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A B S T R A C T   

Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence 
of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of 
suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subse-
quent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, 
such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent 
years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non- 
coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the 
pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as thera-
peutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research 
hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further 
investigation. The current review comprehensively highlights ferroptosis and its association with non-coding 
RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast 
cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and 
even block the expansion and development of these tumors.   

1. Introduction 

Female-oriented neoplasms, including breast and gynecological 
malignancies, are considered one of the leading causes of death in the 
global female population. Genetics, age, lifestyle and eating habits, 
menopause state, and history of being exposed to carcinogens are the 
principal determinants of the onset and frequency of these types of 
malignancies. Treatment of female-specific cancers, similar to other 
cancers, is considered a huge challenge, and eliminating tumor cells 
without hurting non-cancerous cells is a key concept of cancer therapy. 

Following the discovery of regulated cell death (RCD) researchers found 
that the cell death process can potentially be controlled [1–3]. For a long 
time, apoptosis was considered the only type of RCD, and a broad range 
of anti-tumor medications were designed to stimulate apoptosis in 
cancer cells; however, it became clear that tumor cells exhibit, and 
develop, various degrees of resistance to these drugs and, thus, apoptosis 
[4]. Accordingly, recent studies have attempted to target non-apoptotic 
cell death pathways for possible reduction of cancer cell resistance 
against apoptosis-inducing drugs. 

In the context of non-apoptotic RCDs, ferroptosis as an iron- 
dependent type of RCD, was first characterized in 2012 [5]. 
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Ferroptosis is responsible for the inhibition of RAS mutant tumor cells 
and it was subsequently shown that this process is strongly related to 
tumor cell death [5,6]. This RCD pathway is modulated by the canonical 
TP53/p53 tumor suppressor gene through blocking the cys-
tine/glutamate antiporter/xCT/system xc− [7,8]. Interestingly, many 
tumor cells, although resistant to common therapeutic interventions, are 
sensitive to ferroptosis. Thus, induction of this cell death mechanism 
might help eradicate those cells [9]. Moreover, ferroptosis is also asso-
ciated with immunotherapeutic interventions, as it can be triggered in 
tumor cells by T cells and IFNG/IFNγ (interferon gamma) [10]. 

According to recent evidence, the ferroptotic flux can be regulated by 
non-coding RNA (ncRNA) transcripts, among which microRNAs (miR-
NAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) 
play the most important roles [11,12]. In association with ferroptosis, 
the corresponding ncRNA molecules participate in iron metabolism, as 
well as ferroptosis-related amino acid metabolism to regulate the fer-
roptotic flux [13]. Furthermore, reactive oxygen species (ROS) meta-
bolism is also regulated by ncRNAs, and it is accepted that intracellular 
lipid ROS accumulation is a major stimulant for ferroptosis [14]. Mod-
erate elevation of ROS levels inside cells triggers cell proliferation, 
survival, and malignant transformation; however, ncRNAs have the 
ability to modulate ROS levels to maintain redox dynamics and the 
decrease in ROS blocks ferroptosis [11]. In conclusion, ferroptosis, as a 
critical process in cancer development, can be controlled by ncRNAs, 
leading to either the progression or suppression of malignant conditions. 
In the current review, the modulatory mechanisms related to ferroptosis 
are first summarized, and then the involvement of this non-apoptotic 
RCD in female-oriented malignancies, from breast cancer to endome-
trial neoplasm, under the regulation of ncRNAs is discussed. Current 
application status and opportunities of targeting ferroptosis in female 
cancer therapies are then considered. 

2. Female-specific neoplasms: from breast cancer to common 
gynecological malignancies 

Breast cancer (BC) is the most common type of female malignancy 
with more than 2 million cases each year [15]. Breast tumors are often 
formed and expanded due to ductal hyperproliferation and can repre-
sent either a benign or malignant phenotype as the result of the existing 
relationship between continuous induction and varied tumorigenic pa-
rameters. Stromal cells and macrophages residing in the tumor micro-
environment significantly affect the progression of this neoplasm [16, 
17]. In detail, macrophages provoke the angiogenic processes and also 
increase the immune resistance of tumor cells through producing a 
mutagenic inflammatory microenvironment [18]. Moreover, DNA 
methylation, as well as other epigenic modifications developed in the 
tumor microenvironment, elevates the risk of BC tumorigenesis. 
Consistent with this finding, cancer stem cells also have a role in BC 

carcinogenesis, immune evasion, recurrence, and therapeutic resistance 
(Fig. 1) [19]. 

In the case of other female-oriented neoplasms, gynecological can-
cers (GCs) are of great importance among women worldwide. Ovarian 
cancer (OC), as one of the well-studied GC subtypes, is not as common as 
other female malignancies but unfortunately has the highest rate of 
cancer mortality. It been estimated that OCs have an incidence of 
11.7–12.1 per 100,000 in European countries and the U.S, with a lower 
rate among the Middle East and Asian nations [20,21]. Regarding the 
pathology of OC, a non-homogenous cluster of malignancies are formed 
and expanded in the germ cells, as well as epithelial cells, fallopian tube, 
and mesenchyme with different patterns of etiology and molecular 
biology. Nonetheless, the majority of OCs have been detected with an 
epithelial origin [22]. Most OC patients are diagnosed when the disease 
has entered its advanced progression levels, terminating with high 
mortality rates. Therefore, it is crucial to improve preventive measures 
and allow a timely diagnosis, as early detection of OC provides a higher 
survival rate up to 93% [19,23]. 

Cervical cancer is the other GC in this field, which is categorized as 
the fourth most common type of malignancy and the fourth prime cause 
of cancer deaths among the female population (BC, colorectal cancer, 
and lung neoplasm are the first three leading causes). The Lancet Global 
Health has reported that approximately 570,000 women experienced CC 
in 2018, among which 311,000 died [24]. It has been elucidated that 
human papillomavirus/HPV infections, especially those being devel-
oped by carcinogenic species, are the major leading cause of CC onset. 
Therefore, human papillomavirus screening, along with vaccination 
against these viral species can improve the preventive approaches [25, 
26]. CCs are histologically divided into two principal subtypes, 
including adenocarcinoma (25% of cases) and squamous cell carcinoma 
(70% of cases) [27,28]. The conventional Pap smear test can help detect 
early alterations in the cervical epithelium and thus the early stage of 
invasive CC [29]. Beyond the ovary and uterine cervix, the endometrium 
can also be affected by malignancy. In this context, endometrial cancer 
(EC) is considered as the most common GC with more than 61,000 cases 
detected yearly in the U.S [30,31]. EC primarily affects the glandular 
epithelium, lining the uterus, which is typically responsible for releasing 
substances required for menstruation or even embryonic development 
[32]. The onset of EC is principally affected by obesity, along with 
hormonal deregulation, reproductive parameters, and being genetically 
vulnerable. This GC has a heterogenous genetic pattern except for a 
subgroup of patients with a cancer predisposition syndrome, Lynch 
syndrome, stimulated by the germline changes of DNA mismatch repair 
genes such as MLH1, PMS2, MSH2, and MSH6. Furthermore, ECs are 
represented through a high degree of many other germline mutations in 
malignancy predisposition genes (Fig. 1) [19,33,34]. 

Abbreviations 

BC breast cancer 
ceRNA competing endogenous RNA 
circRNA circular RNA 
DDP cisplatin 
DEFerlncRNA differentially expressed lncRNAs 
EC endometrial cancer 
ecEM ectopic endometrium cells 
ESC endometrial stromal cell 
euEM normal endometrium cells 
FerroScore ferroptosis score 
FIRLs ferroptosis and iron-metabolism related lncRNAs 
GC gynecological cancer 

GSH glutathione 
HCC hepatocellular carcinoma 
lncRNA long non-coding RNA 
MDA malondialdehyde 
miRNA microRNA 
ncRNA non-coding RNA 
OC ovarian cancer 
ORFs open reading frames 
OS overall survival 
PI3K phosphoinositide 3-kinase 
RCD regulated cell death 
ROS reactive oxygen species 
TNBC triple-negative breast cancer 
UTR untranslated region  
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3. Ferroptosis: A non-apoptotic type of regulated cell death 

Iron (Fe), with a vast array of biological roles in the human body, is 
critical for cell survival, due to its role in oxygen transport, DNA 
biosynthesis, and ATP production [35,36]. Moreover, iron is strongly 
correlated with the onset and expansion of tumors, and thus iron 
metabolism defects might result in tumor growth [37,38]. Once 
iron-dependent oxidative phosphorylation has progressed in mitochon-
dria, cells generate ROS and ATP. Increasing ROS levels result in 
oxidative stress responses, leading to cell injury or death [39]. In this 
context, ferroptosis primarily results from the aggregation of iron--
dependent lipid peroxide (Fig. 2) [40,41]. 

Although the term ferroptosis was first used in 2012, the inducers of 
this non-apoptotic RCD were discovered before it was named. During a 
large-scale analysis conducted in 2003, Stockwell et al., noticed that a 
newly discovered compound called erastin could provoke death of RAS- 
mutated tumor cells in a non-apoptotic manner [12]. Later, other 
chemicals, such as sorafenib, artemisinins, and 1, 2-dioxolane (FINO2), 
as a cyclic peroxide, were affirmed to stimulate ferroptosis [40,42,43]. 
Mechanistically, ferroptosis differs from other RCDs and is biochemi-
cally identified by intracellular iron and ROS accumulation, lipid 

peroxidation, and depletion of glutathione and lipid repair enzymes 
[44]. Moreover, autophagy, which is a highly conserved eukaryotic 
cellular recycling process [45–47], has a strong correlation with fer-
roptosis, as it triggers the removal of proteins related to ferroptosis 
through ferritinophagy and chaperone-mediated autophagy [48]. 

In comparison to the other types of regulated cell death processes, it 
is known that PCD is a critical physiological process in all living or-
ganisms, with roles spanning embryonic development, organ function 
maintenance, aging, and immune response regulation. Phagocytic pro-
cesses efficiently remove dead cells under normal conditions. Apoptosis, 
necroptosis, and pyroptosis are the most well-characterized forms of 
PCD. Apoptosis is a highly conserved cell death pathway across different 
animal species that has been extensively studied for decades [49]. 
Initially considered the sole regulated PCD mechanism, apoptosis in-
volves the controlled release of CYCS (cytochrome c, somatic) from 
mitochondria. A delicate balance between pro-apoptotic (BCL2 family) 
and anti-apoptotic proteins regulates this process. Additionally, initiator 
caspases (CASP8, CASP9 and CASP10) together with effector caspases 
(CASP3, CASP6 and CASP7) play crucial roles during apoptosis activa-
tion. Apoptosis culminates in a series of distinctive events: nuclear 
membrane breakdown by CASP6, cleavage of intracellular proteins (e. 

Fig. 1. Female-specific cancers: Breast, ovarian, cervical, and endometrial cancers. (A) Breast cancer: The most common female malignancy (although also occurring 
in males), BC arises from ductal hyperproliferation and is influenced by the tumor microenvironment. Macrophages and epigenetic modifications in this environment 
contribute to BC progression. Cancer stem cells also play a role in BC development, immune evasion, recurrence, and resistance to treatment. (B) Ovarian cancer: 
Though less frequent than other GCs, OC has the highest mortality rate. OC encompasses various types of malignancies with diverse origins. Most cases are of 
epithelial origin, and early detection is crucial due to high mortality rates in advanced stages; (C) Cervical cancer: The fourth most common female malignancy, CC is 
primarily caused by human papillomavirus (HPV) infections, particularly carcinogenic strains. Vaccination and screening programs are crucial for prevention. 
Histologically, CC is divided into adenocarcinoma and squamous cell carcinoma subtypes. (D) Endometrial cancer: The most common GC of the uterus, EC affects the 
glandular epithelium and is influenced by factors such as obesity, hormonal imbalances, and genetics. Most cases of EC exhibit a heterogeneous genetic pattern, 
except for those with Lynch syndrome. 
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g., PARP, lamin, etc.), membrane blebbing, and fragmentation of 
genomic DNA into nucleosomes [3,50,51]. These hallmarks are 
employed to identify the specific PCD pathway engaged [3,52]. 

Previously, apoptosis was contrasted with necrosis, a supposedly 
uncontrolled process leading to membrane rupture and leakage; how-
ever, recent research has identified necroptosis, a non-apoptotic regu-
lated PCD pathway promoting tissue repair and pathogen detection [53, 
54]. Triggered by TNF/TNF-α (tumor necrosis factor) or other stimuli 
such as FAS-FASLG/FasL, TLRs (toll like receptors), and cytosolic 
nucleic acid sensors, necroptosis relies on TNFRSF1A/TNFR1 (TNF re-
ceptor superfamily member 1A) activation [53,55–58]. Whereas these 
pathways often activate proinflammatory and prosurvival NFKB/NF-κB 
(nuclear factor kappa B) signals, necroptosis is specifically induced 
when CASP8 is inhibited by microbes or drugs [59]. 

Furthermore, pyroptosis, as a PCD pathway triggered by inflamma-
some sensors (NLR family, AIM2 [absent in melanoma 2], MEFV [MEFV 
innate immunity regulator, pyrin]), culminates in membrane leakage. 
Inflammasomes detect pathogen-associated molecular patterns/PAMPs 
and danger/damage-associated molecular patterns/DAMPs, acting as a 
defense mechanism against pathogens and cellular stress [60]. This lytic 
cell death prevents microbial spread and alerts the immune system but 
can lead to pathological inflammation if dysregulated. Initially thought 
to be CASP3-dependent apoptosis, pyroptosis was distinguished due to 

its reliance on CASP1 [60,61]. Parenthetically, the term "pyroptosis" 
reflects the inflammatory nature ("pyro" meaning fire) and programmed 
cell death aspect ("ptosis" meaning falling) [62]. 

Interestingly, cells that experience ferroptosis present different 
morphological characteristics compared to apoptosis and/or autophagy; 
for instance, the cell membrane is ruptured during ferroptosis, whereas 
it is not impaired through apoptotic or autophagic fluxes. In ferroptosis, 
mitochondrial atrophy, along with the disappearance of the mitochon-
drial ridge, without any change in nucleus size except for chromatin 
condensation are considered as the specific characteristics [63]. 
Recently, ferroptosis has been found to play crucial roles in the patho-
genesis of multiple diseases, including a vast array of malignancies. 
Once the ferroptosis-related regulatory molecular mechanism(s) is 
deeply explored, the interaction between ferroptosis and cancer devel-
opment will be better elucidated. As mentioned above, the modulation 
of ferroptosis is controlled by particular signaling pathways through iron 
accumulation, lipid peroxidation, and cellular membrane impairments, 
and thus ferroptosis can be regulated by specific drugs or genetic in-
terventions. Within this context, regulation of homeostasis between 
oxidative and antioxidant systems is considered the prime mechanism in 
ferroptosis [64–67]. Thereby, it is expected that cancerous conditions 
can be ameliorated or even cured by exerting specific interventions into 
the ferroptotic flux. 

Fig. 2. Ferroptosis: a tumor-suppressor or an oncogenic process? With regard to the tumor suppressive effects of ferroptosis, it disrupts cell proliferation, migration, 
and invasion in various cancers, including blood malignancies and solid tumors. Studies suggest a negative correlation between ferroptosis and metastasis, with 
ferroptosis-silenced tumors exhibiting increased metastatic potential. Ferroptosis inducers such as neratinib may block brain metastasis in breast cancer models. 
Lower expression of ferroptosis inhibitors, including SLC7A11 and ABCC5, and higher expression of ferroptosis modulators such as ACSL4 and GPX4, are associated 
with better prognosis in some cancers. Conversely, in KRAS-driven pancreatic cancer models, ferroptosis induction via GPX4 knockdown or high-iron diet accelerate 
tumor progression. CD36 may suppress anti-tumor CD8+ T cells by triggering ferroptosis, suggesting a context-dependent role. 
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4. Ferroptosis plays a dual role in cancer 

According to the existing evidence, ferroptosis can serve as a tumor 
suppressive flux in many blood malignancies, as well as solid tumors to 
affect multiple steps from the cell cycle and proliferation to tumor 
expansion [68]. In this context, cytosolic GOT1 (glutamic-oxaloacetic 
transaminase 1), which is necessary for oxidant/antioxidant balance, 
blocks cell proliferation and increases cytotoxicity, especially when used 
in combination with the ferroptosis-inducing agent RSL3 [69,70]. Other 
than cell proliferation, ferroptosis also blocks the migration of tumor 
cells, and thus suppresses tumor invasion. As an example, KLF2/Krüp-
pel-like factor 2 (KLF transcription factor 2) can repress tumor cell 
migration and invasion in clear cell renal carcinoma through GPX4 
(glutathione peroxidase 4)-mediated regulation of ferroptosis [71]. 
ACSL4 (acyl-CoA synthetase long chain family member 4) is another 
ferroptosis modulator in this regard that can act at downstream of the 
miRNA MIR211-5p, which suppresses cell proliferation, as well as 
migration and invasion in hepatocellular carcinoma (HCC) [72]. 

Ferroptosis is also correlated with metastasis in a negative manner, 
as it has been revealed that metastatic trait is more common in 
ferroptosis-silenced tumors compared to those with activated ferroptosis 
[73,74]. Additionally, in HCC, ferroptosis inhibition is closely related to 
worse tumor expansion, high degrees of metastasis, and poor prognosis 
[75]. In line with this fact, Liu et al. indicated that resistance against 
ferroptosis may enhance the probability of metastasis, which can be 
reversed by ferroptosis inhibitors, such as the aforementioned GPX4 
[76]. Consistent with this observation, ferroptosis inducers, such as 
neratinib as a pan-tyrosine kinase inhibitor, potentially block brain 
metastasis in a synergistic model of human EGFR+ BC metastasis [63, 
77]. 

In clinical settings, ferroptosis has also been proposed to be in 
negative association with prognosis and overall survival (OS). Within 
this context, the overexpression of SLC7A11 provides a poor prognosis, 
specifically due to ferroptosis inhibition [78]. In clinical specimens 
collected from HCC patients, ABCC5 (ATP binding cassette subfamily C 
member 5) exhibits an overexpressed pattern with a negative inter-
connection with ferroptosis through stabilizing SLC7A11 and enhancing 
reduced glutathione (GSH) levels inside the cells. Sorafenib-resistant 
HCC cells also exhibit an increase in ABCC5 expression levels, indi-
cating poor prognosis [79,80]. As indicated above, ACSL4 and GPX4 are 
ferroptosis modulators, and their expression can be utilized as a prog-
nostic factor for disease-free survival. In detail, ACSL4 overexpression 
results in a better OS, whereas patients with GPX4 overexpression 
exhibit better metastasis-free survival [81]. Together, these findings 
propose that ferroptosis can be considered a tumor suppressive process 
by regulating varied molecular and cellular mechanisms [63]. 

In contrast, some recent evaluations have suggested that under 
particular circumstances ferroptosis may act as a tumor activator. This 
hypothesis can be exemplified by the enhancement of pancreas weight 
and mortality in KRAS4-driven animals with pancreatic malignancy due 
to GPX4 knockdown or receiving a high-iron diet. Thus, the absence of 
GPX4 or the administration of a high-iron diet accelerates the progres-
sion of KRAS-induced pancreatic ductal adenocarcinoma [82,83]. CD36 
decreases the antitumor activity of CD8+ T cells by triggering ferroptosis 
and lipid peroxidation. Nonetheless, the basic modulatory mechanisms 
and pathways supporting the carcinogenic role of ferroptosis are still 
ambiguous [63,84]. 

5. The interconnection between non-coding RNAs and 
ferroptosis 

As we know, ncRNAs, including miRNAs, lncRNAs, and circRNAs 
contribute to a vast array of genetic modulatory mechanisms [85,86]. In 
this era, researchers have tried to elucidate these regulatory pathways 
that are related to ferroptosis and fortunately have discovered valuable 
information. Based on their research, they noticed that specific ncRNA 

transcripts can control the ferroptosis flux by direct modulation of key 
factors or indirect regulation of molecular targets located upstream of 
this process [87–89]. The following sections provide more detailed in-
formation on the existing network between ncRNAs and the process of 
ferroptosis. 

5.1. MiRNAs and ferroptosis: regulatory mechanisms 

MiRNAs, which are a subclass of the ncRNA superfamily that are 
20–25 nucleotides in length [90–92], have recently been shown to 
control ferroptosis through multiple pathways (Fig. 3) (Table 1) [93]. 
With a mechanistic view, miRNAs can affect lipid metabolism in tumor 
cells to regulate ferroptosis. In this regard, MFN2 (mitofusin 2) that is 
central to the process of mitochondrial fusion, is responsible for the 
regulation of ROS generation in cellular lipid metabolism [94]. 

ALOX15 (arachidonate 15-lipoxygenase), which belongs to the LOX 
family, has the ability of converting arachidonic acid, along with other 
unsaturated fatty acids residing on the cell membrane, into lipid per-
oxides, and thus oxidative stress-mediated cell death and inflammation 
can specifically be regulated by ALOX15 [95]. In gastric neoplasms, 
exosomal MIR522 targets ALOX15 further decreasing ROS levels, which 
in turn blocks ferroptosis and stimulates chemo-resistance in these ma-
lignancies [96]. 

The serine-threonine kinase AURKA (aurora kinase A), as another 
defined regulator for ferroptosis, aids in controlling mitosis-related 
spindle formation. Several types of cancer exhibit AURKA over-
expression in this context. By siRNA-mediated silencing of AURKA 
translation, GPX4 expression can be downregulated, implying that 
GPX4’s upstream factors are controlled by AURKA. Upon the conducted 
bioanalysis, a binding site was found for MIR4715-3p in the 3′-un-
translated region (3′-UTR) of AURKA mRNA. Once MIR4715-3p is turned 
on, AURKA expression declines and a reduction is observed in GPX4 
expression in pancreatic cancer cells. Accordingly, the AURKA-GPX4 
axis is a prime route by which MIR4715-3p may trigger ferroptosis 
[97,98]. 

Other than interfering with lipid metabolism, miRNAs can also 
control ferroptosis through regulating the metabolism of amino acids. 
For example, the pathway responsible for the breakdown of glutamine is 
a crucial regulator of intracellular glutamate levels. GLS2 (glutaminase 
2) and SLC1A5 (solute carrier family 1 member 5) are significant reg-
ulatory factors for the uptake and breakdown of glutamine in this 
framework. Reduced intracellular glutamate content can decrease ROS 
accumulation and block ferroptosis, as occurs with lower expression of 
SLC1A5 or GLS2. Notably, by binding SLC1A5 at the 3′-UTR, MIR137 
overexpression can adversely control ferroptosis in melanoma cells. Niu 
et al. also suggested that by targeting GLS2 and mitigating intracellular 
glutamate levels, MIR103A-3p can cause ferroptosis resistance in gastric 
cancer cells. Similarly, it was affirmed that patients suffering from 
gastric carcinoma have a poor prognosis when MIR103A-3p is overex-
pressed [99–102]. 

In acute kidney injury, cell damage resulting from ferroptosis is 
considered a critical mechanism. To enhance the function of the cystine/ 
glutamate antiporter/xCT and raise the intracellular GSH level, ATF4 
(activating transcription factor 4) can upregulate the expression of 
transmembrane transporter SLC7A11 [67]. Moreover, HSPA5 (heat 
shock protein family A (Hsp70) member 5) is also activated by ATF4 to 
increase GPX4 expression and activity, thereby shielding cells from 
ferroptosis. Ferroptosis in HCC cells may be promoted by the over-
expression of MIR214, which implies that MIR214 can inhibit ATF4 
transcription and, in turn, the ATF4-HSPA5-GPX4 pathway, leading to 
the stimulation of ferroptosis [103–105]. 

Tumor cell ferroptosis can be controlled by miRNAs through inter-
fering with intracellular iron metabolism. Maintaining the balance of 
Fe2+ within the cytoplasm and mediating its entry into mitochondria are 
the primary functions of TF (transferrin). By controlling TF to lower 
intracellular Fe2+ levels and prevent ferroptosis, MIR7-5p causes 
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radiation resistance. Besides, in the context of Parkinson disease, 
MIR335 targets FTH1 (ferritin heavy chain 1) to promote ferroptosis by 
elevating intracellular Fe2+ content [106,107]. Mammals have only one 
cellular iron exporter, SLC40A1/ferroportin 1, which is essential for 
maintaining the cellular iron homeostasis. Underexpression of this iron 
exporter, achieved by MIR124, provokes neuronal death in murine 
models of intracerebral hemorrhage through increasing ferroptosis 
[108]. Along these lines, ferroptosis-induced oxidative stress, which has 
been identified as a major leading cause of pre-eclampsia-related 
adverse outcomes, is correlated with MIR30B-5p that is responsible for 
downregulation of SLC40A1/ferroportin 1 to provoke ferroptosis in 
trophoblasts [109]. In a similar manner, MIR20A, along with MIR485-3p 
can also decrease the generation of Fe2+ ions through targeting 

ferroptosis, which indeed stimulates resistance against ferroptotic flux 
[36,110]. 

The KEAP1 (kelch like ECH associated protein 1)-NFE2L2 (NFE2 like 
bZIP transcription factor 2) regulatory pathway, a key axis that sup-
presses ferroptosis through blocking ROS generation and decreasing iron 
load, can be substantially targeted by miRNAs to control ferroptosis. In 
this regard, overexpressed MIR7 and MIR200A target KEAP1 to degrade 
its mRNA and activate NFE2L2. In addition, MIR101 and MIR455 have 
the ability to target CUL3 (cullin 3) to induce NFE2L2. In contrast, a vast 
array of miRNAs, including MIR28, MIR153-3p, MIR142-5p, MIR27A, 
MIR144, and MIR155, along with others repress NFE2L2 either directly 
or indirectly. Thereby, all these miRNAs can be considered as potential 
molecules in modulating cellular ferroptosis [94,111,112]. 

Fig. 3. MiRNAs and ferroptosis. MiRNAs can influence ferroptosis through various pathways, including lipid and amino acid metabolism, as well as iron homeostasis 
as illustrated in this figure. MIR522 in gastric cancer targets ALOX15, as an enzyme involved in lipid peroxidation, reducing ROS levels and blocks ferroptosis. 
MIR4715-3p targets AURKA in pancreatic cancer, leading to GPX4 (a ferroptosis inhibitor) downregulation and increased ferroptosis. MIR137 overexpression in 
melanoma inhibits SLC1A5, reducing glutamate uptake and ferroptosis. MIR103A-3p targets GLS2 in gastric cancer, decreasing glutamate levels and promoting 
ferroptosis resistance. MIR214 in HCC inhibits ATF4, inducing a decreased GPX4 expression and promoting ferroptosis. MIR7-5p reduces iron uptake by targeting TF, 
preventing ferroptosis and promoting radiation resistance. MIR335 targets FTH1 in Parkinson disease, increasing iron levels and promoting ferroptosis. Several 
miRNAs (including MIR124, MIR30B-5p, MIR20A, and MIR485-3p) have the ability of targeting iron exporters or regulators, influencing ferroptosis susceptibility. 
Other miRNAs such as MIR7, MIR200A, MIR101, and MIR455 target negative regulators of NFE2L2 (a ferroptosis inhibitor), promoting ferroptosis. MIR28, MIR153- 
3p, etc. also target NFE2L2 directly or indirectly, again promoting ferroptosis. 
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5.2. LncRNAs and ferroptosis 

The other subgroup of ncRNAs, i.e., lncRNAs, which are 200 nucle-
otides or more in length, significantly interfere with gene expression 
modulation at transcriptional, translational, and post-translational 
levels by connecting to DNA, mRNA, proteins, or even miRNA tran-
scripts [113,114]. Traditionally, lncRNAs have been defined by the 
absence of protein-coding capacity. However, recent bioinformatic an-
alyses have identified open reading frames (ORFs) within lncRNA se-
quences, suggesting potential coding ability [115]. Furthermore, studies 
have shown a significant correlation between some lncRNAs and ribo-
somes, hinting at the possibility of lncRNAs harboring coding regions for 
short peptides [116]. 

Supporting this notion, analyses of ribosome profiling data revealed 
that 40% of lncRNAs and pseudogene RNAs in human cells undergo 
translation. Mass spectrometry data further confirmed the translation of 
lncRNAs into small peptides [117,118]. For instance, the lncRNA 
HOXB-AS3 (HOXB cluster antisense RNA 3) encodes a functional 
53-amino acid peptide that can suppress colon cancer cell growth [119]. 
Notably, translated lncRNAs exhibit preferential cytoplasmic localiza-
tion, whereas untranslated lncRNAs are predominantly nuclear [117]. 
The translational efficiency of cytoplasmic lncRNAs is similar to that of 
mRNAs, suggesting active ribosomal engagement. However, the func-
tionality of most lncRNA-derived peptides remains unclear, as they 
might be unstable byproducts [118]. The evaluation of lncRNA coding 
potential is inherently challenging due to their structural similarities to 
mRNAs. Additionally, coding sequences can reside within introns or 
overlapping exons of other genes, further complicating the analysis. 
With only a small fraction of lncRNA-encoded products functionally 
characterized, a vast landscape of potential lncRNA-derived peptides 
awaits exploration [120]. Ferroptosis is one of the key cellular processes 
regulated by lncRNAs within cancer cells (Fig. 4) (Table 2). For example, 
CBS (cystathionine beta-synthase), a potential target for ferroptosis 
modulation, is regulated by the lncRNA LINC00336 (long intergenic 
non-protein coding RNA 336) in a positive manner, which in turn trig-
gers cysteine production through trans-sulfuration flux and blocks fer-
roptosis in lung tumor cells. By binding to MIR6852, LINC00336 can 
also increase the suppressive effects of the CBS axis on ferroptosis [121, 
122]. 

TP53 is a well-known tumor suppressor gene, being responsible for 
cell cycle arrest induction to repair DNA damage; different TP53 target 
genes have interestingly been shown to contribute to ferroptosis mod-
ulation. Mao and colleagues noticed that the lncRNA LINC00472/ 
p53RRA had the ability of interacting with G3BP1 (G3BP stress granule 
assembly factor 1) to generate a new complex, i.e., LINC00472/p53RRA- 
G3BP1. In consequence, this newly-formed complex enhances the 

intranuclear TP53 gene transcriptome content by disrupting the 
attachment of TP53 to G3BP1 [123,124]. Likewise, PVT1, another 
lncRNA, can also target TP53 in conjunction with MIR214; the targeted 
TP53 triggers ferroptosis through repressing the transcription of 
SLC7A11, as well as decreasing the cysteine levels within the cell [125]. 

LINC00618 is a lncRNA with the potential of increasing ROS and iron 
accumulation in leukemic patients, thus making cells susceptible to 
ferroptosis and its inducers. This lncRNA transcript induces ferroptosis 
in a manner depending on apoptosis [126]. Furthermore, LINC00618 
can downregulate HELLS/LSH (helicase, lymphoid specific), which 
otherwise promotes expression of SLC7A11 and blocks ferroptosis. As a 
newly recognized lncRNA, ZFAS1 (ZNFX1 antisense RNA 1; located on 
chromosome 20q13.13) has been associated with varied modulatory 
roles in an array of diseases [127]. For instance, ZFAS1 underexpression 
abolishes pharmacological lipid peroxidation during pneumonic condi-
tions [128]. In detail, ZFAS1 can serve as a competing endogenous RNA 
(ceRNA) to potentiate cell susceptibility against ferroptosis through 
sponging MIR150-5p to suppress SLC38A1 expression; SLC38A1 is 
considered a principal mediator of glutamine uptake and lipid peroxi-
dation metabolism [129]. 

Multiple processes can result in a ferroptosis blockade including 
exosome-mediated export of iron from the cells. PROM1 (prominin 1) 
and PROM2 are glycoproteins with five transmembrane domains. 
PROM1 regulates autophagy through inhibition of MTOR (mechanistic 
target of rapamycin kinase) complex 1 (MTORC1), whereas PROM2 
promotes the formation of ferritin-containing exosomes. Recently, it was 
found that PROM2 expression in bladder cancer can be induced by the 
lncRNA LINC01833/RP11-89 through sponging MIR129-5p, resulting in 
ferroptosis inhibition [130]. 

5.3. CircRNAs and ferroptosis 

CircRNAs, which are well-known for their specific closed loop 
structure, are synthesized from pre-mRNAs through back splicing or 
lariat-driven processes [131,132]. This closed ring structure makes 
circRNAs resistant to exonuclease-mediated degradation, and thus these 
ncRNA transcripts are expressed in a stable manner [133–135]. Due to 
their structural stability, multiple binding sites for miRNAs, and the 
ability to regulate cellular processes, circRNAs have attracted much 
attention in biological studies and cancer research [136–138]. 

Within this context, circRNAs are proposed to be involved in the 
modulation ferroptosis by sponging different miRNAs inside tumor cells 
(Fig. 4) (Table 3). CircTTBK2 (tau tubulin kinase 2) is one of these 
tumor-associated circRNAs that is markedly expressed in gliomas and is 
responsible for regulating tumor cell proliferation, migration, and in-
vasion [139]. This circRNA also controls cell metabolism by sponging 
MIR1283, MIR520B, MIR217, and MIR761, among which MIR761 can 
potentially modulate the ferroptotic flux in HCC via targeting MFN2 
[140–142]. ITGB8 (integrin subunit beta 8) is a specific target for 
circTTBK2 that triggers the suppression of ferroptosis in glioma cells by 
sponging MIR761 [143]. 

According to recently published evidence, ferroptosis can also be 
considered an autophagy-dependent cell death mode. For example, 
ALKBH5 (alkB homolog 5, RNA demethylase) is a major N6- 
methyladenosine (m6A) demethylase and is a principal autophagy 
blocker [144,145]. Once ALKBH5’s function in autophagy regulation is 
inhibited by the circRNA has_circ_0008367, ferroptosis is triggered in an 
autophagy-dependent manner [146]. Circ_0008035 is another 
ferroptosis-related circRNA that is overexpressed in gastric cancer. 
Mechanistically, circ_0008035 underexpression results in the suppres-
sion of gastric cancer cell proliferation, which in turn causes an increase 
in apoptosis, as well as ferroptosis. Li et al. suggest that the inhibition of 
ferroptosis in gastric cancer is due to direct targeting of MIR599 by 
overexpressed circ_0008035 through the MIR599-EIF4A1 (eukaryotic 
translation initiation factor 4A1) regulatory axis [147]. 

The mutual interaction between different circRNAs and miRNAs in 

Table 1 
MiRNAs implicated in ferroptosis regulation during gynecological and breast 
cancers.  

miRNA Cancer 
type 

Role in ferroptosis Target Reference 

MIR1-3p Ovarian Enhances the sensitivity 
of ovarian cancer cells to 
ferroptosis 

FZD7 [156] 

MIR424-5p Ovarian Negatively regulates 
ferroptosis 

ACSL4 [159] 

MIRNA660- 
5p 

Cervical Inhibits cancer cell 
ferroptosis 

ALOX15 [161] 

MIR382-5p Breast/ 
ovarian 

Promotes ferroptosis SLC7A11 
axis 

[168] 

MIR5096 Breast Promotes ferroptosis SLC7A11/ 
xCT 

[169] 

MIR499A- 
5p 

Breast Promotes ferroptosis PEDS1/ 
TMEM189 

[178] 

MIR324-3p Breast Metformin induces 
ferroptosis by 
upregulating MIR324-3p 

GPX4 axis [173]  
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ferroptosis modulation has been demonstrated by several lines of 
investigation. One recent study shows that circIL4R and circEPSTI1 can 
mediate ferroptosis regulation via the MIR541-3p-GPX4 and MIR375- 
MIR409-3p-MIR515-5p-SLC7A11 axes, respectively [148,149]. Another 
example is seen with circSNX12 that can interact with MIR224-5p to 
target FTH1 (ferritin heavy chain 1); FTH1 is a subunit of the ferritin 
complex, which negatively correlates with ferroptosis by trapping and 
then oxidizing Fe2+ ions inside cells, as well as decreasing ROS forma-
tion. It has been reported that FTH1 is significantly underexpressed in 
heart failure conditions; however, there is no evidence for the expression 
of circSNX12 in heart tissues, and its function needs to be better eluci-
dated [150,151]. 

6. The existing crosstalk between ferroptosis and non-coding 
RNAs regulates the onset and progression of female-oriented 
cancers: A focus on miRNAs, lncRNAs, and circRNAs 

6.1. The regulatory network between microRNAs and ferroptosis in 
gynecological neoplasms, as well as breast cancer 

FZD7 (frizzled class receptor 7) is activated in a wide range of ma-
lignancies and was recently found to be overexpressed in OC, which in 
turn leads to a decrease in platinum-resistant OC cells’ sensitivity to the 
ferroptotic flux, and subsequent tumor cell survival (Fig. 5) [152]. FZD7 
has the ability to regulate both canonical and non-canonical WNT 
signaling mechanisms [153]. When FZD7 is overexpressed the 
WNT-CTNNB1/β-catenin pathway is overactivated and a group of 

Fig. 4. LncRNAs and circRNAs in association with ferroptosis. lncRNAs and circRNAs have emerged as important regulators of ferroptosis pathways in cancer cells; 
understanding their specific roles may open doors for novel therapeutic strategies. In the case of lncRNAs, LINC00336 promotes ferroptosis resistance in lung cancer 
by increasing cysteine production through the CBS axis and suppressing ferroptosis-promoting miRNAs, such as MIR6852. LINC00472/p53RRA enhances TP53 gene 
expression, promoting ferroptosis. PVT1 targets TP53 in conjunction with MIR214, leading to ferroptosis by repressing SLC7A11 and lowering cysteine levels. 
LINC00618 sensitizes leukemic cells to ferroptosis by increasing ROS and iron accumulation and suppressing SLC7A11 expression. ZFAS1 acts as a competing 
endogenous RNA (ceRNA), sponging MIR150-5p to increase ferroptosis susceptibility by suppressing SLC38A1, which is a key player in glutamine uptake and lipid 
metabolism. LINC01833/RP11-89 promotes ferroptosis inhibition in bladder cancer by sponging MIR129-5p and inducing PROM2 expression, which facilitates iron 
export through ferritin-containing exosomes. Regarding the role of circRNAs, circTTBK2, as a glioma-associated circRNA, regulates ferroptosis by sponging multiple 
miRNAs, including MIR761, which can target MFN2. CircTTBK2 sponges MIR761, leading to ITGB8 upregulation and ferroptosis suppression in glioma cells. 
Circ_0008367 triggers ferroptosis in an autophagy-dependent manner by inhibiting the autophagy-promoting function of ALKBH5. Circ_0008035 inhibits ferroptosis 
in gastric cancer by directly targeting MIR599 and affecting the MIR599-EIF4A1 regulatory axis. CircIL4R and circEPSTI1 regulate ferroptosis through the MIR541-3p- 
GPX4 and MIR375-MIR409-3p-MIR515-5p-SLC7A11 axes, respectively. Eventually, circSNX12 interacts with MIR224-5p to target FTH1, encoding a regulator of iron 
homeostasis and ferroptosis susceptibility. 
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cancers, such as gastric neoplasm, will be triggered. The upregulated 
FZD7 can also provoke the onset and progression of OC depending on 
the regulation of WNT signaling [154,155]. 

The above-stated findings are also supported by in vitro analyses, as 
FZD7 overexpression enhances cell viability and survival of HO8910 or 
SKOV3 human OC cell lines that are treated with erastin or RSL3 [156]. 
Mechanistically, MIR1-3p, by binding to the FZD7 3′-UTR, directly tar-
gets FZD7 to block its expression. Conversely, the mimics of this miRNA 
transcript reduce cell viability of the corresponding OC cell lines and 
elevate the malondialdehyde (MDA; a product of polyunsaturated fatty 
acid peroxidation) levels inside the erastin- or RSL3-treated cells; 
MIR1-3p blockers exert the opposite effects, as they enhance cell 
viability and mitigate MDA levels. Thus, erastin or RSL3 induce fer-
roptosis, and MIR1-3p mimics these effects on ferroptosis, and being 
activated by these treatments, can be suppressed by FZD7 upregulation. 
Indeed, MIR1-3p increases the sensitivity of OC cells to ferroptosis 
through targeting FZD7 [156]. 

MIR424-5p is another miRNA in association with OC, which is a key 
player in suppressing ferroptosis [157,158]. MIR424-5p achieves this 
effect by silencing ACSL4, a molecule that promotes ferroptosis. When 
MIR424-5p levels decrease, ACSL4 expression increases, making ovarian 

cancer cells more susceptible to ferroptosis. This finding suggests that 
targeting ACSL4 could be an effective strategy for treating ovarian 
cancer. ACSL4 is also involved in other cancers and may be a promising 
target for broader cancer therapies [159]. 

Tumor cells and macrophages interact through exosomes. In the case 
of CC, tumor-associated macrophages may transport miRNAs to cancer 
cells, reducing their sensitivity to ferroptosis inducers [160]. A 
macrophage-secreted miRNA, MIR660-5p, suppresses ferroptosis by 
downregulating the lipoxygenase ALOX15, an enzyme involved in lipid 
metabolism [161]. MIR660 expression varies across cancer types, with 
low levels observed in CC and high levels in hepatocellular carcinoma 
and breast cancer [162,163]. Blocking the transcription factor STAT6 
(signal transducer and activator of transcription 6) suppresses 
MIR660-5p levels in tumor-associated macrophages, suggesting its 
involvement in regulating MIR660 expression. Further research is 
needed to fully understand the role of exosomes, miRNAs, and STAT6 in 
CC [161]. 

Studies suggest that targeting ferroptosis may be a promising 
approach for treating BC, as well. Triple-negative breast cancer (TNBC) 
patients, who are less responsive to traditional therapies, may be 
particularly sensitive to ferroptosis-inducing agents [164,165]. Lido-
caine, a commonly used local anesthetic, affects the development of 
various cancers, including ovarian and breast cancer. Lidocaine can 
inhibit the cellular resistance against cytotoxicity, increase apoptosis, 
and decrease cell proliferation in different types of tumor cells [166, 
167]. In one study, researchers found that lidocaine induces ferroptosis 
in both ovarian and breast cancer cells. They also demonstrated that 
lidocaine augments the expression of MIR382-5p, which downregulates 
SLC7A11 expression. The inhibition of MIR382-5p blocks 
lidocaine-mediated ferroptosis. These findings suggest that lidocaine 
may inhibit the malignant progression of ovarian and breast neoplasms 
by stimulating ferroptosis and that MIR382-5p plays a role in this pro-
cess. However, further research is needed to validate the clinical value of 
lidocaine in the treatment of these cancers [168]. Additionally in rela-
tion to SLC7A11, researchers explored how MIR5096, a miRNA that is 
expressed at a low level in human BC cells, affects BC development and 
spread [169]. They discovered that MIR5096 lowers the levels of 
SLC7A11; this lowering of SLC7A11 causes more cell death and less cell 
growth in BC cells. These researchers also observed that MIR5096 causes 
ferroptosis to be more severe in TNBC cells than in other types of BC. 
Moreover, the study showed that MIR5096 prevents tumor metastasis 
from occurring in zebrafish models with transplanted tumors [169]. 
These results indicate that MIR5096 might be a useful target for BC 
therapy, especially TNBC, by causing ferroptosis and stopping tumor 
development and expansion. More studies are required to fully 
comprehend how MIR5096 works and its potential in the clinic [169]. 

Metformin, a commonly used diabetes medication, also possesses 
anti-tumor properties; this drug inhibits the proliferation and metastasis 
of various cancers, including BC [170]. Studies suggest that metformin 
induces ferroptosis under cancer-forming circumstances. This process 

Table 2 
LncRNAs in association with ferroptosis regulation, having roles in gynecolog-
ical and breast neoplasms.  

LncRNA Cancer type Role in 
ferroptosis 

Target Reference 

ADAMTS9- 
AS1 

Epithelial 
ovarian cancer 

Attenuates 
ferroptosis 

MIR587-SLC7A11 
axis 

[184] 

CACNA1G- 
AS1 

Ovarian Inhibits 
ferroptosis 

FTH1 [183] 

ADAMTS9- 
AS1 

Endometriosis Represses 
ferroptosis 

MIR6516-5p-GPX4 
axis 

[211] 

H19 Breast Inhibits 
ferroptosis 

Downregulation of 
H19 can inhibit 
autophagy to induce 
an increase in 
ferroptosis  

RUNX1-IT1 Breast Inhibits 
ferroptosis 

IGF2BP1-GPX4 axis; [213] 
RUNX1-IT1 
promotes breast 
cancer 
carcinogenesis 
through blocking 
ferroptosis via 
elevating GPX4 

HCP5 Triple- 
negative 
breast cancer 

Inhibits 
ferroptosis 

Regulating GPX4 
expression and lipid 
ROS level 

[214] 

LINC00460 Breast Inhibits 
ferroptosis 

MIR320A-MAL2 
axis 

[217] 

LncFASA Triple- 
negative 
breast cancer 

Promotes 
cancer 
ferroptosis 

Binds to PRDX1 and 
inhibits its 
peroxidase activity 

[232]  

Table 3 
CircRNAs that are involved in ferroptosis regulation through the progression of gynecological and breast neoplasms.  

CircRNAs Cancer type Role in ferroptosis Target Reference 

circSNX12 Ovarian cancer Inhibiting ferroptosis MIR194-5p-SLC7A11 axis [234] 
hsa_circ_0007615 Ovarian cancer Knockdown of hsa_circ_0007615 in EOC cells leads to the blocking of cell proliferation, 

migration and invasion, but an increase of cell death presenting as ferroptosis 
Sponging MIR874-3p and 
moderating TUBB3. 

[237] 

circACAP2 Cervical cancer Suppresses ferroptosis MIR193A-5p-GPX4 [239] 
circLMO1 Cervical cancer Promotes cervical cancer cell ferroptosis Sponging MIR4192-ACSL4 [243] 
circEPSTI1 Cervical cancer Silencing of circEPSTI1 induces ferroptosis MIR375-MIR409-3p-MIR515-5p- 

SLC7A11 axis 
[242] 

CircRAPGEF5 Endometrial 
cancer 

circRAPGEF5 promotes the formation of TFRC with exon 4 skipping and confers 
ferroptosis resistance in EC cells 

Interaction with RBFOX2 [244] 

circ_0000643 Breast cancer Reduced cell ferroptosis MIR153-SLC7A11 axis [250] 
RHOT1 Breast cancer Inhibits ferroptosis MIR106A-5p-STAT3 axis [253] 
CircGFRA1 Breast cancer Downregulation of circGFRA1 promotes ferroptosis Sponging of MIR1228 and 

enhancing AIFM2 expression   
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involves the accumulation of Fe2+ and ROS, leading to the down-
regulation of the antioxidant enzyme GPX4 [171,172]. Metformin also 
increases the expression of MIR324-3p, a miRNA that negatively regu-
lates GPX4 expression. Based on a luciferase reporter assay, expression 
of GPX4 is blocked by a MIR324-3p mimic (promoting Fe2+ aggrega-
tion), whereas a MIR324-3p inhibitor enhances the expression of GPX4 
(suppressing Fe2+ accumulation) [173]. Both the MIR324-3p mimic and 
the MIR324-3p inhibitor have minimal effects on the expression of a 
GPX4 mutant with an altered 3′-UTR. These findings highlight the po-
tential of metformin and MIR324-3p as novel therapeutic agents for 
cancer treatment [173]. 

On another front of investigation, MIR499A-5p has been demon-
strated to play a dual role in cancer. MIR499A-5p is significantly 
underexpressed in several cancer tissues, including EC, CC, and NSCLC 
[174–176]. In this regard, once MIR499A-5p is downmodulated, tumor 
growth and metastasis are provoked. However, MIR499A-5p also has 
tumor-suppressing effects by targeting EIF4E and VAV3 (vav guanine 
nucleotide exchange factor 3) [174,176]. In BC, MIR499A-5p is associ-
ated with a significant decrease in cancer risk. PEDS1/TMEM189 
(plasmanylethanolamine desaturase 1) is involved in the synthesis of 
ether lipids, which are important for the regulation of ferroptosis [177, 
178]. PEDS1/TMEM189 underexpression sensitizes cells to ferroptosis, 
and its overexpression contrarily blocks ferroptosis [179,180]. 
PEDS1/TMEM189 is highly expressed in various human cancers, and its 
expression is correlated with the expression of GPX4 [179]. In BC cells, 
MIR499A-5p directly targets PEDS1/TMEM189 to decrease its 

expression, promoting ferroptosis. This finding suggests that 
MIR499A-5p could be a potential therapeutic target for BC by inducing 
ferroptosis and inhibiting tumor growth [178]. 

6.2. Long non-coding RNAs and other ncRNAs associated with ferroptosis 
in gynecological cancers and breast neoplasm 

As mentioned above, the growth and spread of OC is influenced by 
several molecular factors. One of them is IGF2BP1 (insulin like growth 
factor 2 mRNA binding protein 1), a protein that attaches to mRNA and 
controls its stability and translation, affecting how tumor cells grow and 
invade [181,182]. Another factor is CACNA1G-AS1, a long RNA mole-
cule that does not code for proteins but interacts with IGF2BP1 and 
increases the expression of FTH1, an enzyme that regulates iron levels. 
m6A methylation of FTH1, which correlates with a poor cancer prog-
nosis, is linked with CACNA1G-AS1. High FTH1 expression makes cells 
more resistant to ferroptosis, which implies that interfering with the 
methylation of FTH1, especially the CACNA1G-AS1-IGF2BP1 pathway, 
could be a potential treatment for OC patients [183]. In addition, re-
searchers also explored if the lncRNA ADAMTS9-AS1, can control the 
expression of SLC7A11 and prevent ferroptosis in OC cells by competing 
with MIR587 [184]. Their in vitro experiments showed that ADAMT-
S9-AS1 indeed prevents ferroptosis in OC cells by affecting the 
MIR587-SLC7A11 pathway. It was also discovered that ADAMTS9-AS1 is 
overexpressed in OC cells, especially in the OVCAR3 and CAOV-3 cell 
lines. Moreover, reducing ADAMTS9-AS1 in OC cells stops their growth 

Fig. 5. The interplay between ferroptosis and miRNAs, lncRNAs, and circRNAs relative to the pathogenesis and progression of female-specific neoplasms. TAM, 
tumor-associated macrophage. See Tables 1–3 for further information. 
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and movement by increasing ferroptosis. This result agrees with findings 
in other cancers, implying that ADAMTS9-AS1 may have a wider role in 
controlling cancer cell behavior. The study’s findings are backed up by 
the idea of ceRNAs [185,186]. Fang et al. showed that ADAMTS9-AS1 
can reduce the invasive behavior of BC cells by competing with 
MIR513A-5p and controlling ZFP36 (ZFP36 ring finger protein) 
expression, which correlates with an improved OS [187]. This finding 
supports the idea that ADAMTS9-AS1 can change cellular processes by 
interfering with small RNA regulation [184]. 

In OCs, ferroptosis is also enhanced by the interaction of lncRNA 
LINC00472/P53RRA and G3BP1, which prevents the tumor suppressor 
protein TP53 from exiting the nucleus. In lung cancer, the lncRNA 
LINC00336 prevents the formation of ferritin [188]. We know that the 
HIF1A (hypoxia inducible factor 1 subunit alpha) signaling pathway 
stimulates tumor growth and spread by controlling various signaling 
molecules. The response of OC cells that are resistant to cisplatin can be 
improved by reducing HIF1A [189,190]. The lncRNAs TLR8-AS1 and 
LBX2-AS1 are linked to OC spread and resistance to chemotherapy 
drugs, and they could be used as targets for therapy or diagnosis 
[191–193]. A relevant study found 11 lncRNAs related to ferroptosis 
that are increased in OC tissues, indicating their role in OC growth and 
expansion. These lncRNAs could be potential targets for OV therapy 
[194]. 

In order to help patients with OC make treatment decisions and 
predict their prognosis, a research team discovered a signature con-
sisting of eight ferroptosis and iron-metabolism related lncRNAs (FIRLs) 
[195]. Included in the signature are the following FIRLs: AC083880.1, 
LINC01558, AL023583.1, AP005205.2, AC007114.1, LINC00665, and 
AC138904.1. To visualize the FIRLs and make their interpretation 
easier, the researchers created two nomograms in addition to the 
signature [195]. The potential of a multi-label fusion collaborative 
matrix factorization/MLFCMF approach with an area under the cur-
ve/AUC value of 0.8612 has been shown in previous research for pre-
dicting lncRNA-disease associations [196]. Furthermore, studies on OC 
cell lines have looked into the function of a number of FIRLs, including 
TONSL-AS1 [197], SNHG20 (small nucleolar RNA host gene 20) [198], 
and MSC-AS1 [199]. Still, not much research has been done on the 
function of FIRLs in the creation of OC risk signatures. This study lays 
the groundwork for upcoming in vivo and in vitro assays and offers a 
significant step toward comprehending the prognostic significance of 
FIRLs in OC [195]. 

Beyond the OC, CCs are often diagnosed at an advanced stage, 
making it difficult to treat effectively [200]. Ferroptosis-related lncRNAs 
have been studied in other cancers, but their role in CC prognosis is 
poorly understood. Researchers constructed a co-expression network of 
ferroptosis-related genes and lncRNAs, identifying 1393 lncRNAs with 
ferroptosis-related functions. Using these lncRNAs, they developed a 
prognostic model for CC [201]. The model showed that AC099568.2 was 
the most consistently associated lncRNA with CC prognosis across 
different stages of the disease. This suggests that AC099568.2 may be a 
valuable prognostic biomarker and may play a role in CC development. 
The CC prognostic model developed in this study also shows superior 
predictive accuracy compared to other prognostic models [202,203], 
highlighting its potential as a valuable tool for improving CC patient 
outcomes [201]. 

Classifying ferroptosis-related gene expression in CC patients was 
essential due to the importance of ferroptosis in CC immune modulation 
and the heterogeneity of ferroptosis phenotype in individual CC cells. 
The low-ferroptosis score (FerroScore) group shows significantly higher 
expression of immune checkpoints CTLA4 (cytotoxic T-lymphocyte 
associated protein 4) and PDCD1 (programmed cell death 1) compared 
to the high-FerroScore group [204]. This observation suggests that 
low-FerroScore patients may benefit more from checkpoint blockade 
therapy, which is consistent with the predictions of the submap algo-
rithm. It has been proposed that combining immune checkpoint in-
hibitors with ferroptosis inducers could be a promising therapeutic 

strategy, leading to the development of novel combination therapies and 
immunotherapeutic agents [205]. 

Three other ferroptosis-associated lncRNAs were also affirmed to be 
expressed in CC samples [206–208]. Of these lncRNAs, AC026790.1 
underwent additional validation in multiple ferroptosis-related experi-
ments. Ferroptosis-related markers such as MDA, Fe2+, and ROS levels 
are found to increase in cells overexpressing AC026790.1 in comparison 
to the control group, indicating that AC026790.1 promotes 
erastin-induced ferroptosis [205]. The results show that AC026790.1 
may be an important molecule in controlling ferroptosis in CC and may 
represent a viable target for CC treatment. For CC patients, combining 
lncRNA analysis with FerroScore may enhance patient prognosis and 
enable individualized treatment [205]. 

In the case of EC, the levels of ADAMTS9-AS1, as a subtype of lncRNA 
family, are much higher in EC than in normal endometrium cells [209]. 
ADAMTS9-AS1 not only prevents ferroptosis and enhances endometrial 
stromal cell (ESC) movement and growth, but also acts as a ceRNA that 
absorbs MIR6516-5p [210,211]. By doing so, ADAMTS9-AS1 boosts the 
production of GPX4, an essential enzyme that protects cells from fer-
roptosis. These findings highlight the significance of the ADAMT-
S9-AS1-MIR6516-5p-GPX4-ferroptosis pathway in regulating the 
survival and migration of embryonic stem cells [211]. This pathway 
could also be a potential therapeutic target for ectopic endometrium 
treatment. The pathophysiology of ectopic pregnancy has been 
demonstrated to involve the lncRNA ADAMTS9-AS1. In contrast to 
normal endometrium cells (euEM), ectopic endometrium cells (ecEM) 
exhibit significantly higher expression of ADAMTS9-AS1 [209]. Func-
tional studies were carried out in both human and mouse models to 
examine the biological role of ADAMTS9-AS1 in ectopic pregnancy. The 
researchers discovered that whereas overexpressing ADAMTS9-AS1 en-
hances cell viability and migration, inhibiting its expression in endo-
metrial stem cells decreases these properties. ADAMTS9-AS1 may 
activate ecEMs, according to these results [211]. Also, by sponging 
MIR6516-5p, ADAMTS9-AS1 functions as a ceRNA. Furthermore, GPX4 
is negatively regulated by the miRNA MIR6516-5p. ADAMTS9-AS1 
protects ecEMs from ferroptosis by sponging MIR6516-5p, which delays 
the degradation of GPX4, resulting in elevated GPX4 expression. Ac-
cording to these results, the miRNA-GPX4 axis is the mechanism by 
which ADAMTS9-AS1 controls ferroptosis resistance [211]. Through the 
regulation of MIR6516-5p-GPX4-dependent ferroptosis, ADAMTS9-AS1 
also expedites the proliferation and migration of ESCs. The development 
of novel treatment approaches for ectopic pregnancy may result from 
these findings, which offer fresh perspectives on the function of 
ADAMTS9-AS1 [211]. 

Researchers found that in ecEM cells as opposed to euEM cells, nine 
differentially expressed lncRNAs (DEFerlncRNAs) are present. They then 
employed Cox regression analysis to create a prognostic model for 
ectopic pregnancy based on these nine DEFerlncRNAs. Based on the 
analysis, it was found that the DEFerlncRNA prognostic model is a more 
effective, sensitive, and specific prognostic index in EC [212]. Further-
more, the researchers employed Gene Set Enrichment Analysis/GSEA to 
detect differentially expressed genes between the two groups (ecEM and 
euEM). They discovered that these differentially expressed genes are 
functionally enriched in a set of pathways, such as the Hedgehog 
signaling pathway, apoptotic flux, extracellular matrix receptor inter-
action, and natural killer cell-mediated cytotoxicity, along with others. 
For the purpose of predicting the prognosis of EC and 
immune-infiltrating conditions, the researchers also discovered a 
9-lncRNA model, which includes CFAP58-DT (CFAP58 divergent tran-
script) [212]. The lncRNA in the model with the highest coefficient is 
CFAP58-DT, and poor EC outcomes are associated with high CFAP58-DT 
expression. Researchers knocked down CFAP58-DT expression in 
HEC-1A and Ishikawa cells to further explore the function of CFAP58-DT 
in EC. They discovered that this significantly decreases cell viability, 
invasion, and migration abilities. These results imply that CFAP58-DT 
might contribute to EC carcinogenesis. Nonetheless, to clarify the 
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mechanisms behind this lncRNA’s effects on EC cells and to confirm its 
role in EC, more clinical research is necessary [212]. 

For another female-oriented malignancy, i.e. BC, the GEO, TCGA, 
and related cohorts reveal that RUNX1-IT1 (RUNX1 intronic transcript 
1) is overexpressed in BC tissues [213]. It was also discovered that 
RUNX1-IT1 inhibition blocks tumor growth in vivo, as well as BC cell 
invasion and proliferation in vitro. Further research shows that RUN-
X1-IT1 directly binds to IGF2BP1 and promotes the formation of ribo-
nucleoprotein condensates. Because of this binding, IGF2BP1 is able to 
bind to GPX4 mRNA with greater tenacity, preventing GPX4 mRNA 
degradation. Consequently, the elevated GPX4 protein promotes BC 
tumorigenesis by obstructing ferroptosis and lipid peroxidation. These 
results point to RUNX1-IT1 as a novel oncogenic lncRNA [213]. In 
addition, the research suggests that the development and progression of 
breast cancer are caused by dysregulation of the RUNX1-I-
T1-IGF2BP1-GPX4 axis. Furthermore, it was demonstrated that by 
controlling the IGF2BP1-GPX4 axis, RUNX1-IT1 inhibits ferroptosis and 
thus promotes BC tumorigenesis. This discovery offers a possible ther-
apeutic target and prognostic marker for BC [213]. 

According to the findings of a relevant study, the 132-amino acid 
protein HCP5-132aa, which is encoded by the lncRNA HCP5, regulates 
the ferroptosis pathway and contributes to the advancement of TNBC 
[214,215]. Scientists discovered that GPX4 is expressed at a lower level 
when the HCP5-132aa ORF is knocked down. Elevated levels of ROS, a 
characteristic of ferroptosis, are caused by this decrease in GPX4 activity 
[214]. They also discovered that when the HCP5-132aa ORF is knocked 
down, the effects are akin to those of the drug erastin, which causes 
ferroptosis, by increasing mitochondrial membrane density and 
decreasing mitochondrial crest. Moreover, they demonstrated that the 
ferroptosis activators RSL3 and erastin stimulate cells, which results in 
the highest ROS levels that are directly elevated by knocking down the 
HCP5-132aa ORF. Using ferroptosis inhibitors and overexpressing 
HCP5-132aa can counteract this effect. The results of their research 
point to HCP5-132aa as a potential therapeutic target for TNBC, as well 
as a novel prognostic factor for the disease [214]. 

In BC tissues, the lncRNA LINC00460 has a higher expression level 
than in normal breast tissues [216]. This lncRNA enhances the growth 
and survival of BC cells by preventing ferroptosis. LINC00460 increases 
the expression of MAL2 (mal, T cell differentiation protein 2), a protein 
that belongs to the MAL family and is associated with cancer develop-
ment, by binding to MIR320A [217]. The effects of LINC00460 inhibi-
tion on BC cell proliferation and ferroptosis are reversed by MAL2 
overexpression. These results indicate that the LINC00460-MAL2 
pathway could be a new indicator and treatment option for BC [217]. 

Another group of researchers revealed that four lncRNAs 
LINC01152, AC004585.1, MAPT-IT1, and AC026401.3 have a signifi-
cant relation to BC prognosis [218]. Low expression of LINC01152 is 
linked to poor OS in patients. The study also showed that MAPT-IT1 has 
a significant association with BC OS. BC has a higher expression of 
AC026401.3, which suggests that AC026401.3 could be a prognostic 
marker for BC [216,219,220]. These results imply that these four 
lncRNAs could be potential indicators of BC prognosis [218]. 

Largely found in the cytoplasm, the lncRNA H19 (H19 imprinted 
maternally expressed transcript) is responsible for regulating a number 
of different biological functions. For example, H19 is necessary for 
embryonic development and growth and is involved in controlling the 
expression of other genes via a variety of processes [221]. Many human 
cancers have been related to elevated H19 expression, indicating that 
H19 may be a promising target for treatment. H19 can boost ferroptosis 
by preventing autophagy [222]. This revelation emphasizes the function 
of H19 in controlling cellular fate and clarifies the intricate relationship 
between autophagy and ferroptosis. In human tissues and plasma, H19 
also shows stability, which makes it a viable biomarker and therapeutic 
target for the treatment of cancer. Taken together, these data offer a 
theoretical framework for comprehending the function of H19 in the 
genesis of cancer and the medicinal possibilities of metformin, a 

medication that that causes ferroptosis [223]. 
A specific evaluation performed by Fan et al. identified the lncRNA 

LncFASA as a tumor suppressor in triple-negative breast cancer (TNBC) 
[224]. They reported that LncFASA increases TNBC susceptibility to 
ferroptosis. Mechanistically, LncFASA directly binds to the Ahpc-TSA 
domain of PRDX1 (peroxiredoxin 1), a peroxidase enzyme. This bind-
ing drives the formation of PRDX1-containing droplets and disrupts its 
peroxidase activity through liquid-liquid phase separation. Conse-
quently, LncFASA disrupts intracellular ROS homeostasis, leading to 
lipid peroxidation accumulation via the SLC7A11-GPX4 axis. Notably, 
high LncFASA expression correlates with improved overall survival in 
breast cancer patients. Furthermore, LncFASA impedes the growth of 
breast xenograft tumors by promoting ferroptosis, highlighting its po-
tential as a therapeutic target [224]. 

Twenty-one ferroptosis-related lncRNAs were found to be correlated 
with recurrence-free survival (RFS) in BC patients. To predict the 
recurrence of BC, these lncRNAs may combine to form a new signature. 
Among the 21 lncRNAs, LINC01235 is particularly significant because 
aggressive BC cells express a high level of this gene [225]. Another 
lncRNA in the signature, LINC02166, is also implicated in autophagy 
and has the potential to enhance the prognostic significance of BC [84]. 
It is still unclear what other lncRNAs do in BC. In a different study, re-
searchers looked at the TCGA-BRCA cohort’s expression of 
ferroptosis-related lncRNAs and selected lncRNAs linked to OS in BC 
patients [226]. CYTOR (cytoskeleton regulator RNA) is overexpressed in 
colorectal cancer samples and is linked to a poorer prognosis. This 
suggests that CYTOR may have an impact on proliferation and metas-
tasis [227]. Another lncRNA that was studied, USP30-AS1, is also linked 
to a longer overall survival in patients with cervical cancer. The study’s 
findings add to our understanding of lncRNA involvement in BC [228]. A 
notable upsurge is observed in LINC01235 and LINC02166 in breast 
cancer cell lines [229,230]. More investigation is required to elucidate 
the precise biological roles of these lncRNAs, which may play a signif-
icant role in the development of tumors. Ferroptosis-related lncRNA 
models developed in this work also provide hints regarding the molec-
ular mechanisms underlying ferroptosis. The lack of stratification 
analysis based on BC molecular subtypes and the limited validation 
using external databases, however, could introduce biases into the re-
sults and therefore call for more research [225]. 

Together, it is possible to determine the prognosis of BC and possibly 
uncover the underlying mechanisms of lncRNAs in ferroptosis by 
examining the ferroptosis-associated lncRNAs found in different studies. 
With respect to accurately predicting how BC patients will react to 
immunotherapy, the developed predictive model shows great promise. 
To verify the model using separate datasets and determine whether it 
applies to various BC molecular subtypes, more research is necessary 
[231]. 

6.3. Circular RNAs also interfere with ferroptosis to control the onset and 
progression of female-oriented cancers 

As substantial regulators of chemosensitivity in a variety of cancers, 
circRNAs have come to light [233]. Researchers examined whether the 
ferroptosis-regulating circRNA circSNX12 aids in cisplatin resistance in 
OC in light of the increasing significance of ferroptosis in cancer treat-
ment [234]. It was observed that OC tissues and cisplatin (DDP)-resist-
ant cells have considerably higher levels of circSNX12. Ferroptosis is 
improved and DDP sensitivity is regained in DDP-resistant OC cells by 
reducing circSNX12 expression [234]. Additionally, DDP’s anti-tumor 
efficacy in vivo is improved by pharmacologically suppressing 
circSNX12 via viral shRNA delivery. These results show that chemo-
resistance in OC can be effectively prevented in vitro and in vivo by 
downregulating circSNX12. Researchers determined that MIR194-5p 
might be circSNX12’s target by using bioinformatic analysis [234]. 
Several malignancies have been linked to MIR194-5p as a mechanism of 
chemo-resistance. The researchers found that MIR194-5p regulates ZEB1 
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(zinc finger E-box binding homeobox 1) and MDM2 (MDM2 
proto-oncogene) expression in OC cells, which supports earlier findings 
[235,236]. Additionally, they noticed that through sequestering 
MIR194-5p, circSNX12 increases the expression of SLC7A11 in OC. 
MIR194-5p′s exact function in OC DDP resistance is still unknown. The 
researchers did note, however, that in DDP-resistant OC tissues, 
MIR194-5p expression is repressed. To fully understand the mechanisms 
by which circRNA-miRNA interactions affect cancer will require addi-
tional research [234]. 

To determine which circRNAs are overexpressed in OC, researchers 
looked at the publicly accessible dataset GSE192410. Using 113 OC 
tissues, along with the corresponding normal tissues as a patient cohort, 
they assessed the expression levels of a particular circRNA, hsa_-
circ_0007615. They verified that hsa_circ_0007615 has a prognostic value 
for predicting the overall survival and recurrence of OC patients by 
examining clinical parameters, Kaplan-Meier curves, and Cox propor-
tional hazards models [237]. With OC cell lines, the researchers per-
formed cell-based experiments to evaluate the functional implications of 
hsa_circ_0007615. Assays for cell proliferation, transwell migration, and 
cell death were used to examine the consequences of hsa_circ 0007615 
knockdown [237]. Based on their research, they discovered that hsa_-
circ_0007615 knockdown promotes ferroptosis while suppressing inva-
sion, migration, and proliferation of cells. Notably, blocking the 
regulatory microRNA MIR874-3p can counteract the tumor-suppressive 
effect of hsa_circ_0007615 knockdown. MIR874-3p targets TUBB3 
(tubulin beta 3 class III), a gene involved in cell proliferation and 
microtubule stability. All things considered, hsa_circ_0007615 may be a 
useful biomarker for OC prognosis, and its suppression can halt the 
growth of tumors. By controlling TUBB3 and sponging MIR874-3p, 
hsa_circ_0007615 may mechanistically aid in the advancement of OC. 
Hsa_circ_0007615 may thus prove to be the basis for a useful treatment 
[237]. 

In the development of some cancers, the circRNA circACAP2 is 
essential. Research has demonstrated that MIR143-3p regulates HK2 
(hexokinase 2) expression, thereby promoting invasion and migration of 
neuroblastoma cells [238]. Through its interaction with MIR193A-5p 
and impact on GPX4 expression, circACAP2 modulates cancer cell fer-
roptosis. Scavenging ROS is a key function of GPX4, which helps shield 
cells from ferroptosis [239]. Reduction of cell viability and elevation of 
ROS, Fe2+, and iron levels are observed in CC cells upon downregulating 
circACAP2 with siRNAs. By inhibiting ferroptosis, these results imply 
that circACAP2 aids in the advancement of CC. Additionally, circACAP2 
functions as a MIR193A-5p ceRNA, targeting and downregulating GPX4 
expression. circACAP2 indirectly promotes GPX4 expression and shields 
cells from ferroptosis by sequestering MIR193A-5p [239]. CircaCAP2 
knockdown-induced inhibition of cell viability may be mitigated by 
overexpressing GPX4 or inhibiting MIR193A-5p. GPX4 and circACAP2 
have elevated expression in CC tissues, whereas the expression of 
MIR193A-5p is downregulated. These data imply that a potential ther-
apeutic target for CC treatment may be the circACAP2-MIR193-
A-5p-GPX4 axis [239]. 

Prior studies have demonstrated that circEPSTI1 stimulates the 
growth of CC cells by controlling the ferroptosis mediated by SLC7A11. 
Additionally, circEPSTI1 is essential for the invasion and metastasis of 
cancer [240]. Research has shown that circEPSTI1 controls the expres-
sion of EPSTI1 and influences the progression of OC through MIR942, 
and it also modulates the apoptosis and proliferation of BC through the 
ceRNA mechanism of MIR6809-MIR4753 [241]. Nevertheless, the pre-
cise function of circEPSTI1 in CC remains incompletely understood. A 
recent study looked into circEPSTI1’s function in CC. In comparison to 
normal cells, the researchers observed that CC cell lines have higher 
levels of circEPSTI1 expression. They also showed that the growth of CC 
cell lines is markedly repressed by circEPSTI1 knockdown using siRNAs 
[242]. Furthermore, in mouse xenograft models of HeLa cell lines, cir-
cEPSTI1 silencing inhibits the growth of tumors. According to these re-
sults, circEPSTI1 functions as an oncogene and may present a therapeutic 

target worth pursuing in the management of CC. The mechanism by 
which circEPSTI1 works was further examined. It was discovered that 
MIR375, MIR409-3p, and MIR515-5p are sequestered by circEPSTI1, 
which functions as a ceRNA [242]. These microRNAs target and sup-
press the expression of the ferroptosis-related gene SLC7A11. Through 
the sequestration of these miRNAs, circEPSTI1 suppresses ferroptosis 
and indirectly increases the expression of SLC7A11, both of which are 
involved in CC cell proliferation [242]. 

Subsequent research revealed that ferrostatin-1/Fer-1 significantly 
blocks circLMO1-induced cell death, suggesting that circLMO1 causes 
ferroptosis to trigger cell death in CC cells [243]. It was discovered that 
circLMO1 does not control SLC7A11 expression, in contrast to an earlier 
study. Rather, circLMO1 sequesters MIR4291 to cause ferroptosis, which 
in turn causes CC cells to express ACSL4 more abundantly. As antici-
pated, the promotion of ferroptosis by circLMO1 is effectively countered 
by overexpressing MIR4291 or downregulating ACSL4 [243]. The results 
indicate that circLMO1 is downregulated in cancerous cells, and its 
overexpression suppresses the growth and metastasis of CC by encour-
aging ferroptosis mediated by MIR4291-ACSL4. For the purpose of 
creating therapeutic approaches for the treatment of CC, this mechanism 
offers a fresh target [243]. 

With regard to the gynecological malignancy endometrial cancer, 
tumor cells have significantly higher levels of the circRNA circRAPGEF5, 
which is primarily concentrated in the nucleus [244]. Researchers found 
that circRAPGEF5 increases EC cell proliferation and resistance to fer-
roptosis through gain-of-function and loss-of-function experiments. By 
controlling the RNA binding protein RBFOX2 (RNA binding fox-1 ho-
molog 2) splicing activity toward the TFRC (transferrin receptor) 
pre-mRNA, circRAPGEF5 exhibits its pro-tumor effects. circRAPGEF5 can 
directly bind to the RBFOX2 protein’s Fox-1 C-terminal domain, 
significantly lowering RBFOX2’s binding to downstream genes’ 
pre-mRNAs [244]. Prior work conducted by Hilmar and colleagues 
showed that MALT1 (MALT1 paracaspase), a protease involved in the 
BCR (BCR activator of RhoGEF and GTPase)-NFKB signaling pathway, 
has its splicing regulation controlled by RBFOX2. This discovery was 
expanded upon in this study by demonstrating that RBFOX2 is also 
essential for the splicing of the transcripts of multiple other genes, such 
as TFRC, ANXA2, EIF5A, ITGAE, SIKE1, and TSPO, in EC cells. Further-
more, it was found that RBFOX2’s ability to splice these target genes is 
diminished by a direct binding of the circular RNA circRAPGEF5. The 
formation of alternative splicing isoforms that facilitate tumor pro-
gression is a result of circRAPGEF5 binding to RBFOX2. More research is 
necessary to determine the exact molecular mechanism by which cir-
cRAPGEF5 blocks RBFOX2 splicing activity [244]. 

Furthermore, the phosphoinositide 3-kinase (PI3K) signaling 
pathway and the inactivation of the PTEN (phosphatase and tensin ho-
molog) tumor suppressor gene, which are common characteristics of 
many cancers, have been demonstrated to make human cancer cells 
resistant to ferroptosis [245]. Furthermore, when the PI3K-AKT (AKT 
serine/threonine kinase)-MTOR signaling pathway is inhibited, cancer 
cells are generally more vulnerable to ferroptosis [245]. According to 
these findings, endometrial cancer often exhibits dysregulation of the 
PI3K-AKT-MTOR pathway, and the majority of ECs have PTEN gene 
inactivating mutations, which are present in up to 83% of endometrioid 
tumors [246]. These data lead us to hypothesize that circRAPGEF5 could 
sequester RBFOX2 and thereby desensitize EC cells to ferroptosis. This 
novel mechanism may contribute to the resistance of EC cells to fer-
roptosis, suggesting that circRAPGEF5 may be a viable therapeutic target 
for the treatment of this disease [244]. 

Other than the genital tract malignancies, to find better ways for 
treating ERBB2/HER2-positive BC patients, it is crucial to understand 
why some of them become resistant to trastuzumab, a drug that is often 
used for this type of cancer [247]. Researchers found that a circular RNA 
molecule called circBGN is very abundant in trastuzumab-resistant 
breast cancer tissues and is associated with poor prognosis [248]. 
CircBGN promotes ferroptosis by increasing the interaction between 
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OTUB1 (OTU deubiquitinase, ubiquitin aldehyde binding 1) and 
SLC7A11 and the level of SLC7A11 protein. This ferroptosis is not 
affected by inhibitors of other cell death pathways, such as apoptosis, 
necroptosis, or autophagy, suggesting that it is specifically related to 
trastuzumab resistance. Moreover, the ferroptosis inducer erastin can 
make breast cancer cells more sensitive to trastuzumab, and this effect is 
enhanced when circBGN is knocked down. These findings suggest that a 
new strategy to overcome trastuzumab resistance in 
ERBB2/HER2-positive breast cancer patients could be to target the 
circBGN-OTUB1-SLC7A11 pathway and use ferroptosis inducers 
together with trastuzumab [248]. 

One transcription factor involved in the development of BC is FOXQ1 
(forkhead box Q1) [249]. Prior research has demonstrated that FOXQ1 
can accelerate the growth of tumors by upregulating the expression of 
ferroptosis-inhibiting genes SLC7A11 and GPX4. Nevertheless, it is still 
unknown how FOXQ1 controls SLC7A11. The authors of this study 
examined the function of FOXQ1 in controlling SLC7A11 and discovered 
that FOXQ1 can upregulate the expression of circ_0000643, a circular 
RNA that interacts with MIR153, to control the expression of SLC7A11 
[250]. Additionally, the authors demonstrated that FOXQ1 can directly 
bind to the circ_0000643 host gene’s promoter to boost transcription of 
that gene. The development of novel therapeutic approaches for breast 
cancer may aim to target this mechanism [250]. 

BC progression has also been demonstrated to be influenced by 
circ0052112, circ0001982, and circ0072309. The targets of these circular 
RNAs increase invasion and migration of BC cells, inhibit MIR143 to 
enhance carcinogenesis, and regulate MIR492 to suppress invasion and 
proliferation, respectively, in BC cells [104,251,252]. Not only does 
circRHOT1 suppress apoptosis and ferroptosis in BC cells, but it also 
stimulates the invasion, migration, and multiplication of these cells by 
controlling SLC7A11. Thus, circRHOT1 may be a target for breast cancer 
treatment [253]. Mechanistically, by enclosing MIR106A-5p, circRHOT1 
suppresses ferroptosis in BC cells. In these cells, MIR106A-5p induces 
ferroptosis by targeting STAT3 (signal transducer and activator of 
transcription 3). The inhibition of proliferation and enhancement of 
apoptosis caused by circRHOT1 depletion in BC cells are reversed by 
overexpression of STAT3 and inhibition of MIR106A-5p. These results 
provide new evidence that the circRHOT1-MIR106A-5p-STAT3 signaling 
pathway is important in controlling the progression of BC and uncover a 
correlation between circRHOT1, MIR106A-5p, and STAT3 [253]. 

In order to help BC cells withstand the cell death brought on by 
ferroptosis, researchers have identified a new system against ferroptosis 
involving AIFM2/FSP1 (apoptosis inducing factor mitochondria asso-
ciated 2). Due to its sponging of MIR1228, circGFRA1 can control the 
expression of AIFM2. The increase in AIFM2 levels prevents ERBB2/ 
HER2-positive BC cells from undergoing ferroptosis [254]. Through 
the reduction of CoQ10 (coenzyme Q10), an endogenous antioxidant 
that inhibits ferroptosis, by NAD(P)H, AIFM2 has an anti-ferroptosis 
effect [255,256]. Another route that keeps cells safe from ferroptosis 
is the GSH-GPX4 system. Researchers discovered that 
ERBB2/HER2-positive BC cells have higher expression of GPX4, AIFM2, 
and the glutathione-level indicator GSH:GSSG ratio. 
ERBB2/HER2-positive breast cancer treatment may benefit from tar-
geting these pathways as a therapeutic approach [254]. 

7. Ferroptosis and ncRNAs: exploring therapeutic strategies, 
limitations, and directions of improvement that could be further 
investigated 

Ferroptosis has been implicated in various pathologies including 
neurodegeneration, organ fibrosis, and ischemia-reperfusion injuries 
[65,257,258]. Notably, cancer cells are particularly susceptibility to 
ferroptosis [259,260]. Mesenchymal and dedifferentiated cancer cells, 
often resistant to traditional therapies and apoptosis, are highly sus-
ceptible to ferroptosis inducers, suggesting its potential to overcome 
therapeutic resistance. 

Several strategies are being explored to exploit ferroptosis for cancer 
therapy. Targeting key ferroptosis enzymes in cancer cells is one 
approach. Pharmacological and genetic inhibition of the cystine/gluta-
mate antiporter/xCT, achieved by blocking SLC3A2 and SLC7A11, has 
yielded promising results in preclinical models with minimal toxicity 
[14,261,262]. Similarly, targeting AIFM2/FSP1 is a promising avenue 
due to its dispensability in normal development, suggesting a potentially 
broad therapeutic window [263,264]. 

However, GPX4, another ferroptosis target, is crucial for healthy 
tissues including renal cells and neurons [265–267]. Clearly, GPX4 in-
hibitors (e.g., RSL3) require specific delivery to cancer cells to minimize 
side effects. Indirect ferroptosis inducers such as erastin may suffer from 
low solubility and rapid metabolic breakdown [268]. Encapsulation of 
ferroptosis inducers within protective delivery systems, such as nano-
particles, is being explored to address this issue. 

Nanoparticle-based delivery of iron, peroxides, and ncRNAs target-
ing inhibitors of ferroptosis are actively being investigated in vitro and 
in vivo. NcRNAs, in particular, offer several advantages. They are 
naturally occurring cellular molecules, potentially leveraging existing 
metabolic pathways. Additionally, ncRNAs often target multiple genes 
across interconnected pathways, leading to a broader yet specific anti- 
cancer response — exemplified by the MIR15-MIR16 cluster, which 
regulates multiple anti-apoptotic and cell cycle proteins [269]. Even-
tually, ncRNA therapeutics hold promise for cost-effective production 
through chemical synthesis. 

Despite these advantages, ncRNA-based ferroptosis therapies face 
potential limitations. First, the regulation of tumorigenesis through 
ncRNA-mediated ferroptosis may have restricted efficacy. Second, in-
dividual variations in ncRNA expression and response to therapeutic 
interventions pose a challenge for predictability. Third, achieving a 
balance between promoting ferroptosis for tumor suppression and pre-
venting chemoresistance using ncRNAs requires further investigation. 
Consequently, further research is necessary to explore the clinical po-
tential of targeting ferroptosis-related ncRNAs. 

Our understanding of ferroptosis remains incomplete, with several 
key questions unanswered. The precise relationship between ferroptosis 
and other regulated cell death pathways, such as TP53-mediated 
apoptosis, with share some upstream mechanisms, requires further 
elucidation. While iron is a key player in ferroptosis, the possibility of 
redox-independent roles for iron and the involvement of other metals 
such as copper necessitate further investigation. Additionally, a 
comprehensive understanding of the molecular events leading to fer-
roptosis execution is lacking. This knowledge gap is particularly pro-
nounced concerning the downstream events following lipid 
peroxidation, especially the critical point(s) beyond which ferroptosis 
becomes irreversible. 

Furthermore, the lack of specific markers for identifying ferroptosis 
in live cells and intact tissues presents a significant challenge. NcRNAs, a 
diverse group of non-coding transcripts with remarkable regulatory and 
biomarker potential, remain largely unexplored in the context of fer-
roptosis and cancer. While current evidence suggests that dysregulation 
of tightly controlled ncRNA networks in cancer frequently suppresses 
ferroptosis, which promotes tumor cell survival and progression, further 
research is necessary. Nonetheless, the ability to artificially induce fer-
roptosis holds significant therapeutic promise for cancer treatment. 

8. Conclusion 

Ferroptosis is known as a newly identified regulated cell death 
mechanism, involving iron-dependent lipid peroxidation and oxidative 
stress. This type of regulated cell death has been implicated in various 
diseases, particularly cancers. This review explores the role of ferrop-
tosis in the progression of female-specific cancers, such as breast cancer 
and gynecological malignancies, and how it is regulated by ncRNAs. The 
review summarizes the current understanding of the molecular mecha-
nisms, biomarker potential, and therapeutic implications of ferroptosis 
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and ncRNAs in these cancers. Additionally, it highlights the challenges 
and promising directions for future research in this area. The authors 
conclude that ferroptosis and ncRNAs hold promise as targets for the 
diagnosis and treatment of female-specific cancers, and that further 
studies are essential to fully comprehend their intricate interactions and 
functions. 
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