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Purpose: To predict distant metastasis (DM) in patients with borderline resectable pancreatic carcinoma using delta-radiomics
features calculated from contrast-enhanced computed tomography (CECT) and non-CECT images.

Methods and Materials: Among 250 patients who underwent radiation therapy at our institution between February 2013 and
December 2021, 67 patients were deemed eligible. A total of 11 clinical features and 3906 radiomics features were incorporated.
Radiomics features were extracted from CECT and non-CECT images, and the differences between these features were calculated,
resulting in delta-radiomics features. The patients were randomly divided into the training (70%) and test (30%) data sets for model
development and validation. Predictive models were developed with clinical features (clinical model), radiomics features (radiomics
model), and a combination of the abovementioned features (hybrid model) using Fine-Gray regression (FG) and random survival
forest (RSF). Optimal hyperparameters were determined using stratified 5-fold cross-validation. Subsequently, the developed models
were applied to the remaining test data sets, and the patients were divided into high- or low-risk groups based on their risk scores.
Prognostic power was assessed using the concordance index, with 95% ClIs obtained through 2000 bootstrapping iterations. Statistical
significance between the above groups was assessed using Gray’s test.

Results: At a median follow-up period of 23.8 months, 47 (70.1%) patients developed DM. The concordance indices of the FG-based
clinical, radiomics, and hybrid models were 0.548, 0.603, and 0.623, respectively, in the test data set, whereas those of the RSF-based
models were 0.598, 0.680, and 0.727, respectively. The RSF-based model, including delta-radiomics features, significantly divided the
cumulative incidence curves into two risk groups (P < .05). The feature map of the gray-level size-zone matrix showed that the
difference in feature values between CECT and non-CECT images correlated with the incidence of DM.

Conclusions: Delta-radiomics features obtained from CECT and non-CECT images using RSF successfully predict the incidence of
DM in patients with borderline resectable pancreatic carcinoma.
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Introduction

Pancreatic carcinoma (PC) remains the fourth leading
cause of cancer-related deaths worldwide. PC has a poor
prognosis, with a 5-year overall survival rate of less than
10%." In patients with borderline resectable PC (BRPC),
neoadjuvant concurrent chemoradiation therapy followed
by pancreatectomy is a curative therapeutic option.””’
However, many patients with BRPC face early recurrence,
mainly distant metastasis (DM) following pancreatec-
tomy, which is associated with poor overall survival.*
Despite this, there is no consensus regarding the prognos-
tic prediction of DM for BRPC.” Therefore, the availabil-
ity of an effective predictor of DM before or during the
entire treatment would enable the identification of opti-
mal multidisciplinary treatment strategies for BRPC.

The radiomics approach provides quantitative informa-
tion from planning computed tomography (CT) images,’
dose distribution,” and magnetic resonance (MR) images,’
allowing the development of accurate prognostic predic-
tion models for clinical decision-making. Specifically,
delta-radiomics analysis, which employs changes in radio-
mics features in a set of corresponding images, has
attracted increasing research attention.” Delta-radiomics
features, identified using daily onboard volumetric images,
can be used as noninvasive markers to monitor early treat-
ment response during radiation therapy. Previous studies
have reported that delta-radiomics features from daily CT
and MR images predict early changes in treatment
response in patients with resectable or BRPC'’ and those
with locally advanced or BRPC,'' respectively. As a novel
application of the delta-radiomics approach, delta-radio-
mics features extracted from contrast-enhanced CT
(CECT) and non-CECT images have been recently found
to characterize tumor heterogeneity and predict the inva-
siveness of lung adenocarcinoma.'” In patients with
BRPC, the extent of contrast agents’ infiltration into the
tissue/tumor borders may be useful in predicting progno-
sis. However, no previous study has focused on predicting
DM in patients with BRPC using delta-radiomics features
calculated from CECT and non-CECT images.

Hence, in this study, we aimed to investigate the effective-
ness of radiomics features obtained from CECT and non-
CECT images and calculate these differences as delta-radio-
mics features for predicting DM in patients with BRPC.
Toward this goal, we developed a predictive model of DM
with clinical and radiomics features using Fine-Gray regres-
sion (FG) and random survival forest (RSF) techniques.

Methods and Materials

Study design and workflow

This retrospective study was approved by the appropri-
ate institutional review board (approval number: R1446).

Each patient provided written informed consent before
the treatment.

Figure 1 illustrates the workflow of this study. The study
involved 4 processes as follows: (1) data acquisition involv-
ing patient information retrieved from our institution’s
Digital Imaging and Communications in Medicine Radia-
tion Therapy (DICOM-RT) files, including CECT, non-
CECT images, and the gross tumor volume (GTV) struc-
ture; (2) compilation of clinical data, extraction of radio-
mics features from CECT and non-CECT images, and
computation of delta-radiomics features using both images;
(3) development of a predictive model of DM using FG and
RSF with clinical features, converting selected radiomics
features via 5-fold cross-validation after radiomics features
to z scores, which represented the standardized values with
a mean of zero and an SD of 1, and reducing the dimension
of radiomics features; and (4) assessment of the model’s
accuracy using a nomogram by FG, feature importance
analysis by RSF, and feature color maps.

Patients

A total of 250 patients with PC who underwent radia-
tion therapy at our institution between February 2013
and December 2021 were evaluated. The patient selection
flowchart is shown in Fig. E1. Overall, 67 patients with
BRPC were eligible for this study (Fig. 1A). DM was
defined as disease progression to other organs or perito-
neal dissemination and was evaluated until death or the
end of the study period, with patients censored accord-
ingly. Patients lost to follow up were censored.

CT image acquisition

Non-CECT images were acquired during treatment
planning with patients instructed to hold their breath at
end-exhalation, and the images had a slice thickness of
2 mm. CECT images were immediately obtained under
the same conditions. According to our hospital protocol,
CECT images were acquired 40 seconds after intravenous
contrast media administration at a rate of 2 mL/s.

After delineating the GTV, including the primary
tumor and metastatic lymph nodes, by at least 2 board-
certified radiation oncologists, the DICOM-RT files con-
sisting of CECT and non-CECT images and structure of
the GTVs were exported. The patients were treated with
end-exhalation breath-holding at a prescribed dose of 42
Gy in 15 fractions. The details of the treatment strategy
are summarized in our previous report."

Feature collection and extraction

Before developing predictive models for DM, we col-
lected clinical features and extracted radiomics features
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Figure 1 Study workflow.

Abbreviations: BRPC = borderline resectable pancreatic carcinoma; CA19-9 = carbohydrate antigen 19-9; CC = correlation coefficient; CECT = contrast-
enhanced computed tomography; DICOM = Digital Imaging and Communications in Medicine Radiation Therapy; DM = distant metastasis;
fcecr = value of radiomics features extracted from CECT images; fyeira = subtracting the feature values based on CECT and non-CECT images; fyon-
cecr = value of radiomics features extracted from non-CECT images; FG = Fine-Gray regression; GTV = gross tumor volume; LASSO = least absolute
shrinkage and selection operator; NCCN = National Comprehensive Cancer Network; PS = performance status; RSF = random survival forest.
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from CECT and non-CECT images (Fig. 1B). The clinical
features included age, sex, performance status score, carbo-
hydrate antigen 19-9 level, National Comprehensive Cancer
Network guideline classification,* tumor location/volume,
selection of induction/concurrent/maintenance chemother-
apy, and surgical resection. For radiomics feature extraction,
the DICOM-RT files were initially converted to nearly raw
raster data files using a 3-dimensional slicer (version 4.10.2;
Kitware Inc).”” Next, 3906 radiomics features, comprising
both CECT and non—CECT-based radiomics features, as
well as delta-radiomics features, were extracted using the
PyRadiomics software.'® Delta-radiomics features (fyeizq)
were calculated as the difference in feature values between
CECT and non-CECT images as follows

Saetta = feeer — fron—cecr, (1)

where fcecr and fuon_cecr denote the values of radiomics
features extracted from the CECT and non-CECT images,
respectively.'”

For each category, the 1302 radiomics features con-
sisted of 18 first-order-based, 75 texture-based, 465
(93 x 5) Laplacian of Gaussian (LoG)-based, and 744
(93 x 8) wavelet-based features (Table E1). The extracted
features, such as the first-order, gray-level co-occurrence
matrix, gray-level dependence matrix, gray-level run-
length matrix, gray-level size-zone matrix (GLSZM), and
neighboring-gray-tone difference matrix, were defined
using the image biomarker standardization initiative.'”
The images underwent smoothing using a Gaussian filter,
followed by convolution with a Laplacian filter to enhance
the edges. The filter width was determined by sigma val-
ues of 0.5, 1.0, 1.5, 2.0, and 2.5 mm. The wavelet filters
were based on the following 8 decompositions in the left-
right, anterior-posterior, and superior-inferior directions:
LLL, LLH, LHL, LHH, HLL, HHL, HLH, and HHH. The
voxel of interest was defined as the GTV and the following
parameters were set: a resampled voxel size of 1 x 1 x 1
mm? and a bin width of 25 Hounsfield units.'®

Feature selection and model development

This study was categorized as “Type 2a: Random split-
sample development and validation” in the Transparent
Reporting of a multivariable prediction model for Individ-
ual Prognosis Or Diagnosis statement.'® Before develop-
ing the predictive models for DM, all patients were
randomly divided into the training (70%) and test (30%)
data sets according to previous studies (Fig. 1C).”"” The
radiomics features in the training data set were converted
to z scores to assign different variables to the same scale.
The fcecrs fron—cect» and fgelrq Were normalized as follows

7f_fmean
fi= e ()

where f; is the converted feature value; f is the fcgcr,
fnon—cect> and fyeitas fmean is the mean value of each fea-
ture type; and fsp is the SD value of the feature type.
Then, the features in the test data set were normalized
based on the mean and SD of the training data set. Subse-
quently, the feature dimension was reduced using Spear-
man’s correlation coefficient (CC) based on the
redundancy between radiomics features.”” When a radio-
mics feature exhibited a CC > 0.80 with other features,
the one with a greater number of remaining correlated
features was eliminated.””” Then, the least absolute
shrinkage and selection operator (LASSO) was applied
based on the regularization between the remaining radio-
mics features and clinical outcomes.”’ The hyperpara-
meter 4 in LASSO was optimized to minimize the cost
function as the feature selection function.”'

A total of 22 predictive models were developed as fol-
lows: with clinical features (clinical model); with delta-,
CECT-, and non—CECT-based radiomics features (radio-
mics,; model); with delta-based radiomics features (radio-
mics, model); with CECT- and non—CECT-based
radiomics features (radiomicscrcr/mon-cecr model); with
CECT-based radiomics features (radiomicscgcr model);
with non—CECT-based radiomics features (radiomics,,,,,
cectr model); and with the combination of the abovemen-
tioned clinical and radiomics features (hybrid,;, hybrid-
delta> hybridcect/mon-cecrs hybridceers and hybrid,on.cecr
model) using FG** and RSF*’ considering total death as
the competing risk. In developing predictive models for
BRPC, DM was set as the event of interest, and competing
risks were considered using time-to-event data.”* This is
because competing risks can lead to an overestimation of
risks associated with the primary event of interest. The
optimal hyperparameters were determined using a strati-
fied 5-fold cross-validation with a training data set for the
RSF-based model. Subsequently, the 22 developed models
were applied to the remaining test data sets, and the
patients were divided into high- and low-risk groups based
on their risk scores. The sum of the cumulative hazard
functions with FG and RSF was calculated as patient-spe-
cific scores (Fig. 1D). The nomogram from FG and feature
importance from RSF were calculated to interpret the
meaning of radiomics features. The nomogram represents
the graphical prediction score of the developed models
based on traditional statistical methods, such as the FG
algorithm.”” In addition, the feature importance of the
RSF model, which was identified by noizing the variables,
indicated its contribution to model development.”’ Feature
color maps were additionally generated using the voxel-
based extraction function in PyRadiomics.'®

Statistical analyses

The prognostic power of cumulative incidence curves
was evaluated according to the concordance index (C-
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index) instead of the area under the receiver operating
characteristic curve to consider the time-dependent
model performance. The 95% ClIs were calculated using
2000 bootstrapping iterations. Additionally, the statistical
significance between the high- and low-risk groups was
evaluated using Gray’s test.”’ An appropriate test was
determined based on normality using the Shapiro-Wilk
test. All statistical analyses were performed using R soft-
ware version 4.3.0 (R Software for Statistical Comput-
ing).”” Statistical significance was set at P < .05.

Results

Patient characteristics and outcomes

The median follow-up durations were 23.8 (range, 6.0-
105.9), 23.4 (range, 6.4-105.9), and 30.9 (range, 6.0-100.8)
months in the entire training and test data sets, respec-
tively (P = .462, independent sample ¢ test). In each data
set, 47.8%, 45.7%, and 52.4% of patients, respectively,
were alive at the time of analysis (P = .793, Pearson con-
tingency x” tests). The incidence of DM after treatment in
each data set was 70.1%, 69.6%, and 71.4%, respectively
(P = .999, Pearson contingency x> tests). The patient
characteristics are summarized in Table 1.

Feature selection

Based on the Spearman CC, 397 of 3906 (10.2%), 276
of 1302 (21.2%), 146 of 2604 (5.6%), 82 of 1302 (6.3%),
and 78 of 1302 features (6.0%) were not redundant with
the other features for the radiomics,; radiomicsg.,,
radiomicScrct/mon-cEcn radiomicscger, and radiomics,,,,,.
cecr models (CC < 0.80), respectively. In adaptive
LASSO, the remaining features were reduced to 8 of 3906
(0.20%), 10 of 1302 (0.77%), 8 of 2604 (0.31%), 10 of 1302
(0.77%), and 9 of 1302 (0.69%) for the radiomics,y, radio-
MicSgerq radiomicScrcr/mon-cecr  radiomicscgers  and
radiomics,,,,,.crcr models, respectively.

Performance of the predictive model

For the training data sets, all FG- and RSF-based mod-
els showed significant differences in predicting the inci-
dence of DM (Figs. E2 and E3, P < .05). Figures 2 and 3
show the curves for the test data sets. The C-indices of all
RSF-based models were higher than those of the FG-based
models. No FG-based models showed a significant predic-
tion for DM (P > .05). In contrast, the RSF-based hybrid-
aip hybridge,, radiomics,;, and radiomics,., models
significantly divided the cumulative incidence curves of

Table 1 Patient characteristics
Total Train data set Test data set

Characteristics Description (N=67) (n=46) (n=21) P value
Age (y)"' Median (range) 68 (46-85) 69 (46-78) 68 (53-85) .806
Sex* Male/female 38/29 29/17 9/12 184
Performance status* 0/1 47/20 29/17 18/3 .085
NCCN classification* BR-A/BR-PV/BR-A (PV) 34/10/23 24/7/15 10/3/8 935
Tumor - - - -
Location* Head-uncus/body-tail 44/23 31/15 13/8 783

Volume (cm®)’

CA19-9 (U/mL)’

Median (range)
Median (range)

Chemotherapy

Induction* Gem or S-1/FOLFIRINOX or Gem + nabPTX 49/18 32/14 17/4 .388
Concurrent* Gem/S-1 64/3 44/2 20/1 999
Adjuvant* Gem or S-1/none 42/25 28/18 14/7 787
Surgical resection*  With/without 46/21 31/15 15/6 .785

27.0 (14.0-50.0) 27.0 (14.0-50.0)  25.0 (16.0-42.0) .976
96.6 (0.0-4017.0) 105.97 (0.0-4017.0) 75.7 (0.6-1325.0) .770

p < .05 indicates significant differences in the train and test data sets.

an independent sample  test.

Abbreviations: BR-A = borderline resectable with artery involvement; BR-A (PV) = borderline resectable with artery and portal vein involvement;
BR-PV = borderline resectable with portal vein involvement; CA19-9 = carbohydrate antigen 19-9; Gem = gemcitabine; nabPTX = nab-paclitaxel;
NCCN = National Comprehensive Cancer Network; S-1 = a combined drug of tegafur, gimestat, and otastat potassium.

*The sex, performance status, NCCN classification, tumor location, chemotherapy schedule, and surgical resection included the percentage or num-
ber of patients; the corresponding p values were determined using Pearson contingency x” tests.

1The age, tumor volume, and CA19-9 included the median value (range, minimum to maximum); the corresponding p value was determined using
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divided into high- and low-risk groups based on their risk scores calculated from the training data sets.

Abbreviations: C-index = concordance index.

DM (P < .05). The C-indices of the 3 radiomics and 3
hybrid models based on RSF were higher than that of the
clinical model (C-index, 0.598 [95% CI, 0.532-0.746]).
The model with the best performance was the hybrid,
model (C-index, 0.727 [95% CI, 0.654-0.851]), followed
by the hybrid ., model (C-index, 0.693 [95% CI, 0.628-
0.815]). The performance metrics of developed models
are summarized in Table E2 for the training data set and
Table E3 for the test data set.

Feature interpretation for DM prediction

Figure 4 shows an example of a nomogram from the
FG-based hybrid,; model and the feature importance
from the RSF-based hybrid,; model. The clinical and
radiomics,; models are illustrated in Figs. E4 and E5. The
nomogram showed that compared with clinical features, 3
radiomics features had a stronger influence on the predic-
tive ability for DM in the FG-based hybrid,; model. For
the RSF-based feature importance, the “Delta LoG
(sigma = 0.5 mm) GLSZM size zone nonuniformity” fea-
ture showed higher importance than the 11 clinical fea-
tures, such as the surgical resection and adjuvant
chemotherapy in the hybrid,; model.

Figure 5 shows an example of a feature color map gener-
ated with “Delta LoG (sigma = 0.5 mm) GLSZM size zone
nonuniformity” for patients with/without DM. The high-
risk patients showed high values in the peripheral region of
the tumors on CECT images, while the low-risk patients
yielded visually similar feature maps on CECT and non-
CECT images. In a representative patient with DM, the
value of the above feature was higher compared with that of
a representative patient without DM (52.6 vs 10.3).

Discussion

Previous studies on PC have primarily focused on pre-
dicting early treatment response using daily CT'’ and MR
images,'' as well as predicting lymph node metastases
using CECT-based radiomics features.”>*” To our knowl-
edge, no studies have explored delta-radiomics analysis
focusing on CECT and non-CECT images for predicting
DM in BRPC.

In this study, we developed predictive models for DM
in patients with BRPC using radiomics features extracted
from CECT and non-CECT images, as well as delta-radio-
mics features calculated from both image types. The mod-
els showed that delta-radiomics features improved the
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predictive ability for DM compared with clinical features
by quantifying the extent of contrast agents’ infiltration.
Further, the predictive performance of radiomics,,y, radio-
MicSeirq> hybrid,y, and hybrid.,, including delta-radio-
mics features, outperformed those without them,
indicating that delta-radiomics features are more useful
than a combination of radiomics features extracted solely
from CECT and non-CECT images for predicting DM in
patients with BRPC. These features can serve as noninva-
sive markers to determine optimal treatment strategies
based on risk scores calculated from CECT and non-
CECT images combined with clinical features, such as
chemotherapy and surgical resection. Our findings pro-
vide a novel perspective for predicting DM, and the delta-
radiomics approach has potential as a supporting strategy
for clinical decision-making and individualizing radiation
therapy in patients with BRPC.

The high accuracy of our models demonstrates the
potential of our approach in prognostic prediction using
delta-radiomics features from CECT and non-CECT
images. Liu et al’® analyzed the incidence of DM in
patients with resectable PC and identified clinical features,
such as age, sex, tumor size, alanine aminotransferase
level, and carbohydrate antigen 19-9 level. They evaluated

the model’s performance using the receiver operating
characteristic curve (area under the curve, 0.85). In addi-
tion, Shi et al*’ reported that a radiomics-based model
combined with clinicopathologic characteristics and body
composition measures could predict postresection sur-
vival in pancreatic ductal adenocarcinoma. They found
that the radiomics model successfully divided the patients
into high- and low-risk groups for predicting local recur-
rence and DM (P = .026). However, no previous study
has analyzed the incidence of DM in BRPC using cumula-
tive incidence curves and the C-index, which considers
competing risks. Thus, it is not easy to compare our
results directly with those of previous studies. A previous
study predicted the incidence of DM using RSF-based
models comprising CT-based radiomics features in
patients with early-stage non-small cell lung cancer
(NSCLC).”" Although the incidence of DM differs
between NSCLC and BRPC (15.6% vs 70.1%) cases, the
C-index of our model was higher than that of previous
studies (maximum C-index, 0.727 [95% CI, 0.654-0.851]
vs 0.680 [95% CI, 0.550-0.810]). Addressing the challenge
of imbalanced data sets is crucial to avoid bias toward the
majority class. While high C-index values may indicate
good predictive performance, they may not necessarily
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Figure 4 Example of (A) a nomogram from Fine-Gray regression and (B) feature importance from random survival forest in

the hybrid,; model. Negative values of feature importance indicate a random fluctuation.
Note: Wavelet filters are based on the following 8 decompositions in the left-right, anterior-posterior, and superior-inferior directions: LLL, LLH, LHL,

LHH, HLL, HHL, HLH, and HHH.

Abbreviations: BR-A = borderline resectable with artery involvement; BR-A (PV) = borderline resectable with both artery and portal vein involvement;
BR-PV = borderline resectable with portal vein involvement; CA19-9 = carbohydrate antigen 19-9; CECT = contrast-enhanced computed tomography;
Gem = gemcitabine; GLCM = gray-level co-occurrence matrix; GLSZM = gray-level size-zone matrix; LoG = Laplacian of Gaussian; nabPTX = nab-pacli-
taxel; NCCN = National Comprehensive Cancer Network; S-1 = combined drug of tegafur, gimestat, and otastat potassium.

reflect high precision and recall because of this imbalance.
In the current study, weighted average recall, precision,
and f1 score were calculated to properly assess the predic-
tive performance of imbalanced data sets. The results
indicated that the hybrid,; model with RSF accurately
predicted the incidence of DM in 9 of 10 (90.0%) and 6 of
11 patients (54.5%) in the test data set in the high- and
low-risk groups, respectively (P = .012). Despite the data

set’s imbalance, with a DM incidence of 70.1%, our
approach successfully stratified patients into high- and
low-risk groups using delta-radiomics features. Hence, to
effectively predict the future incidence of DM, generating
cumulative incidence curves using appropriate evaluation
metrics and statistical tests is essential.

Our results showed that the RSF-based predictive
model outperformed the FG-based model. A previous
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Figure 5 Example of a feature color map, contrast-enhanced computed tomography (CECT) images, and non-CECT images in
patients with and without distant metastasis (DM). (A, C) The cases of a high-risk patient who has developed DM at 90 days
and (B, D) low-risk patients who are censored without DM at 1200 days after the start of radiation therapy are presented. The
median risk score for the hybrid,; model with random survival forest was 17.9.

study reported that the predictive performance of the RSF
model was superior to that of the FG model when a com-
plex relationship existed between the outcome and predic-
tor variables.”’ Although RSF can be used to develop
predictive models with high accuracy, hyperparameter
optimization is essential for achieving maximum perfor-
mance with high robustness.”’ Therefore, before develop-
ing RSF-based models using radiomics features, the
appropriate study designs and methodologies should be
selected.

Our results also indicated that clinical models success-
fully predicted early DM development within 3 months in
the high-risk group compared with the radiomics model.
One possible reason for this is that the treatment strategy
for BRPC sometimes did not include surgical resection or
maintenance chemotherapy because of the early disease
progression, including DM."” These 2 clinical features
have been identified as important features in RSF-based
clinical and hybrid,; models. However, the radiomics fea-
tures predicted the development of DM even after 3
months, and the hybrid model combining them with clin-
ical features successfully partitioned the cumulative inci-
dence curve into high- and low-risk groups at all time
points. Therefore, the prediction of DM with clinical and
radiomics features allows it to detect DM and change the
treatment strategy earlier in patients with BRPC undergo-
ing multimodality therapy.

The feature importance determined in the RSF-based
model clarifies the contribution of radiomics features to
model development. The hybrid,; model with RSF, which

had the best predictive ability, showed that the “Delta
LoG (sigma = 0.5 mm) GLSZM size zone nonuniformity”
feature was the most important feature for predicting DM
of BRPC. Although the target organs and imaging modali-
ties differ, the usefulness of GLSZM features has been
reported.’”"” Simpson et al'' found that the delta-based
“GLSZM large zones low gray-level emphasis” features
contributed to the predictive ability for treatment
response based on MR images in patients with locally
advanced or BRPC. Zhu et al'’ showed that when devel-
oping models to predict DM in esophageal cancer, the
important CT-based radiomics features include wavelet
filter-based GLSZM features. The types of selected radio-
mics features are partially consistent with those of previ-
ous studies; however, the interpretation of the features
has not been discussed, making comparison with our
results difficult.

For the implications of the abovementioned radiomics
features, our study showed that the “Delta LoG
(sigma = 0.5 mm) GLSZM size zone nonuniformity” fea-
ture represented the differences in the distribution of con-
trast agents within the tumor on feature maps. GLSZM
quantifies the areas of neighboring pixels with the same
gray level in the voxel of interest.'” Given that the tumor
periphery of the high-risk patient exhibited contiguously
high values on CECT-based feature maps, the difference
between CECT and non-CECT images was enhanced by
the LoG filter, which contributed to the highly accurate
prediction of DM. However, in a previous multi-institu-
tional phantom study, using LoG filters reduced the
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reproducibility of radiomics features from onboard volu-
metric images under different imaging conditions.’’
Thus, after exploring the acceptability of the selected
radiomics features, future studies should investigate
reproducible radiomics features with high accuracy for
prognostic prediction.

Our study focused on CECT and non-CECT images
and their differences in identifying radiomics features
within the GTVs. Meanwhile, previous studies have
reported the effectiveness of radiomics features extracted
from MR images for prognostic prediction in PC.'"*
Although MR images provide superior soft-tissue contrast
to cone beam CT (CBCT) images, Ogawa et al’” demon-
strated the possibility of delineating GTVs on kilovoltage
CBCT images obtained during online adaptive radiation
therapy. Therefore, the use of delta-radiomics features
from onboard volumetric images, such as those from MR
and CBCT, may improve the predictive ability for DM in
patients with PC.

This study had some limitations that should be consid-
ered when interpreting the findings. First, the study had a
retrospective design, included a limited sample size, and
was conducted at a single institution. This may have
caused potential bias in patient characteristics and out-
comes. Simultaneously, special attention was required in
the model development, including the feature selection by
a linear model and hyperparameter optimization, to avoid
overfitting the training data set.”' It was challenging to
obtain a sufficient number of patients with PC, as previ-
ous studies included only 90'® and 30 patients.""
Although the number of eligible patients in this study was
not significantly different from that of other studies, our
findings should be externally validated using a large mul-
ticenter cohort. However, we also established the accuracy
of the proposed results by calculating the 95% CI using
bootstrap iterations. Second, similar to previous studies,
the current study did not include daily onboard volumet-
ric images.'”"" The addition of the above images, such as
CBCT images, to the model development may yield dif-
ferent predictive results. Regardless of the abovemen-
tioned limitations, our findings indicate that delta-
radiomics analysis focused on planning CECT and non-
CECT images has the potential to predict DM with high
accuracy. Therefore, this study could provide a perspec-
tive for improving the clinical treatment strategy. Third,
we only considered some treatment processes, such as
chemotherapy and surgical resection. However, the dura-
tion and amount of chemotherapy and details of surgical
resection are highly dependent on the treatment protocol
or performance status of patients, making it difficult to
include these details in the current study owing to the lim-
ited sample size. Fourth, the study did not investigate the
differences in radiomics features related to the contrast
agents used. Although Hou et al** reported that radiomics
features from CECT images can predict the treatment
response in esophageal carcinoma, and Kakino et al®

showed that using a contrast agent reduced the reproduc-
ibility of radiomics features in patients with NSCLC.
However, the protocol for CECT depends on patient char-
acteristics. Therefore, it is essential to investigate the
effects of different imaging protocols on radiomics fea-
tures to perform a standardized radiomics analysis of
CECT images.

Conclusions

The present study developed predictive models for
DM using clinical and radiomics features extracted
from CECT and non-CECT images in patients with
BRPC. When radiomics features were combined with
clinical features, the RSF-based model showed better
predictive performance for DM than the FG-based
model. Specifically, a model that included delta-radio-
mics with RSF was successfully used to divide the
cumulative incidence curves of DM and identify high-
and low-risk patients based on their risk scores. Fur-
thermore, after quantifying the distribution of contrast
regions within the tumor using delta-radiomics fea-
tures, the radiomics-based feature maps calculated
from CECT and non-CECT images correlated with the
incidence of DM. This novel methodology of delta-
radiomics for predicting DM in patients with BRPC
can be clinically significant by integrating the interpre-
tation of radiomics features. Furthermore, our delta-
radiomics approach may help individualize clinical
decision-making for neoadjuvant therapy in patients
with BRPC.
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