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Intra- versus intergroup variance in collective behavior
D. Knebel1,2, A. Ayali1,3*, M. Guershon1,4, G. Ariel2*

Animal collective motion arises from the intricate interactions between the natural variability among individuals, and
the homogenizing effect of the group, working to generate synchronization and maintain coherence. Here, these
interactions were studied using marching locust nymphs under controlled laboratory settings. A novel experimental
approach compared single animals, small groups, and virtual groups composed of randomly shuffled real members.
We found that the locust groups developed unique, group-specific behavioral characteristics, reflected in large in-
tergroup and small intragroup variance (compared with the shuffled groups). Behavioral features that differed be-
tween single animals and groups, but not between group types, were classified as essential for swarm formation.
Comparison with Markov chain models showed that individual tendencies and the interaction network among
animals dictate the group characteristics. Deciphering the bidirectional interactions between individual and group
properties is essential for understanding the swarm phenomenon and predicting large-scale swarm behaviors.
INTRODUCTION
Cooperative group activity requires a degree of consensus and synchro-
nization. In other words, it is expected that collectivity will result in
some homogenization among the individuals forming the group. At
the same time, the properties of a coordinated group should somehow
be a function of the different traits of the individuals composing it.
These general statements bring about ample open questions in biology
(1–4), even for simple organisms such as insects in a swarm (5, 6): How
do the characteristics of the individual’s behavior differ when alone or
when in a group? Which traits of the individual are adjusted for it to
become part of the synchronized group, which are retained unchanged,
and how are they manifested within the swarm? Do the traits of the
individual support or interfere with collectivity?

In response to these questions, much research has been devoted to
understanding the effect of variability among individuals on the group’s
collective behavior, both experimentally—ranging from bacteria to pri-
mates (7–16)—and theoretically (17–23). See (24–26) for recent reviews
and (27, 28) for investigation of heterogeneity in the context of swarm
robotics. Part of the interindividual variability has been explained in
terms of animal personality—the consistent or context-independent
variations in animal behavior [e.g., (29–31)]. Recently, it has been sug-
gested that the inherent differences among members of the group can
translate into distinctive group characters (9, 31). Namely, different
groups composed of individuals with distinctive featuresmay adopt dif-
ferent collective behaviors. However, the interactions between variabil-
ity in specific aspects of the individuals’ behavior and group-level
processes are complex and, moreover, bidirectional, where each level
affects and amplifies the other. This leads to a practical difficulty in
distinguishing between the inherent variability of the individuals’ features
and the results of their interactionwith the crowd.Accordingly, one of the
main goals of the present studywas to develop a generalmethodology for
addressing these issues and its application to experiments.

Locusts offer a quintessential example of animal coordinated collec-
tive behavior and are therefore exceptionally suited for study of the
above questions: Swarms of marching locusts can comprise millions
of individuals, aligning or synchronizing their movement across
hundreds of square kilometers. Moreover, marching locusts will also
demonstrate their distinctive collective behavior under controlled labo-
ratory conditions (4, 6, 32–34) that can partially be reproduced in com-
puter simulations. Although much studied, our knowledge of the
complex dynamics and the mechanisms underlying the different as-
pects of locust collective behavior is far from complete [e.g., (6, 35)].
Moreover, locusts constitute amajor threat to human agriculture, which
adds to this model organism’s particular practical importance.

Here, we used marching locusts under controlled laboratory
conditions to study the interdependency between the behavior of indi-
viduals and that of the group. To this end, we studied small groups of
hoppers, individually tagged with special barcodes, enabling their
consistent identification and tracking. The statistics of the behavior of
the groups were compared with those of individual locusts introduced
singly into the experimental arena and with those of noninteracting,
shuffled swarms. The latter were generated by superimposing the tra-
jectories of computer-shuffled real locusts from the experimental
groups. These comparisons indicated those behavioral aspects of the in-
dividuals that are conserved among groups and necessary for the for-
mation of collective motion. Other individual features, on the other
hand, undergo a homogenizing effect by the group but significantly dif-
fer between groups, thus generating distinct group characteristics.

Last, using computer simulations, we established that individual
differences in social behavioral tendencies can explain the observed
variability among groups. In other words, the observed individual
heterogeneity leads to the empirical intergroup variance. We applied
a simple Markov chain model, which demonstrated that our findings
can indeed be explained as resulting from groups composed of
unique combinations of locusts that are differing only in their social-
behavioral tendencies.
RESULTS
Locusts were individually tagged with barcodes, introduced into a
ring-shaped arena (Fig. 1A), either singly (n = 20) or in groups of
10 (n = 20), and monitored by a video camera for 110 min. After
retrieving the position coordinates of each locust in each frame
throughout the experiments, a range of kinematic movement param-
eters and collectivity measures was computed for each group (see
Materials and methods for details). Additionally, 20 fictive, shuffled
groups were created from the experimental groups by shuffling the
locusts’ trajectories across the experiments, such that each locust ap-
peared in one shuffled group only (Fig. 1B). This enabled the same
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parameters and measures to be calculated also for the shuffled groups,
serving as control.

Quantifying collective motion
We first wanted to confirm that the small groups of 10 locusts were
moving collectively under our experimental conditions. Collective mo-
tion is commonly quantified by measuring the order parameter (36).
Here, we define the order parameter as the average direction of moving
animals, where the direction is taken as +1 for counterclockwise (CCW)
movement, −1 for the clockwise (CW) movement, and 0 for standing.
Averaging over all frames in a single experiment (after taking the abso-
lute value), the order parameter could vary between 0 (no preferred di-
rection) and 1 (all moving animals advance in the same direction).

To be precise, denote bywi(t) the direction in which animal imoves
at time t

fðtÞ ¼ 1
Nf ðtÞ ∑

N

i¼1
wiðtÞ; f ðtÞ ¼ 1

N
∑
N

i¼1
jwiðtÞj

where N is the number of walking animals.
As expected for coordinated groups, the order parameter of the

real groups was significantly higher than that of the shuffled groups
(Fig. 2A; Wilcoxon signed-rank test, P < 0.001).

The order parameter is insufficient for differentiating true collectiv-
ity from that of a common response of independent individuals to an
external stimulus [see also (37)]. To this end, we introduced a new
parameter of collectivity, which calculates the mean (over all
experiments) of the variance in individual directions in each frame,
scaled by the variance expected for independent animals
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where V(t) is the variance in wi(t) at frame t (among moving animals)
and p is the empirical probability to walk in a CCW direction through-
out the experiments (0.46). Therefore, 4p(1 − p) is the variance of a
Bernulli random variable with mean p. The average scaled variance
in the direction of walking animals is subtracted from 1, and the abso-
lute value is taken. Thus, we obtain a new scalar parameter, termed the
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collectivity parameter, which varies from 0 (independent animals) to
1 (a collective swarm). This measure is invariant with respect to a pos-
sible bias in the CW/CCWdirections (in our experiments, the probabil-
ity of walking in a CCW direction was found to be p = 0.46). Our real
groups were found to have a significantly higher collectivity parameter
than the shuffled ones (Fig. 2B; Wilcoxon signed-rank test, P < 0.001).
Another benefit of estimating the collectivity parameter is its insensitivity
to fluctuations, which may cause some low, temporary order that is not
due to interactions between animals. This is perhaps best emphasized by
the almost perfect correlation shown by the collectivity and order param-
eters in the real groups (r = 0.91, Spearman’s correlation, P < 0.001),
compared with the non-significant correlation in the shuffled groups (fig.
S1A). Hence, the collectivity parameter is instrumental in distinguishing
between the real animal-animal interactions and statistical fluctuations.

Finally, we measured the spatial distribution or the average distance
among all animals in each frame, termed the spread measure. The
spread measure (for standing and walking insects together) was signif-
icantly smaller for the real groups than for the shuffled ones (Fig. 2C;
Wilcoxon signed-rank test, P < 0.001 for each), indicating the insects’
tendency to aggregate (see fig. S2 for results separating standing and
walking animals).
Fig. 1. Experimental procedure. (A) A single locust or a group of 10 locusts was introduced into a ring-shaped arena, with a barcode tag attached to each animal’s
pronotum. Video monitoring and offline analysis enabled following the position of all locusts accurately and consistently throughout the experiment. Photo credit:
Daniel Knebel, Tel Aviv University. (B) Data comprised three types: single animals in the arena (singles), groups of 10 animals in the arena (real groups), and fictive
groups constructed by shuffling the data of the real groups (shuffled groups).
Fig. 2. Collective behavior in groups of 10 locusts. Comparison of collectivity
measures between the real and the shuffled groups throughout the experiments.
(A) Average order parameter. (B) Collectivity parameter. (C) Spread measure. Each
point represents data from a single experiment (n = 20). ***P < 0.001.
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Together, the three parameters tested (order, collectivity, and spread;
Fig. 2) confirm that 10 locusts in the arena are sufficient for the forma-
tion of true collective behavior, which is manifested in collective and
ordered marching, as well as in a tendency to aggregate.

The effect of the group on the individual
After establishing that our groups indeedmoved collectively, we sought
to understand inwhat respect the social context influences the dynamics
of the individuals. We began with relatively simple kinematic measures
and compared the small experimental groups with single animals in the
same arena.

The fraction of time spent walking, the speed while walking, and the
average duration of walking bouts did not significantly differ between
the single and the grouped animals (Fig. 3, A to C, respectively). The
average pause duration, however, was significantly shorter in the
grouped animals (Fig. 3D;Wilcoxon signed-rank test, P < 0.05). No sig-
nificant differences were found in the variances of these parameters be-
tween the two experimental conditions: i.e., while inmost aspects locust
walking was similar whether alone or in a group, among the examined
parameters, pause duration was the only feature found to be critical to
the formation of collectivemotion (this does not exclude possible effects
of interactions among other measured or unmeasured parameters).

Individual differences within the group
We were interested to learn whether individuals in groups adapt their
behavior to others (i.e., retaining the overall statistics of their kinemat-
ics). Figure 4A presents the average kinematic measurements in each
experiment. As expected, there was no difference in the means of the
real and shuffled groups, because, overall, they comprised the exact
same individuals and hence the same kinematic measurements, only
shuffled. Nonetheless, the variance within the real groups (intragroup
variance) was significantly smaller than that within the shuffled ones:
the interquartile range (IQR) measured within the real groups across
the animals was significantly smaller than that of the shuffled groups,
in all kinematic parameters examined (Fig. 4B; fraction of time spent
walking, walking speed, walking bout duration, and pause duration;
Wilcoxon signed-rank test, P < 0.01, P < 0.001, P < 0.05, and P <
0.05, respectively). This indicates that in real interacting groups, there
is a homogenizing effect on the group members.
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Intergroup variance
The demonstrated homogenizing effect of the group does not necessar-
ily dictate that different groups behave similarly. To examine this, we
compared the variance in the kinematics of the real and shuffled groups:
If all the groups of locusts were similar, then the differences should not
be significant. We found that the variance in the fraction of time spent
walking, the walking speed, and the average walking duration was sig-
nificantly greater for the real groups compared with the shuffled ones
(intergroup variance; Fig. 4, Aa toAc; Brown-Forsythe test,P < 0.05,P<
0.01, and P < 0.05, respectively). Namely, differences between groups
were averaged out in the shuffled groups. These findings thus indicate
that each real group adopts its own unique characteristics. The average
pause duration was again an exception, as there was no significant
difference between the variance of the real and the shuffled groups
(Fig. 4B). Therefore, while some kinematic quantities can endow each
groupwith unique, distinguishable characteristics, others (i.e., pause du-
ration and the collectivity parameters) were found to be consistent
among groups.

The effect of the individual’s traits on the group character
Since each group of locusts adopted a unique character, the individual
differences among its members, even after the group homogenizing ef-
fect (Fig. 4, Ba to Bd), should somewhat determine its nature. To dem-
onstrate a possible interdependency of the group’s unique character and
the traits of the individuals composing it, we sought to quantify an in-
dividual feature or tendency related to the social context that is
consistent throughout each experiment.

On the basis of our previous work (4, 34), we hypothesized that the
number of individuals walking in the arena is a key stimulus, promoting
marching. Accordingly, we calculated the conditional probability of
each locust to walk as a function of the number of other walking locusts
in the arena (see the example in Fig. 5A).We found that the probability
of a locust to walk when five or more other locusts were walking was
rather consistent (Fig. 5B), with a correlation of 0.79 between the two
halves of the experiment (Spearman’s correlation, P < 0.001; compare
with the non-significant correlation obtained with less than five other
walkers, as shown in fig. S3C). This probability (averaged for each ex-
periment) was found to have a high correlation with both the order and
the collectivity parameters, reaching 0.71 and 0.7, respectively (Fig. 5C;
Fig. 3. Kinematic parameters of single locusts versus locusts in real groups. (A) The average fraction of time spent walking, (B) the average walking speed, (C) the
average duration of a walking bout, and (D) the average pause duration of locusts in real groups and of single locusts. Significant differences are noted between the
averages, but not the width of the distributions. *P < 0.05.
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Spearman’s correlation, P < 0.001 and P < 0.001, respectively). Similar
correlations calculated for the shuffled groups were not significant.
These correlations thus demonstrate the interdependency between
the characteristics of individuals and the group dynamics.

Mathematical model of individual and group behavior
The correlations described above do not, however, indicate whether the
observed intra- and intergroup variances are indeed caused by the het-
erogeneity in the probability of animals towalk, or vice versa. Therefore,
Knebel et al., Sci. Adv. 2019;5 : eaav0695 2 January 2019
we designed a mathematical model that incorporated only the minimal
individual tendencies described (the individual tendencies towalkwhen
five or more other animals are walking) and explored whether it gener-
ated the expected inter- and intragroup variances based on our exper-
imental results.

For a swarm of n animals, the model describes how the system
evolves from its state at a given time t, described by w(t) = (w1(t), …,
wN(t)) to its state at a later time t + 1, given by w(t + 1). The model
assumes an effective coarse-grained discrete time scale (6). Assuming
Fig. 4. Kinematics of real versus shuffled groups of locusts. (Aa to Ad) Comparisons between the average fraction of walking, average walking speed, average
walking bout, and average pause duration of the real and shuffled groups, respectively. (Ba to Bd) Comparisons between the within groups’ IQR of the fraction of walking,
average walking speed, average walking bout, and average pause duration of the real and shuffled groups, respectively. *P < 0.05, **P < 0.01, ***P < 0.001.
Fig. 5. Kinematics of real versus shuffled groups of locusts. (A) Probability of walking as a function of the number of other walkers for a single experiment. Each
colored line represents the probability of a specific animal to walk conditioned on the number of other walking animals (0 to 9). The thick gray line shows the
experimental average. The shaded area marks the probability of the locusts to walk when five or more others walk (termed P2W5). (B) The correlation between
the average value of P2W5 obtained using only the first and only the second halves of the experiments. The high correlation suggests that this observable is a
consistent individual behavioral characteristic. (C) Correlation between the order and the collectivity parameters with P2W5.
4 of 9



SC I ENCE ADVANCES | R E S EARCH ART I C L E
that it is a homogeneous Markov chain, it is described as a transition
probability matrix of dimension 3N × 3N.

At the beginning of every simulation, we randomly drew the traits of
each animal. The traits of animal j determine its probability to change its
state (standing, moving CW, or moving CCW). In accordance with the
experiments, we assumed that if the fraction of conspecifics walking in
the arena is less than 0.5, then the probability of walking is the same for
all animals, but grows with f (Fig. 5A). If half the animals or more are
walking, then the probability of walking is a random variable, pj, with
values drawn from the empirical distribution described in fig. S3B. As in
the experiments, simulated shuffled swarms were created by shuffling
simulated single-animal trajectories (with no repetitions). SeeMaterials
and methods for further details.

The model generated 1000 independent samples of 10 animal
groups (simulated groups), inwhich each individual received at random
one of the real individual tendencies towalkwhen 5 ormore otherswalk
as measured experimentally (overall 200 samples). Shuffling the trajec-
tories produced new simulated-shuffled groups. Both the simulated and
simulated-shuffled groups generated order and collectivity parameters,
as well as fractions of time spent walking values, comparable with those
of the experiments. The order and collectivity parameters, and the frac-
tion of walking time intergroup variance of the simulated groups were
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higher than those of the simulated-shuffled ones (Fig. 6, A to C). The
figure also compares results with homogeneous groups, either only
within each group (all animals in a group are the same, but groups
are different) or across all groups (all animals in all groups have the av-
erage value of pj). Furthermore, the intragroup variance in the fraction
of time spent walking was lower in the simulated groups than in the
simulated-shuffled ones (Fig. 6D). These results are all consistent with
the experimental data (cf. Figs. 2 and 4) and therefore indicate that the
different individual tendencies of locusts are sufficient for the genera-
tion of a group’s unique characteristics.

Modeling larger swarms
While these simulations mimicked the experimental results, the com-
putational model also enabled us to manipulate the initial distribution
of individual traits, the swarm size, and the interaction network among
conspecifics. To this end, we studied fourmodel versions corresponding
to different interaction networks: one global (each animal interacts with
all others) and three local (each animal interacts only with a sub-
population, reflecting the real locust visual field of view; these subpopula-
tionswere either fixedor dynamic). SeeMaterials andmethods for details.

All local versions showed qualitatively similar dynamics and statis-
tics in almost all parameters (figs. S4 to S7).However, amajor difference
Fig. 6. Simulation kinematic and collectivity measures. The output of computational simulations was compared when the model was introduced with either the
data of the locusts in the real experimental groups (real groups), the shuffled data (shuffled groups), and the homogeneous data (same for all group members) equal to
the average value of each simulated group (homogenized within groups), or the average of all simulated groups (homogenized across groups). (A to D) Distribution of
the simulated outputs of the order parameter, collectivity parameter, average fraction of walking, and within groups’ IQR of fraction of walking, respectively.
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was found between the local and global model results. In the latter, the
averaged order and collectivity parameters did not decline as the groups
grew larger than 100 animals but rather reached an asymptotic value
(0.4 to 0.5 for the order parameter and 0.2 to 0.4 for the collectivity).
Another result obtained in the local fixed models only was that the in-
tragroup variances of the time spent walking were wider for simulated
groups. Yet, they become similar to the shuffled-simulated groups’ var-
iance as a function of the group size. The dynamic model, on the other
hand, resembled the global model from that perspective.

The combination of results from the various types of models indi-
cates that the intergroup variance is a prominent consequence of the
difference among the animals that compose the groups and that it is
not masked or averaged out by large groups. Moreover, the intergroup
variance carries information on the topology of the social interaction
network between conspecifics.

The intragroup variance, however, seems to depend largely on both
the kind of information each animal receives and the size of the group.
In rather small groups, all model types behave similarly, as the number
of animals dictates that all animals receive information about the entire
group at each step. However, the differences between the local models
indicate that the ability to generate in-group homogeneity is related to
the formation of stable subgroups within the swarms. This is demon-
strated by the fixed and grid-based models, in which animals receive
and deliver information to only a steady subset of the population. There,
each subgroup probably generates high uniformity within itself (as es-
timated for small groups in all models) and reduces the overall swarm
inner variability (figs. S4C, S5C, S6C, and S7C).
DISCUSSION
True collective-coordinated behavior is a macroscopic, group-level
property, evolving from local interactions among the individual
group members [e.g., (1–4)]. Here, we asked whether and how the
group affects the behavior of its members and whether individual be-
havioral tendencies are masked or, on the contrary, manifested in the
group behavior.

The overall average and variance of individual locusts’ walking kin-
ematics were mostly similar (with the exception of the pause duration),
when the locusts were tested singly or as part of a small group. At the
same time, the group clearly exerted a homogenizing effect on the kin-
ematics of its members. This is seemingly a contradiction—if the group
environment does not affect the overall observed variance, how can var-
iance be reduced by the group? The answer lies in the balance between
intragroup homogeneity and intergroup heterogeneity: While each
group averages out the properties of the individuals forming it, the av-
erage kinematics reached within each group are distinctive. Hence, the
specific features of the group are strongly dependent on the combina-
tion of its comprising individuals, rather than being determined by the
social context per se.

The only notable exception to the above was found in the average
duration of pauses between consecutive walking bouts, which was
shorter when tested in a group compared with the singles. This behav-
ioral feature, therefore, seems to constitute a fundamental one, most in-
fluenced by the animals’ social environment. In accord with previous
studies that explored the role of intermittentmotion in collective behav-
ior [e.g., (4, 38)], the pauses, serving the decision of the individuals to
join the collective motion, are critical for the formation of the swarm.
The intergroup variance in this particular parameter was rather small
and exceptionally similar between the real and the shuffled groups,
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again suggesting the importance of the pauses in the collective swarm
behavior. We therefore emphasize the importance of examining inter-
group variance as an effective tool in identifying those behavioral char-
acteristics that are essential for the generation of collective behavior.
Ourmethod is particularly applicable given that it allows studying small
swarms, which are typically easier to analyze than large ones.

The consistency of our finding was corroborated byMarkov chain
simulations. The computational model also enabled us to manipulate
the initial distribution of individual traits, the swarm size, and the in-
teraction network between conspecifics. We find that while both the
inter- and intragroup variances decrease with swarm size, they also
depend on the topology of the graph describing the interaction network
within the group.

The above key points regarding collective motion of animal groups
in general are even more pertinent for locusts, known for their ability
to display density-dependent plasticity in their behavior. Locusts are
known to form swarms constituting millions of individuals. This is not
to say, however, that our results on small groups of locusts lack natural
relevance. The density within a swarm is not fully homogeneous. The
collective behavior in low-density areas, such as the outskirts of the
swarm, might be greatly determined by the individuals and the local
small groups within these areas. Moreover, the coalescence of locusts
into destructive plagues commences by means of small-scale local ag-
gregations, followed by a complex and far from fully understood pro-
cess of phase transformation, further aggregation, and swarming.
Similarly, our understanding of how locust swarms disperse is lacking.
The data presented here suggest that during both processes (swarm
buildup and dispersal), the individual tendencies of the members
might play a critical role in the swarm dynamics. These ideas are
supported by our simulation results (figs. S4 to S7), for example with
the local grid-based model, which indicates that the ability to generate
in-group homogeneity is related to the formation of stable subgroups
within the swarms.

Finally, our findings highlight the prominence of biological variance,
which echoes in every aspect of the life sciences (39, 40). We have dem-
onstrated here a generalmethodology inwhich a careful analysis of both
individual and group variances can reveal which features are key for the
formation of collective motion, and uncover the intricate, synergetic re-
lations between the dynamics of crowds and the personal traits of the
individuals compromising it.
MATERIALS AND METHODS
Animals
Desert locusts, Schistocerca gregaria (Forskål), were obtained from our
colony at the School of Zoology, Tel Aviv University, Israel. The locusts
were reared for many consecutive generations under crowded
conditionswith 100 to 160 individuals in 60-liter aluminumcages under
a controlled temperature of 30°C, 35 to 60% humidity, and a 12-hour
dark/12-hour light cycle. The locustswere fed dailywithwheat seedlings
and dry oats. All experiments were performed with nymphs of the final
(fifth) nymphal instar (3 to 4 cm in length and ~0.5 cm in width).

Experimental setup
The experimental arena was composed of a flat paper sheet floor cir-
cumscribed by an outer blue plastic wall (60-cm diameter by 55-cm
height). A circular concentric wall made of similar plastic (diameter,
30 cm) was placed in the center to create a ring-shaped arena (Fig.
1A). The lower 10 cm of the arena walls and central dome were thinly
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coated with Fluon (Whitford Plastics Ltd., Runcorn, UK) to prevent the
nymphs from climbing. The arena was placed in a room heated to 30°C
and lit by three 100-W bulbs. A video camera (Sony FDR-AXP35: 4K
Ultra HD) recorded the experiments from above.

Individual locust recognition
Before each experiment, locustswere individually taggedwithminiature
barcode tags [Fig. 1A; BugTag, Robiotec Ltd., Israel; see also a similar
technique using barcodes for tracking insects specially across time in
(41)]. Offline analysis of the video recordings by the Robiotec advanced
system for consistent and continuous individual identification,
complemented by a custom-designed multiple-target tracking and a
trajectory-smoothing method [as detailed in (4)], enabled retrieval of
the position of each animal throughout the experiment in respect to
the arena’s center.

The BugTag system enables highly accurate measurements of the
tag’s center of mass with a resolution of 2 to 3 pixels (corresponding
to ca. 0.5 mm) at a rate of 25/3 frames per second. Short segments in
which animals were not identified by the system (shorter than 5 cm or
25 s)were interpolated, resulting in about 99% identification. The rest of
the frames were analyzed manually, resulting in 100% identification of
all animals in the arena.

Experimental conditions
Two types of conditions were tested in the arena: (i) experiments with
single locusts (n = 20) and (ii) experiments with groups of 10 locusts
(n = 20). In addition, shuffled groups were created by shuffling the
members of the group experiments (n = 20). Each locust was used
exactly once to create a fictive movie with nine other locusts with
which it had not originally swarmed (Fig. 1B).

Analysis of behavior
All data analysis was performed using MATLAB (MathWorks,
Natick,MA,USA). The analysis of all experiments was conducted from
the 1st to the 111th minute of the recorded movie. Specific attributes of
the system and the individual locusts were defined and analyzed as
follows:

1) The instantaneous spread measure was defined as the average of
all distances between all pairs of animals in each frame. The global
spread measure is the average over all frames in a single experiment.

2) The instantaneous walking speed was calculated by the dis-
tance an animal traveled over the time of one frame. The global
walking speed in an experiment is the average over all animals and
frames.

3) Walking bouts and pauses were identified using a repeated
runningmedian (RRM) smoothing (4, 42).Walking bouts were defined
as segments with RRM speeds greater than 0.25 cm/s for more than 1 s.
The global walking bout and pause duration in an experiment are the
average duration over all walking bouts or pauses, respectively.

4) Probability of walking as a function of k other walkers was
calculated for each locust by the number of frames it walked when k
other animals walked divided by the number of frames k other animals
walked (Fig. 5A). Denote P2W as the conditional probability to walk,
P2Wik = P(Li|Ok), where Li is the event animal i walked and Ok is the
event that k other animals walked. To calculate the probability to walk
conditioned on the event that K or more (less) others walk, P2WiK =
P(Li|Mk), the number of frames the animal walked, Li, andK ormore
(less) others walk, MK, was divided by the number of times MK

occurred (Fig. 5B and fig. S3). The global probability to walk when
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K ormore/less others walked is the average of P2WiK = P(Li|Mk) over
all animals (Fig. 5C): P2WK = ∑iP2WiK/N.

Statistical analysis
All statistical testswere conductedwithMATLAB.To compare between
median values, Wilcoxon signed-rank test was used. To compare be-
tween variances, Brown-Forsythe test was used. Significant differences
in variance were marked using vertical whiskers and asterisks. All cor-
relation values represent Spearman’s rank coefficients and are all signif-
icant statistically (P < 0.05). Violin plots were generated on the basis of
the violinplot function forMATLABprovided here: https://github.com/
bastibe/Violinplot-Matlab

Markov chain model
We devised a simplified model to test our hypothesis that variability in
the response of animals to conspecifics accounts for the observed inter-
and intragroup variance in real and shuffled groups. In addition, we ap-
plied the model to predict the dynamics of larger swarms.

For a swarm of n animals, the model is essentially a homogeneous
Markov chain over the states space Ω = {−1, 0, 1}N. For w(t) ∈ Ω, we
denotew(t) = (w1(t),…,wN(t)). Recall thatwi(t) = 0 implies that animal
i is standing at time t, while wi(t) = ±1 implies that at time t, animal i is
walking in the CCW(+1)/CW(−1) direction. The model assumes a
coarse-grained discrete time scale (6) and is determined by the
transition probability matrix P of dimension 3N × 3N. For u, v ∈ Ω,
Pu,v is the probability to change from state u = (u1, …, uN) to state
v = (v1, …, vN).

At the beginning of every simulation, we randomly draw the traits of
each animal. The traits of animal j determine the probability to have vj=
−1, 0, or 1 as a function of u. In accordance with the experiments, we
assume that if the fraction of conspecifics walking in the arena is less
than 0.5, then the probability of walking (vj = ±1) is 0.1 + 0.6f. If half
the animals or more are walking, then the probability of walking is a
random variable, chosen once at the beginning of the simulation for
each animal, with values drawn from the empirical distribution de-
scribed in fig. S3B. If the animal is walking, the probability of walking
in the same direction of f(t) depends linearly on f(t). By fitting to ex-
perimental values (4), we take

PðfðtÞvj > 0Þ ¼ 0:5þ 0:4jfðtÞj

Simulations were run for 1000 steps with N = 10, 20, 50, 100, 200,
500, 1000, and 2000. The first 100 steps were discarded and not used for
the statistics. As in the experiments, simulated shuffled groups were cre-
ated by shuffling simulated single-animal trajectories (withno repetitions).

Modeling of large swarms
The model described above is global, in the sense that the decision to
walk and in which direction depends on all the animals. This assump-
tion makes sense for small swarms, in which the coarse-grained time
can be interpreted as the time it takes an animal to “sample” the state
of all others.However, within large swarms, a single animalwill typically
only see a few neighbors and will not have any knowledge of the entire
state of the swarm. To this end, we studied three versions of a local
model. The model assumes that the probability of an animal to walk
depends on how many of the other animals it sees are walking. Let us
denote by f the fraction of walking animals it sees, i.e., the number of
animals seen walking divided by the number of animals seen (walking
or standing). If f is less than 0.5, then the probability to walk in the next
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simulation step is 0.1 + 0.6 f. Parameters were obtained by fitting the
probability to walk in all 200 tested animals (similar to the left half of
Fig. 5A). However, if f≥ 0.5, then the probability to start walking is itself
random: The values are drawn from the empirical distribution depicted
in fig. S3B. They are different for each animal but constant throughout
the simulation. The threshold of f = 0.5 corresponds to our finding that
the influence of five or more walking animals out of nine is indeed an
individual trait that is consistent throughout an experiment (Fig. 5B).

The results with the global model, in which every animal sees all
others, were detailed above in Results. As in our experimental analysis,
simulated-shuffled groups were generated by shuffling animal trajec-
tories between simulation instances. The order and collectivity param-
eters were computed, as well as the average (among animals in a
simulation instance) fraction of time walking. Averages and inter-
and intragroup variances (IQR) were compared.

One of the key problems with the global model is the unrealistic as-
sumption that all animals are continuously aware of the walking state of
all other animals even within very large groups. As a result, large global
swarms fail to synchronize. This can be seen in fig. S4 (Aa and Ab),
which shows that both the order and collectivity parameters of simu-
lated swarms become very small as the number of animals grows.

To this end, we studied three versions of local models, in which
each animal only sees and reacts to a small number of conspecifics.
These versions correspond to different interaction networks among
individuals as follows.

1) A fixed local model, in which every animal only sees nine other
animals, randomly chosen once at the beginning of each simulation.
The set of neighbors is fixed throughout the simulations, i.e., the same
nine animals are observed (fig. S5).

2) A dynamic local model, in which every animal only sees nine
other animals. A new set of nine neighbors is drawn for each animal
every simulation step (fig. S6).

3) A grid-based model, in which animals are initially placed on a
square two-dimensional grid. Each animal sees its nearest neighbors
on the grid, with periodic boundaries (fig. S7). Note that the number
of neighbors in this model is eight.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/1/eaav0695/DC1
Fig. S1. Relation between the order and collectivity parameters.
Fig. S2. Aggregation of walking and standing animals.
Fig. S3. Distributions of the social-dependent probability to walk.
Fig. S4. Global model results.
Fig. S5. Local-fixed model results.
Fig. S6. Local-dynamic model results.
Fig. S7. Local grid-based model results.
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