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The Estonian Biobank and several other biobanks
established over a decade ago are now starting to
yield valuable longitudinal follow-up data for large
numbers of individuals. These samples have been
used in hundreds of different genome-wide associ-
ation studies, resulting in the identification of
reliable disease-associated variants. The focus of
genomic research has started to shift from identify-
ing genetic and nongenetic risk factors associated
with common complex diseases to understanding
the underlying mechanisms of the diseases and
suggesting novel targets for therapy. However,
translation of findings from genomic research into
medical practice is still lagging, mainly due to
insufficient evidence of clinical validity and utility.
In this review, we examine the different elements
required for the implementation of personalized

medicine based on genomic information. First,
biobanks and genome centres are required and
have been established for the high-throughput
genomic screening of large numbers of samples.
Secondly, the combination of susceptibility alleles
into polygenic risk scores has improved risk pre-
diction of cardiovascular disease, breast cancer and
several other diseases. Finally, national health
information systems are being developed interna-
tionally, to combine data from electronic medical
records from different sources, and also to gradu-
ally incorporate genomic information. We focus on
the experience in Estonia, one of several countries
with national goals towards more personalized
health care based on genomic information, where
the unique combination of elements required to
accomplish this goal are already in place.
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Introduction

Personalized medicine is an area that is receiving
increasingly more attention internationally [1]. It
is defined as medical practice that utilizes per-
sonal medical information, including health
behaviour, traditional medical test results, symp-
toms, family history, environmental factors and
genomic information, to implement new routines
for diagnosing and treating diseases [2]. The main
benefit of a more personalized approach is the
expected shift of medical practices towards pre-
ventive health care, based on targeted screening
programmes combined with early intervention
and treatment, instead of reactive treatment of
disease. As such, its implementation is dependent
on robust known risk factors, electronic medical
records (EMRs), automated decision support sys-
tems and specific training of relevant personnel. A
more personalized approach towards health care
will engage individuals more actively in their

health management, which is a prerequisite for
improving public health.

The power of biobanks for epidemiological research
was recognized over a decade ago in Estonia
(Fig. 1). Furthermore, Estonia was, together with
Iceland, amongst the first to initiate a population-
based biobank designed to use biomarkers
combined with medical history and lifestyle infor-
mation in the study of common diseases and traits
[3]. In contrast to the Estonian Biobank, which is
maintained by the government, the Icelandic ini-
tiative has always been a private enterprise, with
all samples and data initially owned by deCODE
genetics, Inc. and recently acquired by Amgen, Inc.
Prior to the establishment of the Estonian Biobank,
the Estonian Human Genes Research Act was
passed by the Parliament of Estonia [4]. According
to this law, the Estonian Biobank has the right to
collect, store and use biological samples and phe-
notype information for genetic research and is
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further expected to use the results to improve
public health. The necessary infrastructure to
promote secure electronic exchange of medical
data, a nationwide technical infrastructure (termed
the X-road platform), is already established and
maintained by the state [5]. As of 2010, medical
data from hospitals, primary care physicians and
pharmacies (digital prescription records) are all
accessible through the X-road in a strictly regu-
lated manner. Because of the existence of all the
elements mentioned above, Estonia is in a globally
unique position for the implementation of genomic
medicine on a national scale.

Although thepotential of genomicmedicinehas long
been recognized [6], genomic data are still not
incorporated in clinical decision-making for com-
mon diseases. The clinical validity and utility of the
genomic disease variants identified so far are still
being questioned. The aimof this review is to provide
a summary of the genomic variants that are associ-
ated with common diseases and their power in
combined genetic risk scores, and discuss the
possibilities of using genetic data in health care.
For illustration, we use examples from studies of
type 2 diabetes (T2D), coronary artery disease (CAD)
and breast cancer, and focus on the experience in
Estonia where the unique combination of the key
elements for nationwide implementation of person-
alized medicine are already in place.

Biobanks for epidemiological research

Research and development in the field of biomed-
icine is highly dependent on the availability of
biological samples and associated epidemiological
data. The Biobanking and Biomolecular Resources
Research Infrastructure (BBMRI) is one of the
largest research infrastructure projects in Europe
with more than 225 associated organizations from
over 30 countries combined into a 54-member

consortium [7, 8]. BBMRI is now implemented
under the European Research Infrastructure Con-
sortium (ERIC), a legal framework that functions as
a platform to create opportunities for long-term
cooperation between the members of the consor-
tium [9]. The Public Population Project in Genom-
ics and Society (P3G) is another international
consortium dedicated to providing a multidisci-
plinary infrastructure for unified health and social
research conducted around the world [10, 11].
These and other global consortia [12] enable the
international research community to develop more
effective strategies for the implementation of mod-
ern healthcare efforts aimed at disease prevention,
tailored treatments and the promotion of the
long-term health of individuals in a harmonized
manner.

Estonia was amongst the founding members of the
P3G and BBMRI-ERIC. The Estonian Biobank,
similar to several other biobanks, is a volunteer-
based sample of the adult population, with close to
52 000 participants representing 5% of the popu-
lation (age ≥18 years). All participants have under-
gone a standardized health examination, donated
blood samples for purification of DNA, white blood
cells and plasma, and completed a questionnaire
on health-related topics, such as lifestyle, diet and
clinical diagnoses [13]. A significant proportion of
the cohort (n = 20 000) has been genotyped using
genome-wide single nucleotide polymorphism
(SNP) arrays, and data from nuclear magnetic
resonance (NMR) spectroscopy of blood plasma
are available for 12 000 participants. The meta-
bolic parameters determined by NMR spectroscopy
include low molecular weight compounds (n = 24),
lipoproteins (n = 91) and lipids (n = 25) [14]. All
participants have signed a broad informed consent
form, which allows the continual updating of
epidemiological data through periodic linking to
national electronic databases and registries.

1995: Prenatal screening for 
chromosomal anomalies

2011: Cytogenetic chromosomal 
microarray analysis

2014:  Clinical exome sequencing 

Milestones towards personalized medicine in Estonia

1999: Estonian Biobank

2000: Human Genes 
Research Act

2005: Estonian 
eHealth Foundation

2012: First Estonian 
genome sequenced

2010: First GWAS incl. 
Estonian samples

2020: Population genomics 
for personalized medicine

2009: National 
X-road with EMRs

Fig. 1 Major milestones in
medical genetics (top) and
genomics (bottom) in Estonia.
The years shown mark the
official launch, establishment
or publication of the ‘milestone’,
although preliminary work was
initiated much earlier. EMR,
electronic medical record;
GWAS, genome-wide associa-
tion study.
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The Estonian Genome Center (EGCUT) is a
research institute of the University of Tartu that
manages and maintains the Estonian Biobank. As
a result of the combination of a vast amount of both
genotype and phenotype data, the EGCUT partic-
ipates in several consortia focusing on large-scale
genome-wide association studies (GWASs), includ-
ing Genetic Investigation of ANthropometric Traits
(GIANT), Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE), European Net-
work for Genetic and Genomic Epidemiology
(ENGAGE), DIAbetes Genetics Replication And
Meta-analysis (DIAGRAM), Meta-Analyses of Glu-
cose and Insulin-related traits (MAGIC), Coronary
ARtery DIsease Genome-wide Replication And
Meta-analysis (CARDIOGRAM) and Metabolites
And GeNETIcs Consortium (MAGENETIC).

Genomics of common diseases

The parallel progress of the HapMap project [15],
generating a list of tag SNPs that capture most of
the common variation in the human genome, and
development of dense microarrays that allow the
simultaneous genotyping of hundreds of thou-
sands of SNPs has facilitated the large-scale per-
formance of GWASs using samples from cases and
controls based on phenotype data available in
different biobanks. The success of 5 years of
discoveries from GWASs has recently been sum-
marized by Visscher et al. [16]. To date, SNPs in or
near 7100 different genes have been reported to be
associated with over 1000 different traits; this is
summarized in the GWASs catalogue available
online [17, 18]. Table 1 shows the most recent
results from a selection of highly successful
GWASs, with associated loci explaining between
2% and 60% of the heritability of the studied traits.
The molecular mechanisms through which the
associated SNPs act are still unknown for a large
proportion of them, mostly due to extended regions
of strong correlations between SNPs. However, the
associations are robust and different studies are
taking place to provide evidence for biological
processes that link the associated variants to the
studied phenotypes.

Using data generated by the ENCODE project [19],
which integrates multiple types of functional data,
Schaub et al. [20] were able to identify putative
functional annotations for up to 80% of all inves-
tigated SNP–trait associations. Of interest, only up
to 16% of the associated SNPs were located in
protein-coding regions, whilst the majority of the

variants were found to be in regulatory regions
identified by transcription factor ChIPseq, DNAse I
hypersensitivity and expression quantitative trait
(eQTL) mapping. Maurano et al. [21] obtained
similar results and further showed the cell type-
specific localization of the regulatory marks over-
lapping with variants found to be associated with
specific diseases in GWASs. This finding has also
been confirmed for various histone marks [22] and
eQTLs [23–25]. The enrichment of GWAS hits
within regulatory regions of the genome, particu-
larly in cells with disease-related functions, pro-
vides additional evidence for their direct
involvement in disease.

Studies on the effects of SNPs on intermediate
molecules such as RNA, proteins or lipids have
been able to illustrate the functional consequences
of disease-associated genetic variants, reviewed by
van der Sijde et al. [26]. For example, plasma
concentrations of lipoproteins and triglycerides
are heritable but modifiable risk factors for CAD
and T2D. In a genome-wide screen for common

Table 1 Proportion of disease or trait heritability explained
by GWAS hitsa

Disease/trait

Number of

associated

loci

Heritability

explained by

associated

loci (%) Reference

Type 2

diabetes

76 ~10 75, 76

BMI 36 ~10 77

Lipids 157 ~30 27, 78

Breast cancer 67 ~14 45

Height 180 ~10 79

Type 1

diabetes

40 ~60 80, 81

Rheumatoid

arthritis

48 ~51 82, 83

Inflammatory

bowel

disease

163 ~14 84

Schizophrenia 108 ~3–7 85

Bipolar

disorder

56 ~2 86

GWAS, genome-wide association study; BMI, body mass
index.
aAdapted and updated from Visscher et al. [16].
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variants associated with plasma lipid levels in over
188 000 individuals, Willer et al. [27] demon-
strated 157 significantly associated loci. The
authors further investigated the associations
between the 157 loci and body mass index (BMI),
CAD, T2D and blood pressure and found that,
although the functions of some genes remain
unknown, many of the 40 genes associated with
lipid levels and CAD play important roles in lipid
metabolism, including APOA1, APOE, HNF1A,
LDLR, LPA, LPL, NAT2 and SORT1. They observed
a smaller overlap between lipid levels and T2D-
associated genes; the top hit amongst the 18 loci
was FTO, one of the first genes to be associated
with BMI and T2D [28, 29]. Figure 2 illustrates the
overlap between the different genes associated with
lipids and CAD, T2D and BMI.

The functional effects of many of the identified
SNPs remain to be explored. For example, Musun-
uru et al., using functional studies of the
rs12740374 SNP in SORT1, showed that the non-
coding polymorphism creates a C/EBP transcrip-
tion factor-binding site and thereby alters the
expression of the SORT1 gene in hepatocytes [30].
The authors further demonstrated that Sort1 alters
plasma low-density lipoprotein cholesterol (LDL-C)
and very low-density lipoprotein (VLDL) particle
levels by modulating hepatic VLDL secretion.
Based on more specific analysis of T2D pheno-
types, implicated genes have been clustered by risk
alleles associated with the following: (i) primary

effects on insulin sensitivity (PPARG, KLF14, IRS1
and GCKR); (ii) reduced insulin secretion and
fasting hyperglycaemia (MTNR1B and GCK); (iii)
defects in insulin processing (ARAP1); and (iv)
insulin processing and secretion without a detect-
able change in fasting glucose levels (TCF7L2,
SLC30A8, HHEX/IDE, CDKAL1 and CDKN2A/2B)
[31]. Stratifying patients into different clusters
based on risk alleles will result in better under-
standing of the disease pathways and eventually
lead to an increase in therapy that is more tailored.

The possibility of translating the loci detected by
GWASs into novel therapeutic targets is dependent
on the identification of causal mutations and genes
and their downstream effects on protein activity.
Flannick et al. [32] speculated that loss-of-func-
tion mutations that protect against disease without
adverse phenotypes would be amongst the most
useful findings from human genetics, as such
mutations may be directly translated into targets
for therapy [33, 34]. The authors sought to identify
such targets by sequencing the exons of 115 genes
near T2D association signals identified by GWASs
and were able to find a rare nonsense variant
(c.412C>T, p.Arg138*) in SLC30A8 with protective
effects against T2D. After further sequencing and
genotyping of SLC30A8 in 149 134 individuals,
they found that heterozygosity for any of 12 iden-
tified protein-truncating variants was associated
with a 65% reduced risk of T2D (odds ratio 0.34,
P = 1.7 9 10�6) [32]. SLC30A8 encodes a zinc

CTF1,  EHBP1,  FLJ36070, JMJD1C, 
KCNK17, LRP1, LRP4, PDE3A, 

PDXDC1, PEPD, PGS1, RAB3GAP1, 
SETD2, SLC39A8, TOP1, TRPS1, 

UBASH3B, UBE2L3, ZBTB42-AKT1

ABCA8, ABCG5/8, ACAD1, APOA1, 
APOB, ASAP3, CAPN3, CETP, CITED2, 
CLIP2, CMTM6, CYP26A1, GALNT2, 

HBS1L, IKZF1, KAT5, KLHL8, LDLR, LPA, 
LPL, NAT2, PCSK9, PINX1, SORT1, 

SPTY2D1, ST3GAL4, TRIB1

ABO, CILP2, CMIP, FADS1-2-3, 
GPAM, HNF4A, LIPC, NPC1L1

BRAP, C6orf106, 
FRMD5, HMGCR, 

HPR, RBM5, ZNF664

BMI T2D

CAD

ARL15, 
COBLL1, 

FTO, 
MC4R

APOE, HNF1A, 
KLF14, MAP3K1

IRS1, 
VEGFA

Fig. 2 Overlap of genes
associated with lipid levels
and other cardiometabolic
traits. The Venn diagram illus-
trates the overlap of genes
found to be associated with
plasma lipid levels by Willer
et al. [27] and genes associated
with body mass index (BMI),
type 2 diabetes (T2D) and cor-
onary artery disease (CAD).
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transporter ZnT8 expressed solely in b-cells, and
its overexpression has been shown to increase
glucose-stimulated insulin secretion [35]. Sladek
et al., who first discovered the association between
SLC30A8 and T2D, suggested that the finding may
have dietary implications, including therapeutic
approaches with zinc supplementation or pharma-
cological manipulation of zinc transport [36]. The
recently identified loss-of-function protective
mutations in SLC30A8, together with evidence that
a high total zinc intake may attenuate the glucose-
raising effect of another common SNP in this gene
(rs11558471) [37], further indicate that SLC30A8
could be an excellent target for pharmacological
intervention.

Another field in which there have been rapid
developments in GWASs and disease risk estimates
is predisposition to breast cancer. The existence of
a family history of breast cancer is one of the
strongest risk factors [38], and the known patho-
genic mutations in the BRCA1 and BRCA2 genes
confer a life-time risk of breast cancer of 60–85%
and 55–85%, respectively [39, 40]. Recently, addi-
tional common alleles have been reported to be
associated with increased breast cancer risk for
BRCA1 and BRCA2 mutation carriers in large
retrospective studies [40, 41]. Although the effect
associated with each of these SNPs is small, the
combination of the alleles may be useful for the
stratification of individuals into distinct risk cate-
gories [42]. Nevertheless, the combined frequency
of BRCA1 and BRCA2 mutations in the general
populations is nearly 0.5% [43, 44]; thus, more
common variants are more relevant for determin-
ing predisposition to breast cancer. GWASs and
targeted genotyping projects have together identi-
fied 67 low-penetrance loci associated with sus-
ceptibility to breast cancer [45]. Together, findings
indicate that 14% of familial risk of breast cancer
can be explained by these common variants, with a
further 20% by the loci with higher penetrance. By
including more SNPs with less stringent criteria,
Michailidou et al. [45] could increase the explained
proportion from 14% to 28%, suggesting that
increasing sample sizes will enable the identifica-
tion of more risk loci with even smaller effect sizes.

Disease risk estimates and patient stratification

As mentioned above, individual susceptibility
alleles only confer amodest increase in disease risk;
most odds ratio values are <1.5 or, with increased
sample sizes,<1.2.Therefore, thepredictiveutility of

genetic tests based on single risk alleles is poor.
However, combining susceptibility alleles into poly-
genic riskscoreshasbeenshown tobemore effective
for risk prediction (see below). With the constant
increase in identified disease susceptibility loci for
different diseases, it is difficult to accurately assess
how well the combined genetic risk scores perform,
but a few generalizations can be made based on
studies so far.

Tikkanen et al. [46] recently reported the clear
utility of genetic risk scores for patient reclassifi-
cation into low-, intermediate- and high-risk
groups using 28 SNPs associated with coronary
heart disease (CHD) in four Finnish cohorts (FIN-
RISK). The SNPs with the largest effect sizes were
located in LPA, CDKN2A/B-ANRIL, CELSR2-PSRC1-
SORT1, MRPS6, PPAP2B, MIA3 and WDR12. The
authors noted that using the genetic risk scores to
modify the traditional risk classification, 135
deaths could be prevented per 100 000 individuals
over 14 years. This is presumably achieved by
reclassifying individuals with intermediate-risk
(10-year absolute risk of cardiovascular disease of
10–20%) into the high-risk (>20%) category, and
expecting 32.5% of the individuals in the high-risk
group to experience a CHD event based on the 14-
year follow-up data, and that statin treatment
would reduce the risk of an event by 20%. They
also stated that screening for genetic risk scores
would prevent 2.5 times more CHD events than
randomly allocating statins to a comparable num-
ber of individuals in the intermediate-risk category
using traditional classification and the same
assumptions as above.

Based on the results from the latest breast cancer
GWASs and assuming that all loci combine multi-
plicatively, the estimated relative risks for individ-
uals in the 95th and 99th percentiles are 2.3 and
3.2, respectively, compared to the population
average [45]. Although such estimations are lim-
ited for predicting breast cancer for any given
individual, the risk scores would be useful for
identifying high-risk individuals eligible for enrol-
ment in screening and prevention programmes at
an earlier age. The potential utility of polygenic risk
stratification in the case of population-based
screening for breast and prostate cancer has been
reviewed by both V�eron et al. [47] and Pashayan
et al. [48]. The two groups of authors argued that
risk and eligibility for screening according to age
alone, as in the current UK national breast screen-
ing programme, is suboptimal as many women
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under the age for screening (<47 years) will develop
breast cancer and most women above the age for
screening (>73 years) will not. Alternatively, using
18 SNPs associated with breast cancer in a poly-
genic risk profile, personalized screening of women
aged 35–79 years is expected to result in screening
of 2% fewer women but yield the same number of
potentially detectable cases as in the age-deter-
mined risk profile [49]. The situation is expected to
improve even further by incorporating the more
recently identified risk loci.

Similar progress has also been made in estimating
combined genetic risk scores for other diseases,
including rheumatoid arthritis [50], T2D [51, 52],
prostate cancer [49], age-related macular degen-
eration [53] and ischaemic stroke [54]. For many
diseases, the genetic risk scores do not outperform
the traditional factors considered in the clinic for
risk assessment. However, with the increase in the
number of known susceptibility genes, the esti-
mates are becoming more precise, even compared
to family history [55] and, most importantly, the
genetic risk can be calculated before the manifes-
tation of disease symptoms such as increased lipid
levels, hypertension or the presence of autoanti-
bodies. It is also important to note that the
discriminatory power of polygenic risk scores
may be population specific and may therefore
need to be validated and reweighted in other
populations.

Most complex diseases are caused by hundreds of
different genetic polymorphisms and various envi-
ronmental factors, and their interactions. The
advantage of genetic risk factors is that they are
present before disease onset and can therefore be
used for stratification of individuals into risk
categories for preventive screening. Early detection
of disease progression is crucial for successful
treatment of patients. Even though the genetic
risks cannot be altered directly, other risk factors
(such as BMI, lipids levels, smoking and alcohol
consumption) for most diseases can be modified.

Beyond GWAS – ‘omics’ data and rare variants

Similar to other biobanks, in addition to containing
genetic information, the Estonian Biobank puts
considerable effort into generating different levels
of ‘omics’ data and updating health-related infor-
mation for all participants. This enables the inves-
tigation of other factors associated with risk of a
disease and the development of risk scores that

take into account both genetic and nongenetic
variables. The strength of using different levels of
omics data and updated phenotype data was
recently illustrated by researchers at the EGCUT
[56]. By quantifying 106 candidate biomarkers in a
random subset of over 9800 plasma samples from
the Estonian Biobank, they identified four biomar-
kers that predicted the risk of all-cause mortality:
alpha-1-acid glycoprotein, albumin, VLDL and
citrate. One in five participants with a biomarker
summary score within the highest percentile died
during the first year of follow-up, indicating sys-
temic reflections of frailty. The results were repli-
cated in a population-based cohort from Finland
(FINRISK 1997). Based on these and other find-
ings, it is extremely important to work towards
closer collaborations with clinicians and using the
possibilities of recontacting subjects for further
examination and potential treatment.

Cytogenetic testing using SNP microarray analysis
for detection of chromosomal abnormalities in
patients with developmental delay/intellectual
disability, multiple congenital anomalies and
autism spectrum disorders has been covered by
the Estonian Health Insurance Fund since 2011.
In a recent overview of 1191 patients analysed
during the period 2009–2012, chromosomal
abnormalities were identified in 25% of the
patients; however, as the clinical significance of a
large proportion (41%) of the findings remains
unknown, clear and clinically relevant findings
were reported for only 11% of the patients [57].
This is a twofold improvement compared to tradi-
tional cytogenetic methods, and chromosomal
microarray analysis is now established as the
first-line cytogenetic diagnostic test for detection
of chromosomal abnormalities [57].

In parallel with studying common diseases, the
EGCUT has worked closely with medical geneti-
cists at Tartu University Hospital to implement
whole-exome sequencing into clinical practice to
improve patient care. Since the beginning of 2014,
the Estonian Health Insurance Fund covers the
costs of parent–offspring exome sequencing to
identify the cause of rare diseases of unknown
genetic aetiology. So far, 138 exomes have been
sequenced (including 53 cases) with a diagnostic
yield of 40%, which is comparable to that of other
centres [58, 59]. Actionable incidental findings are
currently reported back to the clinician according
to the recommendations of the American College of
Medical Genetics and Genomics [60].
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Use of genetic data in health care

Several countries have recognized the need for and
potential of personalized medicine and started
national initiatives to facilitate the necessary
research and development for its implementation.
A summary of national and regional initiatives in
personalized medicine is shown in Table 2. In the
USA, a broad spectrum of research, focusing on
areas from medical genetics and genomics to
translational and functional genomics and social
and behavioural studies, is being conducted at the
National Human Genome Research Institute [61].
In the UK, similar steps have been taken towards
personalized health care [62]. The Public Health
Genomics Foundation (PHG) [63] was established
in 1997 to facilitate the integration of genetics and
genomics into public health practice, with a focus
on policy development for the UK National Health
Service. With regard to the national healthcare
system, the PHG Foundation report entitled Public
health in an era of genome-based and personalized
medicine concluded that (i) the focus should be on
disease areas with significant population health
impact, (ii) evidence on utility and cost-effective-
ness of genomic approaches needs to be collected
and (iii) this effort should be international.

In 2012, an international coalition of professional
and patient advocacy groups, the European Alli-
ance for Personalised Medicine (EAPM) [64], was
founded with the goal of accelerating the develop-
ment, delivery and uptake of personalized medicine
and personalized health care and thereby improv-
ing patient care. The objectives of EAPM for 2013
and 2014 included creating incentives for person-
alized health care, by influencing related EU pol-
icies and developing reimbursement that would be
favourable for the implementation of personalized
medicine.

A global network, the Global Alliance for Genomics
& Health, was established to accelerate progress in
genomic research through sharing genomic and
clinical data [65]. Partners from over 40 countries
represent a variety of stakeholders including
health care, research, disease advocacy, life sci-
ences and information technology (IT) institutions.
To achieve the goal of accelerating the progress in
translating genomic research into healthcare prac-
tice through the combined implementation of
genomic and clinical data, the working groups of
the Global Alliance for Genomics & Health are
working towards (i) facilitating interoperability in

data representation, storage and analysis; (ii)
harmonization of policies and best practices in
genomic and health-related data sharing; and (iii)
introducing interoperable standards for managing
and sharing genomic and clinical data.

Whilst research into the role of common variants in
common complex diseases continues, evidence
regarding the use of genomic tests is also accumu-
lating. Increasing numbers of genomic tests have
been reported to provide sufficient evidence of
clinical validity and utility and some of these have
already been recommended for use in clinical
practice by the Centers for Disease Control and
Prevention in the USA [66]. The Charles Bronfman
Institute for Personalized Medicine (IPM) is an
example of a personalized medicine project
launched to implement data-driven and genetics-
based personalized health care [67]. The aim of this
project is to use each patient’s genetic information
and clinical data for targeted, personalized care in
real time, through the application of a personalized
medicine system linked to EMRs. Additional evi-
dence is gathered during routine clinical care, and
electronic medical records are used to facilitate
genomic research as proposed by the Electronic
Medical Records and Genomics network (eMERGE)
network [68].

In May 2013, the Prime Minister of Estonia
acknowledged personalized health care as an
appropriate strategy to manage the national
increasing burden on health care of noncommuni-
cable diseases, with an emphasis on disease pre-
vention rather than treatment [69]. In 2014, the
chairman of the management board of the Esto-
nian Health Insurance Fund presented an action
plan that included personalized approaches for
disease prevention, emphasizing the need for
appropriate funding models and research on out-
comes including the behavioural and psychological
impact of genetic risk predictions [70]. Most signif-
icantly, the newly formed Estonian Government
included in its coalition agreement of 2014 the plan
to develop personalized medicine based on modern
gene technology [71].

The priority of the suggested predictive, preventive,
personalized and participatory approach is health
promotion for improving health care where there
has been an increase in public health burden of
noncommunicable diseases [72]. Whilst the per-
sonalized and predictive aspects of this approach
rely on biomarkers for early diagnosing or for
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Table 2 Examples of national and regional personalized medicine initiatives

Country Brief description of the initiative

Australia National Health and Medical Research Council (NHMRC) has prepared a framework for translating

‘omics-based’ discoveries into clinical care, including governing principles for clinical research, clinical

practice and guidelines, data repositories and ethical/legal/social issues particularly related to return of

results.

Austria ONCOTYROL aims to facilitate advances in individualized cancer therapies, as well as the development and

evaluation of diagnostic, prognostic and preventive tools.

BioPersMed aims to identify specific biomarkers in endocrinology, cardiology and hepatology.

Belgium Belgian Medical Genomics Initiative – a network to create an optimal national framework for clinical exome

sequencing.

Transformational Medical Research (TGO) – personalized medicine programme managed by the Agency for

Innovation by Science and Technology.

Biomina – a biomedical informatics research centre in Antwerp, created to facilitate translational medicine

(including bioinformatics and medical informatics).

Canada Genome Canada – partnered with the Canadian Institutes of Health to support the Large-Scale Applied

Research Competition in Genomics and Personalized Health.

Denmark Danes’ DNA catalogue is being created by the Danish Platform for Large-scale Sequencing and

Bioinformatics through large-scale sequencing with the primary aim of developing vaccines against

cancer.

England Genomics England and 100 K Genome Project – mapping of 100 000 patients’ genomes through

whole-genome sequencing (WGS) for identification of target variants for rare diseases, cancer and

pathogens.

Finland Finland Distinguished Professor Programme (FiDiPro) – promoting the use of personalized medicine in

treatment of diseases focused on genome-scale cancer biology.

Sequencing Initiative Suomi (SISu) aims to build tools for genomic medicine using whole-genome and whole-

exome sequence and to make the data available for the research community.

France Advanced Diagnostics for New therapeutic Approaches (ADNA) aims to develop more personalized

therapeutics for infectious diseases, cancers and rare diseases.

Greece The Genomic Medicine Alliance – current major projects include EuroPGx which genotypes

pharmacogenomically relevant variants from samples in developing nations, and the pilot NextGenPGx

project which aims to sequence whole genomes to create a database of the incidence of genetic disorders in

three ethnic groups.

India Human Genomic Initiatives and Genetic Epidemiology of Cancer plans the genetic cataloguing of ethnic

groups, better prenatal care and the use of cancer genomics.

Japan Implementation of Genomic Medicine Project (IGMP) aims to construct a network of disease-oriented

and population-based biobanks, and to establish a medical genome centre which will establish

optimized treatment through optimized diagnostics and prediction of drug responses using

large-scale genomics.

Korea Korean Genome and Epidemiology Study (KoGES) – large-scale population-based prospective cohort study

which collects epidemiological data and WGS information.

Korean Genome Analysis Project (KoGAP) has constructed the Korean reference genome.

Singapore POLARIS programme implements genomic medicine in a city/state health system and aims to prove the

clinical utility of genomic testing.
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identification of at-risk patients, the preventive and
participatory aspects rely on intervention at the
primary care level where educating both patients
and healthcare providers is crucial. The findings of
a study of the expectations of Estonian primary
care physicians regarding the use of genomic
information in primary care practice suggested
that there is an eagerness to apply genomic infor-
mation in practice, as well as a willingness to
improve their knowledge base in genetics and
genomics [73]. However, there is a need for policies
and guidelines, as well as clinical decision support,
for determining where, when and how to use test
results.

A major concern regarding personalized medicine is
the lack of evidence of clinical utility and cost-
effectiveness; validation is needed to ensure that
the new approaches lead to positive health outcomes
and are cost-effective. Policies and guidelines are
necessary to regulate the level of evidence required
before a new genetics- or genomics-based test is
implemented. In addition to clinical outcomes, it is
necessary to consider the psychosocial, ethical and
legal implications of introducing genomic
approaches into clinical care. Further challenges
for the successful implementation of predictive,
preventive, personalized and participatory
approaches in healthcare practice include the need
for (i) IT tools to integrate different sources and the
combined analysis of patient data; (ii) user-friendly
clinicaldecisiontools toguidephysicians indecision-
making to introduce complex genomic-based
approaches into clinical care; and (iii) funding
schemes to promote and provide incentives for pre-
vention rather than reactive treatment of disease.

Future directions

As discussed above, the EGCUT has established a
biobank with over 52 000 extensively phenotyped

participantsand isapartner invarious international
research projects focusing on the identification of
genes and environmental factors associated with
increased risk of commondiseases. Recent research
efforts have shifted towards studying the underlying
mechanisms of common complex diseases by
including different levels of omics data, such as
epigenetics, transcriptomics, proteomics and meta-
bolomics. The phenotype data are also continually
being updated by regular queries of national regis-
tries, including theDigital PrescriptionDatabase, as
well as the databases of the two major hospitals in
Estonia (covering approximately 75% of the popula-
tion). A more detailed description of the phenotype
data available in the registries and databases is
provided by Leitsalu et al. (see their table 4) [13] and
illustrated in Fig. 3.

Estonia was the first country to implement a
nationwide electronic health record system
(eHealth) with full access to individual records for
all citizens [74]. This system provides new oppor-
tunities for both citizens and healthcare providers
in the era of personalized medicine. The EGCUT is
currently working hard to build a system for
implementing genomic information into the Esto-
nian healthcare system. We believe that there is
sufficient reliable information from different levels
of omics data, including robust common and rare
SNP risk alleles, plasma biomarkers and pharmac-
ogenomics markers (reviewed by others in this
issue of the Journal of Internal Medicine), to start
the process of implementing personalized medi-
cine. The disease risk predictions will improve as
the process proceeds, and we learn from imple-
menting personalized medicine based on what is
currently known whilst maintaining a flexible IT
system for incorporation of new findings.

The EGCUT has proposed a national plan for
personalized medicine in Estonia, which is based

Table 2 (Continued )

Country Brief description of the initiative

USA Genomic Medicine Research Portfolio of the National Human Genome Research Institute (NHGRI) (an institute

of the NIH) focuses on the advancement of human health through genomic research.

The PharmGKB – a pharmacogenomics knowledge resource that encompasses clinical information including

dosing guidelines and drug labels, potentially clinically actionable gene–drug associations and genotype–

phenotype relationships.

NIH, National Institutes of Health. Sources: http://www.eurobioforum.eu/2028/observatory/and notes from Genomic
Medicine Centers Meeting VI: Global Leaders in Genomic Medicine, 8–9 January 2014, National Academy of Sciences
Building, Washington, DC. http://www.genome.gov/27555775.
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on the initial sequencing of 5000 whole genomes to
identify rare variants and haplotypes specific to the
Estonian population. This will be followed by the
design of a genotyping microarray using these
haplotype-tagging variants and other polymor-
phisms known to be associated with disease risks.
According to the plan, all samples in the Estonian
Biobank will then be genotyped, the data will be
analysed using automated risk estimation and
decision support software, and disease risk and
drug response prediction reports will be deposited
into the e-Health system. Physicians will be trained
to use the data in their everyday practice, and if
this pilot phase is successful, the same test should
be offered to all adult residents in Estonia. We hope
to provide disease risk and medication response
predictions directly to the healthcare providers
by 2020.

We are convinced that the introduction of genomics
together with currently used medical practice
organized by user-friendly IT systems will lead to
better screening programmes, earlier detection of
diseases and better opportunities for treatment of
patients. In short, genomics would provide an
additional ‘instrument’ for physicians to diagnose
and treat patients. Of note, genomic testing is the
only tool that has true predictive value; compared
to other medical tests, which usually only record

the situation at the time that the test is performed
when patients have developed disease symptoms,
genomics will allow early screening and preventive
methods for individuals at high risk of specific
diseases, thereby reducing the burden on the
healthcare system and health insurance funds.
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