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Life’s size and tempo are intimately linked. The rate of metabolism varies
with body mass in remarkably regular ways that can often be described
by a simple power function, where the scaling exponent (b, slope in a log-
linear plot) is typically less than 1. Traditional theory based on physical
constraints has assumed that b is 2/3 or 3/4, following natural law, but
hundreds of studies have documented extensive, systematic variation in b.
This overwhelming, law-breaking, empirical evidence is causing a paradigm
shift in metabolic scaling theory and methodology from ‘Newtonian’ to
‘Darwinian’ approaches. A new wave of studies focuses on the adaptable
regulation and evolution of metabolic scaling, as influenced by diverse
intrinsic and extrinsic factors, according to multiple context-dependent
mechanisms, and within boundary limits set by physical constraints.
1. Introduction
Life’s size and tempo have been of much interest to scientists because they both
relate integrally and pervasively to diverse biological characteristics, including
myriad morphological, developmental, physiological, behavioural and ecologi-
cal traits. For over a century, these two key features of life have also attracted
much attention because they are usually inversely related in remarkably regular
law-like ways that can be described by simple mathematical formulae. In par-
ticular, the relationship between the rate of metabolism (R), a commonly used
indicator of the ‘pace of life’, and body mass (M), a commonly used indicator
of ‘body size’, can usually be well described by the simple power function,
R = aMb, where a is the scaling coefficient (antilog of the intercept in a log-
linear plot) and b is the scaling exponent (slope in a log-linear plot) [1–8].
Accordingly, how fast metabolism proceeds can often be predicted with
remarkable accuracy by simply knowing how big an organism is. Also, such
predictions can often be extended to the rates and durations of many other
biological processes that depend on metabolic energy [4–7,9,10]. In short, the
timing of living processes scale with organismal size.

The value and significance of the metabolic scaling exponent b have attracted
much interest for over the past 150 years. During the late 1800s and early 1900s,
many biologists claimed that bwas universally 2/3 or nearly so, the so-called ‘sur-
face law’, based on simple Euclidean geometry of organismal surfaces across
which metabolic resources, wastes and heat are exchanged [11–13]. This belief
was initially supported by several intraspecific analyses of ‘metabolic scaling’,
especially in various birds and mammals [13]. However, beginning in the
1930s, several analyses of interspecific metabolic scaling caused Max Kleiber
and other scientists to claim that a 3/4 exponent was universal or nearly so, the
so-called ‘3/4-power law’ or Kleiber’s Law [2,3,14,15]. Belief in this law peaked
during the 1980s to middle 2000s, as a result of its advocacy by Robert Peters
[4], William Calder [5] and Knut Schmidt-Nielsen [6] in three highly cited syn-
thetic books, and the appearance of influential supporting theory based on the
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Figure 1. The frequency of publications per decade providing empirical data indicating significant variation of the metabolic scaling exponent (b) among species/
clades (taxonomic diversity) or within species (intraspecific variation), or apparent uniformity to a 3/4-power law. The decadal timing of some key publications is
indicated [1–6,8,13–16,19,35–38], whose locations are unrelated to the coloured bars (see online supplementary information for a list of all publications counted).
(Online version in colour.)
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geometry and physics of internal resource-supply (RS) net-
works [10,16–19]. However, hundreds of data analyses
showing that metabolic scaling exponents are highly diverse
and often significantly different from 3/4 (see §2), and the
reporting of many lines of evidence contradicting the assump-
tions, logic and predictions of theory based on RS networks
[8,13,20–31], have together resulted in many biologists aban-
doning a belief in the 3/4-power law, especially since the
middle 2000s. As a result, a paradigm shift in the theory and
methodologyofmetabolic scaling from ‘Newtonian’ to ‘Darwi-
nian’ approaches is occurring, as I review here.
2. Variability of metabolic scaling
The surface law and 3/4-power law, and theory supporting
them, have so captivated the minds of many scientists that
from the early 1900s to early 2000s, numerous studies showing
significant diversity of metabolic scaling have been largely
ignored or regarded (especially by theoreticians) as being the
result of factors having secondary importance to those causing
a presumed primary universal scaling pattern. Ironically,
some proponents of the 3/4-power law have suggested that
the immense diversity of life has so distracted many biologists
that it has inhibited their proclivity to develop general, coarse-
grained theory based on universal natural laws [32,33], thus
causing them to fail to ‘see the forest for the trees’ [33,34]. How-
ever, I argue that the opposite has actually occurred: general
theory based on a supposed universal lawand a single primary
deterministic mechanism has inhibited an appreciation of the
variability of metabolic scaling and its diverse causes. The his-
tory of the theory of metabolic scaling shows that biologists
first sought and favoured general explanations based on uni-
versal physical laws [13,30] (see also §6). Indeed, it has taken
many decades of steadily accumulating studies showing vari-
able metabolic scaling (figure 1) to convince many biologists
to abandon general, over-simplistic theory based on a non-
existent 3/4-power law. In short, biologists are increasingly
‘seeing the trees for the forest’.
My survey of the literature shows that between 1900 and
2019, 358 studies documented significant variation in intra-
or interspecific metabolic scaling exponents for resting or
active organisms typically measured under controlled labora-
tory conditions, as compared to 22 supporting a single
universal b value (i.e. 3/4) (figure 1). Despite this greater
than 16-fold difference and numerous emphatic protests
appearing since the 1950s (e.g. [8,13,30,36,39–53]), the 3/4-
power law has had a long-lasting tenacious grip on the
theory of metabolic scaling. Studies reporting significant
intraspecific variation in metabolic scaling exhibited an
approximately exponential increase in decadal frequency
from the 1910s to 1970s (peaking at 56) and thereafter have
continued to appear at high frequency. Although numerous,
these studies appear to have had little impact on metabolic
scaling theory until recently, apparently because they were
often attributed to statistical error (based on relatively
narrow body mass ranges within many species [5,15,54,55];
though this is not true for many animals and plants that exhi-
bit indeterminate growth [8,28,46,56,57]), or to factors
secondary to those causing the supposed overall 3/4-power
scaling pattern, which is said to encompass diverse species
exhibiting a very broad range of body sizes [5,10,15,19,32].
However, a sharp increase, especially since the 1990s, in
the number of studies showing significant taxonomic variation
in metabolic scaling exponents, both among species and clades
(peaking at 44 during the 2010s), has made it very difficult to
retain a belief in a universal 3/4-power law. Evidence (albeit
circumstantial) that a strong belief in a 3/4-power lawhas actu-
ally inhibited studies on the variability ofmetabolic scaling can
be seen in the substantial decline in number of such studies for
both intra- and interspecific metabolic scaling during the 1990s
and early 2000s, when the synthetic analyses of Peters, Calder,
Schmidt-Nielsen and others were frequently cited in the litera-
ture [4–6], and resource-transport network (RTN) theory
supporting the 3/4-power law had gained prominence
[10,16,17,19,32,33]. However, multiple critical reviews in the
2000s and 2010s [8,13,25,30,52,53,58–61] contributed to a
more than twofold resurgence of the number of studies
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Figure 2. Broad ranges of metabolic scaling exponents (b) in diverse taxa of unicellular and multi-cellular organisms (based on ordinary least-squares regressions
from sources cited in [4,8,13,25,30,39–42,44,47,56,62–68] (see also electronic supplementary information)). (a) Range of interspecific b values among clades within
various taxa with sufficient data. The grey line refers to unicellular protists, whereas the black lines refer to multi-cellular invertebrates and vertebrates, as whole
groups, and the dark red lines refer to taxa within each of these two groups. (b) Range of intraspecific b values within various taxa with sufficient data. The grey line
refers to unicellular protists, whereas the green line refers to multi-cellular plants, the black lines refer to multi-cellular animals, invertebrates and vertebrates, as
whole groups, and the blue lines refer to various invertebrate and vertebrate taxa. (Online version in colour.)
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documenting significant variation inmetabolic scaling, from34
(1–2 publications every four months) during 1990–1999 to 82
(1–2 publications every two months) during 2010–2019. This
trend appears to be continuing into the 2020s (14 publications
between January 2020 and November 2021, again between 1
and 2 publications every twomonths: see online electronic sup-
plementary material).

The inadequacy of the 3/4-power law is also evidenced
by the extremely wide ranges of b values (approx. 0.1–1.6
overall, but mostly between 0.5 and 1.0) that have been
reported for several taxa of unicellular and multi-cellular
organisms (figure 2). The ubiquity of this extensive diversity
at various taxonomic levels, including many relationships
with wide body mass ranges, and the demonstration of
numerous systematic effects, as discussed in §3, suggests
that much of this variation is not merely due to statistical
or methodological error.
3. Diverse intrinsic and extrinsic factors affect
metabolic scaling

Variation in the metabolic scaling exponent (b) relates
systematically to various intrinsic (biological) and extrinsic
(ecological) factors (figure 3), and is not merely statistical
‘noise’ obscuring the recognition of a 3/4-power law.
Manyof these effects involvemajor shifts in b between approxi-
mately 0.5 (or 2/3) and 1.0, as predicted by context-dependent,
multi-mechanistic theory [13,25,30,69] (see also §6). Intrinsic
effects include significant differences in b observed between
endothermic versus ectothermic vertebrates [25,38,70,71],
active versus resting versus torpid animals [8,25,48,69,72,73],
larval versus adult forms [8,28], males versus females [8,74]
and various genetic strains [75–77] and cellular modes of
growth [44,78]. Extrinsic factors that may affect metabolic scal-
ing include diet, habitat, captivity, ecological lifestyle and
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various environmental factors, such as temperature, pH,
salinity, light intensity, predators, parasites and availability of
resources (e.g. oxygen, food and water) [8,46,56,57,62,66,69,
79–95]. For example, significantly steeper intraspecific meta-
bolic scaling has been observed for pelagic versus benthic
invertebrates [8,46], amphipod populations in spring habitats
without versus with fish predators [57], crayfish populations
in streams with more monoculture-based agricultural riparian
land cover [89], and many ectothermic (especially sedentary)
animal and plant species exposed to low versus high ambient
temperatures [8,56,69,83,87,90]. In addition, significant differ-
ences in interspecific b values have been reported for grazing
versus folivorous and vertebrate- versus invertebrate-eating
mammals [91], arboreal versus terrestrial carnivorans [92],
mesic versus desert small mammals [79]; captive versus
wild-caught birds [80]; high- versus low-altitude birds [93],
temperate versus tropical birds [84]; subtidal versus intertidal
gastropods [66], soil- versus wood-feeding termites [94], and
crustaceans, fishes, birds and mammals exposed to different
ambient temperatures [62,85,95]. Various intrinsic and extrin-
sic factors may also have interactive effects on b. For example,
temperature effects have been shown to interact with salinity
[40], pH [83], nutrition [96], predation regime [86,88], activity
level [87], genotype [97], and mode of thermoregulation [95].
Furthermore, various factors may also cause metabolic scaling
to be nonlinear (curvilinear) in log–log space, either within or
across species [8,21,28,30,35,63,78,79,82].
4. Phenotypic plasticity and evolvability of
metabolic scaling

Effects of various intrinsic and extrinsic factors on metabolic
scaling may occur via phenotypic plasticity, at least partially
driven by biological regulation at the organismal level, or via
genotypic evolution driven by natural selection or genetic
drift at the population level. Evidence for regulated phenoty-
pic plasticity of the metabolic scaling exponent (b) includes
dramatic, remarkably regular shifts observed between the
allometric scaling (b < 1) of resting animals and the isometric
or near-isometric scaling (b∼ 1) of torpid or maximally active
animals [25,43,69,72,73,98], and other significant shifts in
intra- or interspecific b in response to individual changes in
reproductive state [74,99], social behaviour [13], captivity
[80], diet [81], colonial connectedness [100] and exposure to
various ambient conditions, especially temperature [8,30,40,
69,82,83,85–88,90,95–97]. Evidence for the evolvability of b
derives from artificial selection experiments [76,101,102],
quantitative genetic studies showing significant additive gen-
etic variance and covariance of metabolic rate and body mass
[38,76,103], comparative studies of conspecific populations or
related species exposed to different natural mortality regimes
[8,46,57,88], and phylogenetic studies documenting the
timing and direction of evolution of b [41,67,104–106].
5. Assorted reactions to the demise of the 3/4-
power law

There can no longer be any doubt that no universal 3/4-power
law exists. However, investigators studying metabolic scaling
have reacted to the growing mountain of evidence supporting
this inescapable view in diverse ways that I suggest can be
approximately classified by using a popular psychological
model that posits that people experience five (six) stages of
grief after losing a loved one, including ‘denial’, ‘anger’, ‘bar-
gaining’, ‘depression’ and ‘acceptance’ [107], and a recently
suggested sixth stage ‘meaning’ [108]. However, according to
my modified analogous use of this classification, not everyone
may experience all possible psychological stages or do so in a
specific order (see [109]), and the loss being considered
involves the 3/4-power law, often claimed to be the most
accepted natural law in biology [4,16,110–112], an important
attribution in a discipline regarded by some as having few or
no laws at all, unlike physics [113–115]. I suggest that my
approximately comparable classification gives some insight
(at least in part) into the ongoing vigorous controversy in
the field of metabolic scaling, because various investigators
appear to be (or have been) at different stages (singly or in com-
bination) of the process of coping with the empirical ‘death’ of
the famous 3/4-power law.

(a) Denial
Many scientists, especially theoreticians with backgrounds in
the physical sciences, continue to believe in a universal or
nearly universal 3/4-power law, despite enormous evidence
that metabolic scaling is highly diverse across the tree of life
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(figures 1 and 2), which has continually accumulated ever
since the Nobel Prize-winning biologist August Krogh first
described variation in the metabolic scaling exponent (b) in
1916 [1,51]. This denial (conscious or unconscious) of
the demise of the 3/4-power law has occurred, even in the
face of numerous recurring studies sharply criticizing the
3/4-power law as being a ‘myth’, ‘unlikely’, ‘doubtful’
or otherwise not being universally applicable that have
appeared during the last 65 years [8,13,25,29,30,36,38–53,58–
61,64,69,70,72,73,95,105,106]. Nevertheless, a belief in the
3/4-power law has persisted in the minds of many scientists
even to the present day [18,19,32,34,112,116,117]. Indeed,
during recent years, some theoreticians have continued
attempting to explain metabolic scaling simply in terms of a
2/3- or 3/4-power law [18,34,116–121]. A lack of recognition
of the demise (inadequacy) of these over-simplistic, suppo-
sedly universal laws appears to have resulted from either a
lack of knowledge of the extensive literature documenting vari-
able metabolic scaling, or from regarding this variation as
being of secondary importance (see also below).

(b) Anger
During the last two decades, I have witnessed rancorous
debates about the existence of the 3/4-power law and theory
supporting it at several international scientific conferences.
This rancor seems to be driven by conflict between investi-
gators who have different worldviews about how science
should be carried out, particularly in biology [8,13,122,123],
and who appear to be at different stages of coping with the
loss of a universal 3/4-power law.

(c) Bargaining
Some investigators continue to support the existence of a 3/4-
power law by modifying its range of applicability in four
major ways. First, some argue that the 3/4-power law applies
best to large-scale metabolic scaling relationships encompass-
ing diverse species and taxa with a very broad range of body
masses, rather than small-scale relationships within specific
species or taxa [5,6,15,19,32,54]. However, this view cannot
explain why the mean mass-specific metabolic rate of diverse
taxa varies over an unexpectedly limited range (less than 2
orders of magnitude) across approximately 14 orders of mag-
nitude variation in mean body mass [64,124]. Indeed, the
mean mass-specific metabolic rate of tiny bacteria is nearly
the same as that of large mammals.

Second, some claim that the 3/4-power law applies only to
multi-cellular organisms with closed vascular networks, but
not unicellular or multi-cellular organisms without closed vas-
cular networks or any circulatory system at all [125]. This view
is also problematic because organisms with closed vascular
networks (e.g. vertebrate animals and vascular plants) include
only a small portion of all species on earth, thus clearly break-
ing the universality of the law and the theory supporting it. In
addition, b is not fixed at 3/4 in either vertebrates or vascular
plants, but varies considerably between 0.4 or less to 1.2 or
more for both intra- and interspecific scaling relationships
(figure 2), thus further breaking the law. Diversity of
metabolic scaling is pervasive throughout the tree of life.

Third, some posit that a b value of 3/4 represents an opti-
mal central tendency for metabolic scaling [15,19,55,126–129]
and as such represents a useful ‘rule’ rather than a universal
law (e.g. [128], but see [52]). This belief is supported in part
by some surveys of metabolic scaling relationships showing
that the mean value of b is 3/4 or nearly so [4,15,19,127].
However, this view has both empirical and conceptual pro-
blems. First, the much-cited classic survey of Robert Peters
[4] is biased by an overrepresentation of scaling relationships
for vertebrates (72%) and endothermic birds and mammals
(44%), which constitute a very small proportion of all living
species, as well as in other ways [8]. Second, the frequency
histogram presented by Peters shows that 51% of the sampled
scaling relationships have b values outside 0.7–0.8 [8]. The
view that 0.75 is an optimal b value thus implies that numer-
ous species with other ‘deviant’ b values exhibit suboptimal
metabolic scaling. This does not make evolutionary sense
because such species should have gone extinct and been
replaced by species with the optimal 3/4 value. Third,
other surveys have shown that the mean b value (± 95% con-
fidence intervals) for intraspecific metabolic scaling
relationships is significantly more or less than 3/4 for many
major taxa or ecological groups of organisms, such as angios-
perms (1.03 ± 0.06, n = 9 [130,131]), gastropods (0.67 ± 0.05,
n = 29 [66]), arachnids (0.854 ± 0.076, n = 14 [8]), spiders
(0.880 ± 0.036, n = 23 [65]), insects (0.830 ± 0.036, n = 54 [8]),
teleost fishes (0.804 ± 0.030, n = 89 [56]; 0.94 ± 0.08, n = 55
(16 species) [132]), reptiles (0.670 ± 0.030, n = 28 [133]) and
pelagic invertebrates (0.947 ± 0.046, n = 58 [8,46]), as well as
for interspecific relationships including taxonomically hetero-
geneous groups of animals and plants [8,10,25,124]. In short,
b varies substantially, not only for individual species values,
but also for means (central tendencies) of many large groups
of species (approx. 2/3 to 1), often differing significantly
from 3/4, which is clearly not a ‘magic’ number [43].

Fourth, some investigators claim that much of the variation
in b is related to statistical or methodological error [5,6,15,54,
55,128], and accordingly, b tends to converge toward 3/4 for
the most rigorous datasets that have sufficiently large sample
sizes and broad body mass ranges, especially over two
orders of magnitude [55]. However, close inspection of the
graphs (see also [45,134]) used to support this claim actually
shows that as the body mass range of a scaling relationship
expands, b values do not become centred on 0.75, but rather
become increasingly confined within the broad boundaries of
0.5 and 1.0. In fact, a greater proportion of b values are signifi-
cantly different from 0.75 for scaling relationships involving
larger body mass ranges. For example, in an extensive survey
of 642 scaling relationships for 218 animal species, 50.2%
were significantly different from 0.75, which increased to
72.7% and 88.5%, respectively, for relationships with body
mass ranges at or above 2 or 2.5 orders of magnitude [8,25].
Increasing sample size also causes the frequency of rejection
of 3/4-power scaling to increase [8]. Clearly, this is not strong
evidence for an optimal value of 3/4.
(d) Depression
I have talked to colleagues who have given up studying meta-
bolic scaling because they feel that the field has become too
acrimonious and divided among largely self-isolated working
groups, has failed to make substantive progress during the
past few decades and (or) no longer shows promise for devel-
oping a general theory. However, as I point out later, general
theory need not be monolithic and completely deterministic,
but may be multi-faceted and context dependent [13,30].
An ongoing paradigm shift in howmetabolic scaling is studied
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and explained portends many exciting new developments in
this important field of study (see §7).

(e) Acceptance
Since the 1950s, several investigators have accepted the
demise (inadequacy) of the 3/4-power law [8,13,30,36–53,
59–61,63,69,105,106,125,127], but this recognition has not
been widely appreciated by scientists outside the field of
metabolic scaling. Based on the existing literature (figure 1),
many more investigators in the field of metabolic scaling
now reject versus accept a universal 3/4-power law, thus
setting the stage for a new wave of research.

( f ) Meaning
Many biologists are now embracing a fundamentally new
worldview of metabolic scaling as being highly variable
and adaptable, which is revolutionizing the theory, empirical
study and practical application of metabolic scaling relation-
ships, as discussed further next.
6. Paradigm shift in metabolic scaling from
‘Newtonian’ to ‘Darwinian’ approaches

Biological scaling relationships have been traditionally
regarded as physically or developmentally constrained [4,6,10,
19,126,135,136], but recently are increasingly being viewed as
phenotypically plastic and evolutionarily malleable [37,38,43,
53,57,67,77,90,101–106,135–140]. This is particularly true for
metabolic scaling. This change in outlook reflects a paradigm
shift in general scientific world view and methodology from
‘Newtonian’ approaches emphasizing physically constrained
universal laws to ‘Darwinian’ approaches emphasizing adapt-
able, context-dependent diversity (figure 4 [13]; [141]), as has
similarly occurred during the history of other fields of biology.
For example, early theories of organic evolution and embryonic
development emphasized physical forces acting in deter-
ministic, linearly channelled ways according to natural law
(e.g. Lamarckian ‘orthogenesis’ and Haeckel’s ‘Biogenetic
Law’ or ‘Law of Recapitulation’, where ontogeny recapitulates
phylogeny), butwere eventually replaced byDarwinian natural
selection acting in highly divergent, probabilistic, contextual
ways to produce the luxuriantly diverse phylogenies and onto-
genies of life that we actually see [142,143].

The ongoing paradigm shift in the theory of metabolic
scaling involves five fundamental overlapping changes in
focus. Essentially, the primary emphases are shifting from
(i) a single universal law to the diversity of metabolic scaling,
(ii) a single primary deterministic mechanism to multiple,
context-dependent mechanisms, (iii) rigid internal physical
constraints to adaptable phenotypic plasticity and genotypic
evolution, highly responsive to multiple internal (biological)
and external (ecological) causal factors, (iv) centralized to
bounded physical constraints and (v) restrictive effects of
physically constrained resource supply (RS) and metabolic
waste removal across body surfaces and through anatomical
transport networks to flexibly regulated and evolvable effects
of multiple kinds of resource-demand (RD) that support var-
ious vital fitness-related activities.

The shift in focus froman adherence to a single universal law
(in particular the 3/4-power law) to embracing the exuberant
diversity of metabolic scaling has already been described.
Many investigators no longer regard this diversity as being
randomor secondary to a single primary, physically constrained
law, but in itself of primary interest and importance.

Consequently, many investigators have recently formu-
lated several kinds of multi-mechanistic models to explain
the diversity of metabolic scaling (reviewed in [13,30]).
These models are contextual (situational), as they depend
on the biological state of an organism (e.g. its activity level,
growth rate, etc.) or its environmental conditions, both
biotic and abiotic. For example, the ‘metabolic-level bound-
aries hypothesis’ (MLBH) posits that the metabolic scaling
exponent (b) depends on the overall metabolic level of an
organism (as estimated by the vertical elevation of a meta-
bolic scaling relationship), which in turn depends on
activity level, temperature and other biological and ecological
factors in diverse taxa for both intra- and interspecific
relationships [8,25,56,65,69,72,73,78,87]. This hypothesis and
other kinds of ‘contextual multi-modal theory’ include mul-
tiple whole-body size-related mechanisms involving surface
and internal transport fluxes of metabolic resources and
wastes (including heat), the RD of various biological
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processes and (or) the proportional masses of tissues with
different metabolic demands, among other possible mechan-
isms at the biochemical and cellular levels, whose relative
effects on metabolic scaling appear to vary with context
[13,29,30,52,53,78,144].

Each of several possible mechanisms may, by itself, poten-
tially explain some variation in b, but clearly not all of the
systematic effects of various intrinsic and extrinsic factors
that have been observed [13,30]. For example, proponents
of RTN theory suggest that simply altering the geometry
or physics of transport networks can explain much of the
existing diversity of b [16,18,126,145]. However, this expla-
nation has several limitations, including that no direct
causal relationship between variation in the geometry of
RTNs and whole-body metabolic scaling has yet been empiri-
cally demonstrated [13,30], most species lack the closed
vascular systems required by RTN theory [13,20,36], evidence
is accumulating that metabolic scaling is not a simple result
of body size-related limits in oxygen and nutrient supply
to metabolizing cells [27,29,30,98,146], and RTN theory is
incapable of explaining the systematic effects of many kinds
of intrinsic biological factors (e.g. body shape and compo-
sition, activity level, mode of thermoregulation, growth
rate, etc. [13,25,26,28–30,52,53,69,72,73,95]) and extrinsic eco-
logical factors (e.g. temperature, pH, food, predation risk, etc.
[13,30,40,56,57,62,69,81,83,85–88,90,96,97]) on b.

In addition, several investigators now view physical or geo-
metric constraints as acting as boundary limits on the variation
of b, rather than as the cause of any central tendency in b
[8,13,25,42,53,60,64,69,72,82,106,147]. For example, the MLBH
posits that the simple geometric properties of surface area and
volume may help to explain why b often varies between 2/3
and 1 in isomorphic organisms with isometric resource-
demanding processes, and over even larger ranges in organisms
with variable body shapes or allometric scaling of specific
resource-demanding processes [13,25,26,28,30,56,69,87] (see
also [15,82]). Accordingly, high frequencies of b values in the
middle of a frequency distribution for multiple diverse species
do not necessarily follow from a single predominant mechan-
ism, as sometimes thought [4,19,32,126], but may instead be a
mere statistical result of adaptive variation occurring between
two boundary limits (e.g. 2/3 and 1 [25,82]).

Furthermore, although traditional theory focusing on the
surface law or 3/4-power law has emphasized how physical
and geometric constraints on RS and (or) waste removal may
cause b to be 2/3 or 3/4 (figure 5b,c), recently many investi-
gators have identified body size-dependent variation in RD
by various vital biological structures and processes (e.g.
growth, reproduction, locomotion and thermoregulation) as
a major cause of variation in b (figure 5d [8,13,25,29,30,43,
46,52,53,57,69,72–74,77,101,129,130,144,146]). A RD-centred
view has four major advantages over a RS-centred view of
metabolic scaling. First, a simple RS view is contradicted by
growing evidence that RS to metabolizing cells is not necess-
arily body size-related [13,27,29,30,95,146]. Furthermore,
modern advances in biochemistry have shown that the rates
of various metabolic reactions may be controlled by RD,
and not just RS, as traditionally thought (reviewed in
[148]). Second, a RD view can more easily explain the effects
of various biological and ecological factors on b than can a
RS view, which involves internal physical and geometric con-
straints that are presumed to act independently of biological
state and various environmental conditions [8,13,30,98].
For example, a recent study of a freshwater amphipod
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crustacean has shown that isolated spring-dwelling popu-
lations exposed to fish predators have significantly lower,
remarkably similar b values for metabolic rate, growth rate
and gill surface area compared to those not exposed to fish
predators [149,150]. This parallel allometry is more easily
explained as a result of size-selective predation favouring
changes in the ontogeny of resource-demanding growth,
which in turn alters the ontogenetic scaling of respiratory
metabolism and the gill surface area supporting it, rather
than predation having an implausible direct effect on
oxygen-supplying gill surface area, which in turn affects
metabolism and growth [149,150]. In short, predation seems
to have altered metabolic scaling more by a direct effect on
RD than RS. Third, the performance (survival, growth and
reproduction) and ultimately the evolutionary fitness of
an organism is more directly related to RD than to RS
(figure 5). After all, an organism can more easily control
internal RD processes than RS levels in the external environ-
ment. Fourth, multiple lines of evidence show that RS within
an organism is more a function of RD than the reverse
[3,13,20,22,25,43,82,98,151]. For example, increased exercise in
animals can significantly alter the anatomy and functioning
of vascular RS networks in multiple ways [13,43]. Following
a Darwinian worldview, processes related to RS and metabolic
waste (including heat) removal may act as extreme boundary
constraints on b, but within these limits, b may normally be a
function of the RD of various regulated and adaptively evolved
fitness-related activities (figure 5d ).

Lastly, although ‘Newtonian’ law-based approaches to
metabolic scaling theory focus primarily on how organisms
physically uptake, transport and use energy and other
resources to support metabolism, ‘Darwinian’ context-based
approaches additionally focus explicitly on how biological
information, as embodied in various genetic and regulatory
systems, is used to control the uptake, transport and use of
resources (figure 5). Consequently, Darwinian approaches
are more complete, as they fully embrace the two major
aspects of life: i.e. how it processes both resources and infor-
mation. I contend that a realistic, comprehensive view of
metabolic scaling should recognize organisms not just as
resource users, but as ‘informed resource users’ [13]. By
doing so, the flexibility and adaptability of the body mass
scaling of metabolism and associated biological processes
are more easily understood [13,148,150].
7. Conclusion and prospects
Based on the extensive evidence discussed in this review, I do
not believe that it is too outlandish to say that a scientific
revolution in our understanding about metabolic scaling
is occurring. In a scientific sense, investigators studying
metabolic scaling are increasingly appreciating ‘diversity
and inclusion’ by showing more awareness of the empirical
diversity of metabolic scaling patterns, as well as more inclu-
siveness about the kinds of theory used to explain this
diversity. For 25 years, RTN theory that has focused primar-
ily on an ideal, non-existent 3/4-power law has dominated
the metabolic scaling field, but many investigators are now
invoking multiple mechanisms to explain the diversity of
metabolic scaling that actually exists [13,29,30,52,53,98,144].
General theory need not be based on a single primary deter-
ministic mechanism, but may include multiple mechanisms
that act in a context-dependent way [13,30]. Darwinian
approaches to metabolic scaling that embrace multi-mechan-
istic theory are especially appropriate because the theory of
natural selection is itself multi-mechanistic. Indeed, the con-
tingent action of many kinds of genetic and environmental
factors is involved in the adaptive evolution of organisms
by natural selection in diverse local habitats.

New multi-faceted Darwinian approaches focused on
adaptable phenotypic plasticity and evolvability show
much promise for increasing an understanding of the
diversity of metabolic scaling. Recommendations for further
research on little-understood topics include studies examin-
ing (i) how biological regulatory systems at the molecular,
cellular and organismal levels control the phenotypic plas-
ticity of metabolic scaling [13,27,53,77,90,98,148]; (ii) the
quantitative genetic basis for the evolvability of metabolic
scaling relationships [38,77], including genetically based esti-
mates of b [103]; (iii) relationships between the (co)variation
of metabolic rate and body mass and various estimates of
evolutionary fitness associated with growth, reproduction
and survival [38,53,129,152]; (iv) phylogenetic studies of the
evolution of b in relation to diverse intrinsic and extrinsic fac-
tors [67,104–106]; (v) the mechanisms causing microevolution
of b within conspecific populations, and macroevolution of b
across species, including, in particular, multi-variate selection
on metabolic rate, body mass and other related traits
[38,103,144]; (vi) the effects of various physical, developmen-
tal or evolutionary constraints on the boundary limits of b
[8,25,29,60,69,82,147]; and (vii) interactive effects of RS and
RD processes on metabolic scaling, and how they are influ-
enced directly and indirectly by various interactive
biological and ecological factors [13,29,86–88,148]. In short,
holistic system analyses involving both proximate (func-
tional) and ultimate (evolutionary) causal factors operating
at multiple hierarchical levels in many kinds of organisms
and environments are required to elucidate fully why meta-
bolic scaling is so diverse [8,13,29,30,53,78,144]. Incisive
comparative analyses and controlled experiments, including
laboratory and field manipulations of the magnitude of
specific RS and RD processes, and artificial selection target-
ing these specific processes should be especially helpful in
determining their relative contribution to metabolic scaling
relationships under different conditions [8,29,101,102]. An
extraordinarily difficult challenge will be to assess the effects
of various factors on the scaling of metabolic rate measured
under natural, highly variable field conditions, rather than
under artificially controlled conditions in the laboratory, as
is usually done [144]. Other useful recommendations for
further research can be found in [144].

An increased appreciation of the extensive, law-breaking
evidence for variable scaling of metabolism and other associ-
ated biological processes has many important practical
scientific, medical, agricultural, forestry and conservation
implications. For example, comparative studies of variation
in metabolic rate or other related traits can no longer control
for effects of body size by simply assuming that metabolic
rate scales with body mass according to a universal 3/4-
power law, but must now consider complex interactions
between body size and various other factors of interest, as
revealed by significant effects of these factors on b [68].
In addition, the demise of the 3/4-power law is revolutioniz-
ing medical protocols for administering drug dosages to
humans, who exhibit significantly different b values for
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rates of metabolizing drugs based on age and drug type
[13,153,154]. The predictions of many theoretical models in
ecology, forestry and conservation biology may also be
improved by recognizing the diversity of metabolic scaling
[13,23,25,102,127,155].

The big picture is no longer a physically constrained,
deterministically caused 2/3- or 3/4-power scaling law
applying to most or all of life, but rather the pervasive occur-
rence of extensive variability in metabolic scaling at multiple
taxonomic levels, owing to adaptable phenotypic plasticity
and genotypic evolution that are highly sensitive to a variety
of biological and ecological influences that are best under-
stood with multi-mechanistic, context-dependent theory.
In short, metabolic scaling is a ‘many-splendoured thing’
[98, p. 1633].
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