
Available online http://arthritis-research.com/content/7/2/R268
Open AccessVol 7 No 2Research article
Inhibition of antithrombin by hyaluronic acid may be involved in 
the pathogenesis of rheumatoid arthritis
Xiaotian Chang1, Ryo Yamada1 and Kazuhiko Yamamoto1,2

1Laboratory for Rheumatic Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
2Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

Corresponding author: Xiaotian Chang, xchang@src.riken.go.jp

Received: 10 Jul 2004 Revisions requested: 27 Sep 2004 Revisions received: 26 Nov 2004 Accepted: 1 Oct 2004 Published: 11 Jan 2005

Arthritis Res Ther 2005, 7:R268-R273 (DOI 10.1186/ar1487)http://arthritis-research.com/content/7/2/R268

© 2005 Chang et al., licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/
2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited.

Abstract

Thrombin is a key factor in the stimulation of fibrin deposition,
angiogenesis, proinflammatory processes, and proliferation of
fibroblast-like cells. Abnormalities in these processes are
primary features of rheumatoid arthritis (RA) in synovial tissues.
Tissue destruction in joints causes the accumulation of large
quantities of free hyaluronic acid (HA) in RA synovial fluid. The
present study was conducted to investigate the effects of HA
and several other glycosaminoglycans on antithrombin, a
plasma inhibitor of thrombin. Various glycosaminoglycans,
including HA, chondroitin sulfate, keratan sulfate, heparin, and
heparan, were incubated with human antithrombin III in vitro. The
residual activity of antithrombin was determined using a
thrombin-specific chromogenic assay. HA concentrations

ranging from 250 to 1000 µg/ml significantly blocked the ability
of antithrombin to inhibit thrombin in the presence of Ca2+ or
Fe3+, and chondroitin A, B and C also reduced this ability under
the same conditions but to a lesser extent. Our study suggests
that the high concentration of free HA in RA synovium may block
antithrombin locally, thereby deregulating thrombin activity to
drive the pathogenic process of RA under physiological
conditions. The study also helps to explain why RA occurs and
develops in joint tissue, because the inflamed RA synovium is
uniquely rich in free HA along with extracellular matrix
degeneration. Our findings are consistent with those of others
regarding increased coagulation activity in RA synovium.
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Introduction
Thrombin is a multifunctional protease that can activate
hemostasis and coagulation through the cleavage of fibrin-
ogen to form fibrin clots. Increasing fibrin deposition is a
predominant feature of rheumatoid arthritis (RA) in synovial
tissue, which contributes to chronic inflammation and pro-
gressive tissue abnormalities [1]. Thrombin also acts as a
mitogen to stimulate the abnormal proliferation of synovial
cells during RA pathogenesis. In this regard, thrombin can
elevate the expression of nuclear factor-κB, interleukin-6,
and granulocyte colony-stimulating factor in fibroblast-like
cells of the RA synovium [2,3]. By a similar mechanism,
thrombin can upregulate the transcription of vascular
endothelial growth factor receptor and thereby induce the
permeability, proliferation, and migration of capillary
endothelial cells or their progenitors during angiogenesis
[4-6]. Thrombin also plays an important role in the proin-

flammatory process by stimulating neutrophil adhesion to
vessel walls and releasing prostacyclin [7]. Thus, thrombin
is essential for enhancing synovial thickness and inflamma-
tion during the pathogenesis of RA.

The principal plasma inhibitor of thrombin is antithrombin, a
single-chain 51 kDa glycoprotein that is synthesized in liver.
The inhibitory activity of antithrombin on thrombin is signifi-
cantly enhanced by heparin, a type of glycosaminoglycan
(GAG) [8]. The GAG family comprises large anionic
polysaccharides with similar disaccharide repeats of uronic
acid and hexosamine. Physiologically important GAGs
include hyaluronic acid (HA), chondroitin sulfates, keratan
sulfate (KS), heparin, and heparan, which are the major
components of joint cartilage, synovial fluid, and other soft
connective tissues [9,10]. Along with the destruction of RA
joint tissue, a remarkable quantity of various GAG
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molecules, especially HA, are released from the extracellu-
lar matrix of the synovium [9,10], which is a key feature of
RA progression. Because GAGs and heparin share a simi-
lar molecular structure, we investigated how HA and other
GAGs affect antithrombin activity.

Methods
Highly purified HA, chondroitin sulfate A (CSA), chondroi-
tin sulfate B (CSB), chondroitin sulfate C (CSC), KS,
heparin, or heparan (Seikagaku, Tokyo, Japan) were incu-
bated for 24 hours with human antithrombin III at 150 µg/
ml (Sigma, St. Louis, MO, USA) at 37°C in working buffer
(100 mmol/l Tris-HCl, pH 7.5) containing 5 mmol/l CaCl2
or FeCl3. The concentration of antithrombin was deter-
mined according to its physiologic level in synovial fluid
[11,12]. The reaction was stopped with EDTA. Residual
activity of antithrombin was analyzed using the chromoge-
nic Actichrome AT III (American Diagnostica, Greenwich,
CT, USA) kit, which quantifies antithrombin III activity as fol-
lows. After exposure to GAGs, antithrombin was incubated
with the thrombin reagent provided with the kit and residual
thrombin activity was determined by incubation with the
thrombin-specific chromogenic substrate in the kit. Absorb-
ance was measured at a wavelength of 405 nm. Hence, the
inhibitory ability of antithrombin on thrombin was inversely
proportional to the residual thrombin activity. This assay
method is usually used in the clinical setting. We prepared
a series of control tests in which HA, CSA, CSB, CSC, and
KS were digested in 0.1 mol/l phosphate buffer (prepare
100 ml of the buffer with 94 ml of 0.1 M KH2PO4 and 6 ml
of 0.1 M K2HPO4, pH 6.2) at 37°C for 2 hours with 0.1
units/ml hyaluronidase (Seikagaku, Japan) before incuba-
tion with antithrombin. Hyaluronidase preferentially digests
HA rather than other GAGs.

To determine whether HA can prevent heparin from stimu-
lating antithrombin, we simultaneously incubated heparin
(10 µg/ml) and various concentrations of HA with anti-
thrombin (150 µg/ml) at 37°C for 24 hours in the presence
of 5 mmol/l CaCl2. To investigate the effect of HA on anti-
thrombin in the presence of other metal ions, we incubated
HA (1 mg/ml) and human antithrombin III (150 µg/ml) at
37°C for 24 hours in the presence of CaCl2, FeCl3, KCl,
MgCl2, and NaCl at various concentrations. Residual anti-
thrombin activity was measured as described above.

Results
In the absence of heparin, antithrombin partly inhibited
thrombin activity. Low concentrations of HA did not signifi-
cantly affect antithrombin activity, regardless of the pres-
ence or absence of Ca2+ or Fe3+. However, HA
concentrations above 250 µg/ml considerably suppressed
the inhibitory ability of antithrombin against thrombin in the
presence of Ca2+ or Fe3+, and 1 mg/ml HA completely
blocked antithrombin activity under the same conditions.

Consequently, thrombin activity was gradually elevated by
increasing HA concentrations between 250 and 1000 µg/
ml. However, HA at concentrations above 1000 µg/ml pro-
gressively lost the ability to prevent inhibition of thrombin
activity by antithrombin. Furthermore, HA after digestion
with hyaluronidase inhibited antithrombin activity at rela-
tively low concentrations (100 µg/ml) in the presence of
Ca2+. This observation indicated that the inhibitory effect of
HA on antithrombin was not caused by impurities in the rea-
gent. The control without antithrombin indicated that HA
does not directly affect thrombin (Fig. 1).

CSA, CSB, and CSC also inhibited the antithrombin effect
in the presence of Ca2+ but to a lesser extent than did HA
(Fig. 2). KS did not significantly affect antithrombin activity.
Exposing CSs and KS to hyaluronidase did not clearly
change this effect, indicating that CSs themselves inhibit
antithrombin (data not shown). In contrast to HA, heparin
and heparan clearly stimulated thrombin inhibition by anti-
thrombin (Fig. 2). However, the stimulatory effect of heparin
was considerably decreased in the presence of HA and
Ca2+. Moreover, the ability of HA to prevent heparin activity
was progressively strengthened with increased concentra-
tions of HA within the range 250–1000 µg/ml (Fig. 3).
Other metal ions, including K+, Mg2+, and Na+, did alter the
effect of HA on antithrombin (Fig. 4).

Discussion
The destruction of joint tissue is a primary feature of RA. In
the inflamed RA synovium, proliferating macrophages and
colonizing lymphocytes, together with persistent angiogen-
esis, produce large amounts of matrix metalloproteinases
that destroy the surrounding cartilage and extracellular
matrix of connective tissue [13]. Because GAGs are the
basic structural components of joint cartilage, synovial fluid,
and soft tissues [9,10], the RA synovium produces an
abundance of free GAGs during tissue destruction. Among
these, HA is a predominant component of the articular sur-
face and synovial fluid, in which the HA concentration is
between 1500 and 2500 µg/ml [14,15]. Pitsillides and
coworkers [14] found that the ratio of free HA to bound HA
was significantly increased in the RA (4.53 ± 0.40) as com-
pared with the healthy (1.87 ± 0.42) synovium, although
the total concentration of hyaluronan was not increased in
the rheumatoid synovium. Their histochemical staining also
showed that hyaluronan was concentrated in the lining
layer of noninflamed synovial membrane but was more uni-
formly distributed throughout rheumatoid samples. On the
other hand, the HA level is very low among various other tis-
sues. For example, the concentration of serum HA from
healthy individuals averages 16 ng/ml, which is 1 × 105 fold
lower than that in synovial fluid [16,17].

The present study found that HA at concentrations
between 250 and 1000 µg/ml significantly blocked the
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ability of antithrombin to inhibit thrombin. This finding helps
to explain why RA occurs and develops in joint tissue,
because the inflamed RA synovium is uniquely rich in free
HA and other GAGs, along with extracellular matrix degen-
eration. Although the HA levels are higher in RA than in
healthy sera [18], we demonstrated that the relatively low
levels of HA do not prevent antithrombin activity and thus
cannot cause blood clots in the circulation. Hence, only the
conditions in the RA synovium can drive the pathogenesis
of thrombin-related RA, which includes abnormal angio-
genesis, extreme proliferation of fibroblast-like cells, exces-
sive fibrin deposition, and proinflammatory processes.
Thus, thrombin-related RA worsens because of the snow-
ball effect of HA release in inflamed joints.

Our notion is supported by many other studies. Jones and
coworkers [11] found that antithrombin activity is selec-
tively depressed in RA synovial fluid as compared with that
in osteoarthritis, although the concentration of the anti-
thrombin–thrombin complex was significantly increased.
Ohba and coworkers [12] also found high levels of
thrombin activity in RA synovial fluid. These findings sup-
port the notion that inhibiting antithrombin activity plays an
essential role in RA pathogenesis. Wang and coworkers
[10] recently constructed a model of arthritis by injecting
various GAGs into mice. We postulate that the injected
GAGs significantly disrupted the inhibition of thrombin by
antithrombin, which therefore caused connective tissue

disease through abnormally activated angiogenesis, proin-
flammatory processes, and fibrin deposition. On the other
hand, heparan, which has an almost identical structure to
that of heparin but contains fewer sulfates, stimulated anti-
thrombin activity in a similar manner to heparin. These
observations indicate that the diverse effects of GAGs on
antithrombin are due to differences in their molecular con-
figurations. Heparin pentasaccharide can form complexes
with antithrombin and expose a reactive proteinase binding
loop on the protein surface [19,20]. Because the molecular
structure of HA is analogous to that of heparin, HA might
exert its effect by binding to the heparin-binding region of
antithrombin. However, such binding did not stimulate the
activity of antithrombin as did heparin and heparan; in fact,
it blocked the ability of antithrombin to inhibit thrombin. In
the present study, the stimulatory effect of heparin on anti-
thrombin was considerably decreased in the presence of
HA, supporting the notion that HA could compete with
heparin for the heparin-binding region of antithrombin.

Remarkably, HA affected the inhibition by antithrombin only
within the range 250–1000 µg/ml. At concentrations
above 2000 µg/ml, HA either lost its inhibitory effect or ele-
vated the ability of antithrombin to inhibit thrombin. The
physiologic level of free HA in the RA synovium is just within
the range 500–1000 µg/ml [14]. Some clinical studies
have shown that injecting HA into articular rheumatoid
joints can ameliorate inflammation [21,22]. Although further

Figure 1

Effect of hyaluronic acid (HA) on antithrombin (AT)Effect of hyaluronic acid (HA) on antithrombin (AT). Various concentrations of HA, digested or not with hyaluronidase, were incubated with anti-
thrombin in the presence of 5 mmol/l CaCl2 or FeCl3. Thrombin activity in the absence of both HA and antithrombin (blank) was considered as 1 and 
the activities of the other tests were normalized based on comparisons with blank. Values are expressed as mean ± standard deviation of data from 
triplicate experiments.
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investigation is required to elucidate the exact mechanism
by which HA inhibits antithrombin, the results of the present
study do not refute the notion that optimal proteoglycan
uptake can improve overall articular function in patients
with arthritis.

Why HA inhibited antithrombin more after than before
hyaluronidase digestion remains obscure. Perhaps the
small HA molecule can easily bind and thus exert a more
inhibitory role on antithrombin. Nagaya and coworkers [23]
found high hyaluronidase activity in the synovial fluid and
serum of RA patients, implying an abundance of small HA
molecules in the RA synovium. Maneirio and coworkers
[24] reported that HA at various molecular weights had dif-
ferent effects on the interleukin-1 induced synthesis of both
nitric oxide and prostaglandin E2 in chondrocytes. How
Ca2+ and Fe3+ are involved in inhibiting antithrombin by HA
is also poorly understood. Some investigators found that
Ca2+ dramatically promotes the ability of heparin to drive
antithrombin activity [8,25,26]. Thus, both Ca2+ and Fe3+

ions might play similar roles in HA-induced changes in the
configuration of antithrombin.

Synovial fluid from RA patients contains a far greater abun-
dance of free iron than that from patients with osteoarthritis

[27,28]. It was reported that Fe3+ stored in the RA syn-
ovium perpetuates inflammation by supporting the produc-
tion of oxygen radicals and by promoting hyaluronic acid
degradation, as well as the release of lysosomal enzymes
[29]. Telfer and coworkers [30] recently found that proin-
flammatory cytokines produced in the RA synovium
increased the accumulation of iron in synovial fluid. On
other hand, Davies and coworkers [31] reported that
neutrophils from synovial fluid and the circulation of RA
patients could increase the release of free Ca2+ at inflam-
matory sites. Caruthers and coworkers [32] also showed
that calcium signaling is altered in T lymphocytes from RA
patients.

Genome-wide single nucleotide polymorphism analysis has
shown that peptidylarginine deiminase (PADI4), an enzyme
that post-translationally catalyzes peptidyl arginine to citrul-
line, is closely associated with RA [33]. We recently found
that recombinant human PADI4 protein inactivated human
antithrombin III via citrullination in vitro. We also detected

Figure 2

Effects of various glycosaminoglycans (GAGs) on antithrombin (AT)Effects of various glycosaminoglycans (GAGs) on antithrombin (AT). 
Hyaluronic acid (HA), chondroitin sulfate A (CSA), chondroitin sulfate B 
(CSB), chondroitin sulfate C (CSC), keratan sulfate (KS), heparin, or 
heparan (500 µg/ml) was incubated with 150 µg/ml antithrombin and 5 
mmol/l CaCl2. Controls consisted of only GAG or AT and blank (work-
ing buffer only). Thrombin activity of blank was considered as 1 and the 
activities of other tests were normalized based on comparisons with 
blank. Values are expressed as mean ± standard deviation of data from 
triplicate experiments.

Figure 3

Heparin stimulates antithrombin (AT) activity in the presence of hyaluronic acid (HA)Heparin stimulates antithrombin (AT) activity in the presence of 
hyaluronic acid (HA). Heparin (10 µg/ml) and various concentrations of 
HA were incubated with 150 µg/ml antithrombin in presence of 5 
mmol/l CaCl2. Thrombin activity of blank (reaction buffer only) was con-
sidered as 1 and the activities of other tests were normalized based on 
comparisons with blank. Values are expressed as mean ± standard 
deviation of data from triplicate experiments.
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an increased level of citrullinated antithrombin in the
plasma of RA patients [34]. PADI4 is extensively expressed
in RA synovial tissue [35,36]. Thus, we suggested that the
citrullination of antithrombin is one potential pathway
through which PADI4 contributes to the pathogenesis of
RA [34]. This notion does not contradict the current find-
ings. We postulate that the genetic, single nucleotide poly-
morphism-associated disorder of PADI4 and its excessive
citrullination of antithrombin play important roles in initiating
the RA pathogenic process, whereas inhibition of anti-
thrombin by HA contributes to the development of RA
rather than its initiation, because free HA in the synovium
achieves high concentrations along with RA progression.
Because of abundant Fe3+ and altered Ca2+ metabolism
together with significant hyaluronidase activity in the RA
synovium, thrombin-related RA specifically worsens in joint
tissue as a result of antithrombin inactivation by local
PADI4 and free HA (Fig. 5).

HA is an important component of the extracellular matrix.
Thrombin and antithrombin play key roles in hemostasis
and are involved in the pathogenic processes of many

diseases [6,37,38]. The findings presented here should
also be useful in investigating the nature of other diseases.

Conclusion
At concentrations of 250–1000 µg/ml in vitro, HA blocked
the thrombin-inhibitory ability of antithrombin in the pres-
ence of Ca2+ and Fe3+. This finding suggested that the high
concentration of free HA in diseased RA synovium locally
blocks antithrombin under physiologic conditions and
thereby deregulates the activity of thrombin. These proc-
esses in turn drive the thrombin-related pathogenesis of
RA, which includes extensive fibrin deposition, extreme
angiogenesis, and abnormal fibroblast-like cell proliferation.
Our findings are consistent with those of previous reports
regarding increased coagulation activity in the RA
synovium.
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