Note also that the
‘‘decision’’ how many spikes a burst consists of, is mostly
taken after the first spike: only after t = 0 the Burst-Triggered
Averages (BTAs) start to diverge for different numbers of
spikes. Single spikes are generated if a burst is ‘‘prevented’’:
hyperpolarizing input current just after the (first) spike is
needed.

The interaction between a fast-depolarizing soma and a
slow-depolarizing dendrite can also give rise to bursts: the
so-called ‘‘ping-pong effect’’ (Figure 3D; Pinsky and Rinzel,
1994; Doiron et al., 2002). An effect of this interaction is that the
‘‘decision’’ of whether a spike or a burst will be elicited, is taken
just after the first spike: depolarizing input at that time results in
a burst, whereas hyperpolarizing input in the dendrite results in
‘‘preventing’’ successive spikes and thus the burst (Figure 3C).
The latter hyperpolarizing current can be an intrinsic voltage-
dependent membrane current, or a feature of the network
(i.e., resulting from inhibitory synaptic input). Hence, the
structure of the local network has control over whether bursts
or single spikes are generated and the type of inhibition (feed-
forward, feedback, (peri)somatic targeting, dendritic targeting)
will influence the spike-to-burst ratio (Zeldenrust and Wadman,
2009, 2013).

Bursts are only one consequence of complex non-linear
dynamics between soma and dendrite (Mainen and Sejnowski,
1996; Schiller et al., 1997; Larkum et al., 1999; Magee and
Carruth, 1999). Dendritic non-linearities significantly increase
the computational power of neurons (Poirazi and Mel, 2001;
Cazé et al., 2013). In cortical layer 5 pyramidal cells, bursts
are the result of dendritic calcium currents that are triggered
by coincident input from two areas: deep cortical layers (basal
dendrites) and upper cortical layers (dendritic tuft; Larkum et al.,
1999; Shai et al., 2015). In barrel cortex, bursts signal coincident
sensory input and motor cortex activity (Xu et al., 2012).
The association between feedforward and feedback information
(Larkum, 2013; Manita et al., 2017) shifts the detection threshold
of whisker deflections (Takahashi et al., 2016).

Generally, it should be noted, that the differentiation between
bursters and non-bursters is not as sharp as suggested above:
many cells can fire a burst in response to certain stimuli
(Connors and Gutnick, 1990) and depending on the precise
conditions many neurons can be transformed into intrinsic
bursters (Friedman and Gutnick, 1989). Also, pharmacological
manipulations, such as changing the concentration of the
cholinergic agonist carbachol on pyramidal cells in hippocampal
slices, can transform a neuron into a burster (Menschik and
Finkel, 1998, 1999; Tiesinga et al., 2001).

In conclusion, there exist many intrinsic mechanisms to
trigger bursts, even in cells that are not normally ‘‘bursters’’,
which all contribute to expanding the computational power and
information processing capacity, in particular in combination
with network properties such as different forms of inhibition.

Network Bursts
Networks that consist of neurons that are not intrinsic bursters,
can still generate bursts as an emergent property. For example,
certain in vitro cell cultures show network bursts during several
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FIGURE 3 | (A) Coding properties (event-triggered averages) for single spikes and 4-spike bursts for three of the most well-known bursting types (in “minimal normal
form”; Samengo et al., 2013), data gracefully provided by the author). (B) Classification of a subset of all somatic slow-fast (fast subsystem: spiking mechanism, here
two-dimensional, slow subsystem: the system that makes the neuron transition between spiking and quiescence, here 1-dimensional) codimension 1 (of resting
states and spiking states) bursting (Izhikevich, 2000, 2007). The three most well-known types of bursting systems are depicted with a red, green and blue box, and
the orange boxes denote bursting systems that have been observed experimentally. (C) Event-triggered averages for a “ping-pong burster” (adapted from Zeldenrust
and Wadman, 2009). (D) Bifurcation diagram for a “ping-pong burster” (adapted from Zeldenrust and Wadman, 2009).

developmental stages (Wagenaar et al., 2006; Stegenga et al.,
2008; Lillis et al., 2015). In acute slices, network bursts are
often regarded as a sign of epilepsy (Sanabria et al., 2001;
Avoli et al., 2002). One of the classical theoretical models
for such network oscillations is the so-called ‘‘Wilson-Cowan
oscillator’’, where two reciprocally coupled populations of
excitatory and inhibitory neurons can exhibit bursting (Wilson
and Cowan, 1972). In this ‘‘mean field theory’’ model, the
firing rates or synaptic drive of a very large number of
neurons are lumped into a single variable, continuous in
space (Coombes, 2006; Pinotsis et al., 2014). Another classical

networkmodel, the Kuramotomodel (Kuramoto, 1984), explains
how networks of regularly spiking neurons can synchronize
to produce network oscillations. Third, half-center oscillators
(Brown, 1914) have been used as a model for Central Pattern
Generators (CPGs), the neural networks that generate rhythmic
motor patterns by producing the oscillatory motor activity
that is needed for behaviors such as breathing, walking,
and swimming (Marder and Bucher, 2001; Marder et al.,
2005).

Two recurrently connected inhibitory neurons or
populations of neurons constitute such a half center
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oscillator (Brown, 1914) are still being employed today to
study network oscillations. How networks synchronize to
generate oscillatory behavior is a field of extended study, as
such network oscillations are believed to be involved in many
fundamental functions of the brain including cognition (Fries,
2015).

Bursts of Mixed Origin: High Frequency
Oscillations
Over the last decade, several new classes of high frequency
oscillations (HFOs) have been observed in the EEGs of human
epileptic patients and depth recordings in animals. Until recently,
the highest frequency band recorded in the EEG was the
gamma band range, commonly recorded from 30 Hz to 80 Hz.
HFOs, however, typically range between 70 Hz and 600 Hz
(Engel and da Silva, 2012; Jefferys et al., 2012; Jiruska et al.,
2017), but exceptions up to 1000 Hz have been reported
(VHFOs; Usui et al., 2015). The signals described above are
extracellular local field potentials that reflect the summated
synaptic and spiking activity of neighboring neurons in a location
dependent way. The HFO frequency is often too high to be
generated by any single neuron. The most likely explanation
is that they are generated by a combination of intrinsic and
network mechanisms: local circuits of well-connected bursters
oscillate and are synchronized by synaptic, ephaptic or ionic
mechanisms in such a way that many neurons oscillate at a
subharmonic of the observed frequency. Bursts in hippocampus
are implicated in healthy functioning but also in epileptic
seizures (McCormick and Contreras, 2001). HFOs are accepted
biomarkers for ictogenesis and epileptogenesis (Gliske et al.,
2016; Frauscher et al., 2017) but it is unclear whether they always
indicate pathological conditions (Matsumoto et al., 2013; von
Ellenrieder et al., 2017). Recent experimental evidence obtained
by optogenetic interference suggests an important role for sharp-
wave-ripples (the classic form of HFOs) in the hippocampus in
renormalizing synaptic weights during sleep (Norimoto et al.,
2018). Such a function for bursting neurons had already been
predicted based on theoretical considerations (Balduzzi and
Tononi, 2013).

In conclusion, some neurons can burst in isolation and are
considered intrinsic bursters, while in others, bursting emerges
as a local network property. It is clear that both situations are
built on a large variety of underlying mechanisms. The burst-
generating mechanism defines to a large extent to which input
the neuron will respond with a burst, so it defines the encoding
properties of the bursts. This combination implies that the
encoding of bursts is system- and context-dependent.

BURST DEFINITION AND DETECTION

The detection (and definition) of bursts is performed in signals of
different origin. Themost straightforward and easiest to interpret
are intracellular signals recorded from single neurons, but these
obviously do not take into account network bursts. Population
signals that reflect neuronal activity are often recorded in the
form of calcium signals, that until recently often lacked the
critical time resolution to separate single spikes from bursts.

Extracellular signals from multiple electrodes allow fast network
recordings from large numbers (>1000) of neurons but shift
the challenge to separation and identification of single units
(Figure 2B). One may think that ‘‘one recognizes a burst when
one sees it’’, but the analysis and detection of bursts is non-trivial,
especially when burst-properties are non-stationary.

On the signal obtained from a single neuron, various
techniques have been proposed to discriminate between bursts
and spikes. Classically, scientists have used autocorrelograms of
the spike train (Csicsvari et al., 1998), clustering in return maps
(a plot of the succeeding intervals against each other; Reinagel
et al., 1999) and dissecting ISI distributions (Gabbiani et al.,
1996) to determine a threshold on the ISIs, which is then used
to determine the spikes belonging to a burst. More advanced
methods use a combination of ISIs and the (expected) number
of spikes in a burst to determine which spikes belong to a burst
(Chiappalone et al., 2005; Turnbull et al., 2005; Wagenaar et al.,
2005).

Burst properties are modulated by pharmacological
manipulation and change in developing networks. Therefore,
more advanced methods use adaptive ISI thresholds where the
ISI threshold varies according to the local (in time) properties of
the spike train (Pasquale et al., 2009; Kapucu et al., 2012, 2016).
Finally, a different class of burst detection methods calculates the
number of spikes in a given interval to the probability of such a
‘‘burst’’ occurring in a Poisson spike train with the same overall
rate (Legéndy and Salcman, 1985; Ko et al., 2012).

At the network level, burst classification algorithms
that use many signal channels have to detect synchronized
bursting activity of multiple neurons, using either pre-defined
(Chiappalone et al., 2005; Wagenaar et al., 2005; Mazzoni
et al., 2007; Ko et al., 2012; Martens et al., 2014) or adaptive
parameters (Pasquale et al., 2009). As much research on
developing networks is performed in cultures, the adapting
network burst classification techniques are particularly
important for analyzing the network activity of such
cultures on multielectrode arrays (MEAs) that can contain
60–4000 electrodes. Because the spike-waveform typically
changes during bursts, it is challenging to identify bursts with a
system that requires spike sorting (for a review on the difficulties
with these large-scale recording techniques, see Harris et al.,
2016).

In conclusion, the large variety in burst generation
mechanisms disqualifies a ‘‘one size fits all’’ burst detection
algorithm, especially in developing systems or systems under
pharmacological manipulation. The newest generation burst
detection algorithms are therefore adaptive, making them much
more successful in finding bursts under changing conditions.

FUNCTIONAL MEANING OF BURSTS

Two main functional roles of bursts have been proposed. First,
because most synapses are unreliable (Borst, 2010; Branco and
Staras, 2009), bursting can be a way to enhance reliability
in information transmission (Lisman, 1997; Csicsvari et al.,
1998). Second, next to single spikes, bursts can carry additional
information and thereby expand the coding space.
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Wang (1999) showed that rhythms and oscillatory signals
are better transmitted by bursting neurons than by tonically
firing neurons if unreliable and facilitating synapses are involved
and Krahe and Gabbiani (2004) showed that bursting facilitates
synaptic transmission. Bursts have a much larger impact on
their postsynaptic targets than single spikes (Swadlow andGusev,
2001). However, using bursts instead of single spikes increases
the reliability at the cost of decreasing the temporal precision of
the code (Sheffield et al., 2011). Bursts also improve the signal-
to-noise ratio (Krahe and Gabbiani, 2004) in auditory cortex
(Eggermont and Smith, 1996) and in visual cortex (Cattaneo
et al., 1981; Bair et al., 1994; Livingstone et al., 1996). If bursts
are indeed needed for information transmission, this leaves the
question about the role of single spikes: are they just noise, or
only relevant in conjunction with spikes from other neurons?

Is there information in the number of spikes in a burst
(Figures 2C,D)? Using computational models, Kepecs et al.
(2002) argued that the number of spikes reflects the slope of
the input. In agreement Eyherabide et al. (2009) showed that
in the grasshopper auditory system a significant amount of
information is transferred via the number of spikes in a burst.
Postsynaptically, short-term facilitation and depression can be
used to tune synapses to respond only to bursts of a specific
duration (Kepecs and Lisman, 2004), or to bursts with a specific
internal spike-frequency (Izhikevich et al., 2003). Most probably,
the functional role of bursts, just as their encoding properties,
depends on the brain region under consideration (Xu et al.,
2012). Below we provide three examples (one from thalamus and
two from the hippocampus), where separate functions of bursts
were identified in relation to the specific demands of each system.

Do Bursts in Thalamocortical Relay
Neurons Represent a Low-Frequency
Wake-Up Call?
In the mammalian thalamus (Figure 1), the burst firing mode
has been implicated in slow-wave sleep (Steriade and Deschenes,
1984) but also associated with pathological conditions (Steriade
and Llinás, 1988). This led to the hypothesis that bursts turn
‘‘off’’ the relay function of the thalamus (Steriade et al., 1993),
but bursts also occur during wakefulness (McCarley et al., 1983;
Guido and Weyand, 1995; Ramcharan et al., 2000), in particular
in response to stimuli that hyperpolarize TCR neurons (e.g.,
using visual stimuli with a large area; Weyand et al., 2001). Bursts
in TCR neurons are caused by the interplay between the T-type
calcium current (Jahnsen and Llinás, 1984; Williams et al., 1997)
and the hyperpolarization-activated h-current (McCormick and
Pape, 1990; Soltesz et al., 1991), which causes bursts to be mainly
triggered by excitation after a prolonged period of inhibition
(Lesica and Stanley, 2004). Reinagel et al. (1999) showed that
thalamic bursts and spikes code for similar information, but
since they used visual stimuli with a cutoff frequency of about
16 Hz, this leaves the possibility that single spikes code for
information at higher frequencies than bursts. Zeldenrust et al.
(2013, 2018) showed that with depolarization, TCR neurons go
from a bursting to a spiking regime, in which they respond earlier
in time, more precisely, more to fast fluctuations, less to slow

integration and transfer information at higher frequencies. How
much information is conveyed via the number and timing of
spikes in a burst remains open for discussion: in both models
(Elijah et al., 2015) and experiments (Gaudry and Reinagel,
2008; Butts et al., 2010) an ‘‘n-spike burst code’’ was suggested,
in which the number of spikes in a burst signals different
stimulus feature intensities (Reinagel and Reid, 2000; Zeldenrust
et al., 2018). Recently, Mease et al. (2017) showed that TCR
neurons most likely use a parallel multiplexing code, where
information about the stimulus is conveyed in the burst size,
in the burst onset time and in spike timing within bursts. They
report that bursts can encode both low-frequency (in their onset
time) and high frequency (in the within-burst spike timing)
information.

It remains to be seen how often thalamic bursts occur in
the awake in vivo situation: in vivo under anesthesia, bursts
frequencies are low when white noise stimuli are used (Denning
and Reinagel, 2005). Their ‘‘natural’’ stimuli induce a higher
burst rate, but it still does not exceed 1 Hz. In the ‘‘high-
conductance state’’ (Destexhe et al., 2003) in silico, bursts are
also rare (Zeldenrust et al., 2018). In vitro, however, the synaptic
bombardment of the ‘‘high-conductance state’’ increases the
burst rate in comparison to the quiescent state (Wolfart et al.,
2005).

In agreement with bursts encoding rare low-frequency events,
thalamic bursts have been hypothesized to perform a ‘‘wake-
up call’’ (Sherman, 2001) or ‘‘searchlight’’ role (Crick, 1984),
in contrast to a ‘‘stimulus estimation’’ role for single spikes
(Lesica and Stanley, 2004; Lesica et al., 2006). This theory is
corroborated by the observation that thalamic bursts activate
their cortical targets more than single spikes (Swadlow and
Gusev, 2001). Recently, Hu and Agmon (2016) showed that
thalamic bursts specifically recruit SOM-interneurons in layer
5 of cortex, whereas synapses onto fast spiking interneurons
are depressed. They hypothesize that this temporarily increases
the ‘‘saliency’’ of feedforward sensory input. In their turn,
these thalamic bursts require feedback activity from cortex and
occur particularly during specific behavior: ‘‘whisker twitching’’
(Fanselow et al., 2001), which led to the hypothesis that during
these periods bursts help the animal to detect slow whisker
deflections (Nicolelis and Fanselow, 2002). So in the thalamus,
the characteristics of amongst others the slow T-type calcium
current ensure that bursts are a response to low-frequency
events combined with cortical feedback. Thalamic bursts have
a particularly strong effect on the cortex, probably increasing
the saliency of the signal to ‘‘wake-up’’ the cortex. Cortical
structures might use this ‘‘wake-up’’ function of bursts too: the
‘‘burstiness’’ of layer 4 and area MT pyramidal cells in macaque
visual cortex decreases with visual attention (Anderson et al.,
2013; Xue et al., 2017) and in superficial cortical layers, bursts
of a single neuron can change the global network state (Li et al.,
2009).

Hippocampal Place Cells Use Burst
Encoding
Pyramidal neurons in hippocampus (Figure 1) are called place
cells (O’Keefe and Dostrovsky, 1971), because they fire when
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an animal is at a specific location. Hippocampal place-fields
are defined more accurately with bursts only than when both
bursts and spikes are jointly considered (Otto et al., 1991).
However, Harris et al. (2001) argue that bursts function mainly
as ‘‘conditional synchrony detectors’’: bursts are evoked by
a strong depolarization (synchronous EPSPs) after a period
of relative silence of the pyramidal cell (Harris et al., 2001).
Strikingly, hippocampal circuits can rely on bursts only for
their information transfer, whereas cortical circuits need single
spikes, which transfer information at a higher temporal precision
(Buzsáki, 2012; Xu et al., 2012).

The interaction between burst firing and inhibition plays a
crucial role in the information coding of hippocampal pyramidal
cells. Place cells fire at increasingly earlier times relative to
the ongoing theta oscillations as the animal runs through the
cell’s place field, a phenomenon called theta phase precession
(O’Keefe and Recce, 1993). Booth and Bose (2001, 2002a,b)
showed that the timing of inhibition is crucial for theta phase
precession: inhibition arriving before a burst delays it, but if
it arrives during the burst it causes a phase advance, thereby
providing a mechanism for the observed phase precession. The
burst-induced calcium increases recruit the calcium-dependent
potassium afterhyperpolarization responsible for the refractory
period that is much longer after a burst than after a single
spike. Zeldenrust and Wadman (2009, 2013) showed that the
connectivity pattern defines the effects of inhibition: slow
dendritic inhibition, but not fast somatic inhibition, changes
the behavior of these pyramidal cells from a slow bursting to a
fast spiking regime. With this regime change comes a change
in many properties, such as the reliability of the output and
the features in the input to which the microcircuit responds.
The timing of inhibition is crucial for this regime change: slow
dendritic feedback inhibition is most effective. Other factors that
change the timing of inhibition reduce the efficacy: the location
of the projection, delays, short-term plasticity, the exact spike
timing of the interneuron and feed-forward instead of feedback
filtering. Hence, the interactions between bursting pyramidal
cells and different forms of inhibition strongly increase the
response repertoire and thereby probably the coding capacity of
the hippocampal network.

Bursts Modulate Plasticity in
Hippocampus and Cerebellum
Burst firing is able to modulate neural plasticity: in rat
hippocampal pyramidal cells (Thomas et al., 1998), showed that
during strong 5 Hz (theta) stimulation EPSPs evoked both bursts
and long-term potentiation (LTP), whereas weaker stimulation
evoked single spikes but did not induce LTP. They concluded that
pairing EPSPs with bursts induces LTP, but pairing EPSPs with
single spikes does not. In agreement with these results, Golding
et al. (2002) showed that dendritic spikes are needed for synaptic
potentiation and Remy and Spruston (2007) showed that a single
burst can evoke LTP. However, in layer V pyramidal cells, Birtoli
and Ulrich (2004) showed that pairing EPSPs with bursts evoked
by square current pulses led to long-term depression, while
the same pairing with single spikes induced LTP. Independent
of the direction of the modification, Froemke and Dan (2002)

FIGURE 4 | Schematic representation of the mossy fiber (mf)–parallel fiber (pf)
pathway: granule cells (GrC) respond with bursts to mf bursts. The mf-GrC
synapse is potentiated with weak feedforward inhibition from Golgi cells (GoC)
but depressed with strong inhibition. GrC bursts excite Purkinje cells (PC)
through the parallel fibers (pf), a synapse that depresses for bursts. Overall,
the circuit functions as a high-pass filter.

and Froemke et al. (2006) showed that in pyramidal cells in
layer 2/3 of rat visual cortex later spikes in bursts are much
less effective in inducing plasticity than the first ones. Whether
the variation in responses that is presented here, can be simply
explained by the levels of intracellular calcium induced by the
various forms of stimulation needs to be investigated.

In cerebellum (Figure 1), granule cells (GrC, Figure 4)
integrate information in input from mossy fibers (mf) and send
it to Purkinje cells (PC) through parallel fibers (pf), that in
their turn activate the output nuclei of the cerebellum, the Deep
Cerebellar Nuclei (DCN). GrC are intrinsic bursters that generate
bursts as the result of an interplay between a persistent sodium
and a M-type slow K+-current (D’Angelo et al., 2001). In GrC,
bursts are triggered by (mossy fiber) bursts (D’Angelo and De
Zeeuw, 2009; Arleo et al., 2010) increasing the signal-to-noise
ratio by repressing the responses to single action potentials
(D’Angelo and De Zeeuw, 2009). At the next level, PC fire
bursts when they go from a ‘‘down’’ state to an ‘‘up’’ state at the
initiation of motor episodes, an effect comparable to the ‘‘wake-
up calls’’ in thalamus, but mediated by AMPA receptors (Mapelli
and D’Angelo, 2007; Sengupta and Thirumalai, 2015). Synapses
between GrC and PC undergo NMDA receptor activation
and therefore requires temporal integration: multiple action
potentials are required for LTD induction (Casado et al., 2000,
2002). This has as a result that the response to a burst of GC
action potentials is depressed, whereas the response to single
action potentials is not. Ultimately, the mossy fiber depression
and parallel fiber potentiation increase the PC responses to
natural stimuli (Ramakrishnan et al., 2016).

In conclusion, the interaction between both long-term and
short-term plasticity on the one hand and bursting on the other,
is complex and subtle. Synapses can be tuned so that they
selectively respond to bursts of a certain frequency, length or to
single action potentials, opening the possibility of a multiplexed
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population code, where different postsynaptic neurons respond
to specific patterns in the presynaptic spike train. Which parts
of the brain use such multiplex codes remains a topic for further
investigation.

PERSPECTIVES

Decades of research into the bursting activity in neurons
have largely revealed its generating mechanisms, however, the
understanding of their function in each system remains only
partial, largely dependent on the neural area/system under
investigation. Below we first summarize the commonalities
across the different systems and evaluate the impact of novel
techniques on the analysis of bursting activity.

Common Coding Principles
A common motif across all systems studied is that burst
provide an emphasis which is hard to ignore down the
axon: in TCR cells they focus the ‘‘attention’’ of cortex, in
hippocampal and cerebellar cells they induce specific plasticity,
and in sensory processing in weakly electric fish they emphasize
reliable features. Their role within cortical circuits remains
less well understood but based on the general features of
LTP/STDP (Feldman, 2012) we hypothesize that emphasis
in processing or synaptic modification will be the reason
for endogenous bursts in several types of excitatory and
inhibitory cells.

We therefore hypothesize that bursts are likely a main
source of direct activation, often including synaptic modification,
ranging from attentional gating to one-shot learning. In many
studies, the focus lies on firing rates, rather than spiking
patterns, and hence, bursts may have been overlooked, as
replacing single spikes by bursts not only increases observed
firing rates, but also changes the spiking patterns. So, bursts
may well contribute to the ubiquitous changes in firing rate
signifying for example a change in attention. If bursts themselves
are not just stereotypic patterns but their internal timing is
relevant, the associated variability in appearance may have
precluded more detailed analysis in many studies. Whether
burst patterns have additional roles next to strong target
activation, for instance increasing the coding capacity of a
spike train by providing a form of multiplexed coding, remains
an open question that can only be studied using recording
techniques that have both a large enough temporal resolution
to detect bursts and a large enough scale to assess entire
networks.

Technological Advances
Recent years have seen a surge of novel techniques, which could
help to enlighten the coding principles of bursting activity. We
here highlight a selection of recent perturbational, large-scale
recording and simulation techniques.

1. Perturbation is obviously critical in separating the specific
function of a burst of spikes from that of single spikes.
Approaches using electrical stimulation or dynamic clamping
have allowed perturbation (Prinz et al., 2004), however, they

did not (yet?) have the specificity and scale to fully address
the function of bursts. Optogenetics in combination with
high-resolution 2-photon stimulation and imaging provides
the possibility to introduce or prevent single neurons from
emitting bursts (Clemente-Perez et al., 2017; Norimoto et al.,
2018), thus directly studying their influence in a cell-type
specific manner in vivo in large populations. This could
provide a local perspective of the relevance of burst in
processing information.

2. Large-scale, preferably system-wide recording techniques are
essential when tracking the effect of bursts in multiple
locations of the nervous system. Recent advances, such as
light-sheet imaging in the larval zebrafish (Ahrens et al., 2013)
have pushed the limits of population recording to new heights,
allowing the simultaneous recording of ∼100 k neurons,
covering almost the entire fish brain.While sampling rates still
need to improve, bursts can be detected using deconvolution
techniques (Friedrich et al., 2017).

3. Recent developments in very high-density microelectrode
arrays have enabled an unprecedented level of detail in
studying neuronal slice and culture preparations (Vajda et al.,
2008; Bologna et al., 2010). In a recent study (Lonardoni
et al., 2017), a MEA comprising >4000 electrodes was used
to identify the locus of burst generators, which turned out to
be highly connected regions. Recent research using an MEA
with >11,000 electrodes was able to trace spikes along the
retina (Radivojevic et al., 2017), which would be an excellent
technique to study bursts and their effects in different target
areas.

4. Complimentary, large-scale simulation techniques can
identify the network structures susceptible to bursts and
provide insights into the relevance of burst for network wide
amplification. Recent work suggests that cortical circuits are
exquisitely sensitive to small inputs (Doron et al., 2014) if
they arrive in a burst-like fashion, suggesting that bursts may
function as an indicator of relevance for the neural network
(Doron et al., 2014).

In summary, recent years have provided significant insights
and new technologies, which will contribute to the unraveling of
the coding and function of bursts in the near future.
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