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A B S T R A C T   

The agriculture sector in Egypt faces several problems, such as climate change, water storage, and 
yield variability. The comprehensive capabilities of Big Data (BD) can help in tackling the un-
certainty of food supply occurs due to several factors such as soil erosion, water pollution, climate 
change, socio-cultural growth, governmental regulations, and market fluctuations. Crop identi-
fication and monitoring plays a vital role in modern agriculture. Although several machine 
learning models have been utilized in identifying crops, the performance of ensemble learning has 
not been investigated extensively. The massive volume of satellite imageries has been established 
as a big data problem forcing to deploy the proposed solution using big data technologies to 
manage, store, analyze, and visualize satellite data. In this paper, we have developed a weighted 
voting mechanism for improving crop classification performance in a large scale, based on 
ensemble learning and big data schema. Built upon Apache Spark, the popular DB Framework, the 
proposed approach was tested on El Salheya, Ismaili governate. The proposed ensemble approach 
boosted accuracy by 6.5%, 1.9%, 4.4%, 4.9%, 4.7% in precision, recall, F-score, Overall Accuracy 
(OA), and Matthews correlation coefficient (MCC) metrics respectively. Our findings confirm the 
generalization of the proposed crop identification approach at a large-scale setting.   

1. Introduction 

Smart farming is emphasized in Egypt’s data-driven economic reform [1] affected by soil characteristics, water availability, and 
harvesting practices [2]. Crop discrimination is essential in developing smart farming systems that helps facilitate crop management 
and yield forecasting [3]. Remote sensing sensors [4] (optical and microwave) were favored in terms of cost and time in crop man-
agement and yield forecasting [5]. Understanding the characteristic of electromagnetic wavelength behavior of crop is essential in crop 
identification [6]. The electromagnetic response of a crop cover depends not only on wavelength [7], but also on season, sensor angle, 
crop status, illumination intensity, weather phenomenon and topography among other external factors. According to Ref. [8] Crop 
coefficient is varying according to growth stage and also affected by the growth stage length. The analysis shows also that Normalized 
Difference Vegetation Index (NDVI), SoilAdjusted Vegetation Index (SAVI), crop coefficient (Kc) and predicted Kc had the same trend 
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through the different growth stages. Also different approaches combines different remote sensing data sources applied for cropland 
mapping [9]. developed an approach based on GEE for accurate tree-fruits mapping by testing different temporal stacking windows, 
spectral stacking methods, and various integration scenarios between Sentinel-2 optical (S2) and Sentinel-1 SAR (S1) data as inputs to 
the Random Forest (RF) classifier. Comparative accuracy analysis showed that using time series S2 spectral bands (SBs) and S1 po-
larization channels with some added S1 textural features could use as best integration scenario that achieved the highest accuracy (OA 
= 96.31 & Kappa = 0.96) was adding S1 textural features to S2 spectral features. In addition to [10], used time series of satellite images 
calculated Vegetation Index (VI)’s the results showed that the best representation of the crop phenological changes during the crop 
growth season and higher accuracy in strategic crops discrimination with overall kappa accuracy with 0.82 and 0.79 respectively. On 
the other hand, shortage of processing power and huge amount of data were a challenge for proposed method to apply on all Egypt. 

Microwave sensors can penetrate clouds and vegetation better than optical sensors achieving a boost in crop discrimination [11]. 
Recent studies included physical and handcrafted features. Physical features include NDVI [12] and Leaf Area Index (LAI) [13] used 
time series of satellite images calculated VI’s the results showed that the best representation of the crop phenological changes during 
the crop growth season and higher accuracy in strategic crops discrimination. 

Handcrafted features include orthogonal subspace projections, Principal Component Analysis (PCA) [14], and Minimum Noise 
Fraction (MNF) [14]. The huge volumes of satellite imageries had to be processed increase the need to big data technologies to be 
incorporated in agriculture problems [15]. Using remote sensing helps in an accurate crop inventory under complex landscape con-
ditions based on the spectral characteristics of differences crops. That because the agricultural fields in Egypt are commonly distributed 
with relatively small sizes parcels, which usually reduce the reliability of Agricultural statistics in surveying cropland [8]. 

The available land use/cover datasets have only one cropland category, with no detailed information on crop types, areas, and 
spatial distribution, which are essential information for a wide range of agriculture applications. Hence, producing crop type maps 
from remote sensing was addressed in many studies, focusing more on mapping herbaceous crop types rather than horticulture crops 
[9]. 

Machine Learning (ML) algorithms such as Multilayer Perceptron (MLP), decision tree, maximum likelihood, Linear Disclination 
Analysis (LDA) and Support Vector Machine (SVM) [16,17] have been used to analyze optical and microwave data for crop analysis, 
including green cover, pigment, growth stage, crop geometry, equivalent water content, stress conditions, and vegetative indices [18] 
but suffers from high false positive (FP) and false negative (FN) rate [19]. Therefore, Ensemble Learning (EL) [20] fuses individual 
classifiers prediction to create accurate predictions result for numerous complicated classification tasks [21]. Despite the computa-
tional burden, EL arises as a winner technique in numerous competitions to enhance accuracy [22]. The trick to improve ensemble 
performance is to select the optimum ensemble approach for loosely correlated classifiers. In general, increasing model complexity 
reduces mistakes owing to reduced model bias. However, due to the large variation, the model begins to overfit. EL tends to maximize 
model complexity by balancing bias and variance errors. In short, combining many weakly linked models with various methods yields 
a more powerful and accurate results considering that the diversity between individual models is the key to a resilient ensemble model. 

In this paper, we design a crop identification approach based on the basis of ensemble learning and big data technologies. The 
proposed approach constructs a pool of base classifiers. Then, a voting schema based on each individual classifier weight was proposed. 
Apache Spark [23], a standard framework for distributed computing of huge data, is used due to its ease-of-use and greater perfor-
mance than Apache Hadoop. Various experiments were conducted on El Salheya, Ismaili governate. Datasets of crop classes were 
integrated with the collected sentinel-2 imageries to improve crop classification results. The proposed approach improves the 
generalization of crop identification performance at a large scale. The main contribution can be summarized as.  

• A scalable Apache Spark solution was employed to efficiently process enormous amounts of data. More Apache Spark nodes 
improve data processing linearly.  

• A weighted voting schema was proposed based on individual classifier performance.  
• Experiments were conducted on collected dataset for El Salheya, Ismaili governate. Experimental findings were compared to other 

classifiers and traditional ensemble techniques. 

2. Related work 

Recent work had successfully integrated EL to boost the performance of crop classification. In this section, the ensemble learning 
approaches are briefly discussed, then recent work related to machine learning in crop classification is presented. 

Fig. 1. Ensemble learning taxonomy.  
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2.1. Ensemble learning 

Traditional machine learning approaches struggle with large volumes, high-dimensional, noisy data due to their lack of capturing 
discriminative patterns and features. Ensemble learning [20–22] combines multiple learning algorithms predicting outcomes to 
improve knowledge discovery and performance. Several ensemble approaches have been introduced in recent decades to meet various 
application needs [24]. Fig. 1 depicts the four major ensemble learning approaches. 

In data ensemble approaches [25], the training data is split into different subsets using resampling methods then these subsets are 
used to build individual base classifiers. Examples of resampling methods include random selection with or without replacement, leave 
one out, etc. To fuse the results of all individual classifiers, various voting schema were implemented. These techniques are effective 
when base classifiers are strongly influenced by small changes in training datasets. 

In feature level approaches [26], the training dataset is utilized to extract multiple feature views. Hence, different base classifiers 
were trained using individual views, then aggregation of the outcomes of these classifiers. Another common practice is to combine 
different feature views in training base classifiers to generalize better. 

In classifier level [27], a heterogeneous or homogeneous classifier pool were trained using training dataset then the outcomes of 
these classifiers were integrated using rules to minimize the impact of bias and boost the overall performance. These classifies 
developed either sequentially or concurrently. 

In combinational level [27], a pool of heterogeneous or homogenous of classifiers was incorporated with different parameters like 
injecting randomness into base classifiers. Then, each outcome of the base classifiers in the pool was fused using some rule to boost 
performance of classification of regression. 

2.2. Machine learning in crop discrimination 

Several ML techniques have been presented in literature for crop mapping and identification. Some of these approaches have 
performed better than others. The literature shows that the benefits of several algorithms might be merged into an ensemble to increase 
the performance. Ensemble learning techniques had been widely investigated in several area. Table 1 summarizes numerous contri-
butions, datasets used in remote sensing domain especially crop identification topic. 

3. Material and methods 

An ensemble approach for crop discrimination was introduced based on big data technology. Fig. 2 depicts an overview of the 

Table 1 
Summary of crop discrimination using machine learning methods.  

Ref. Approach Datasets Outcomes 

[28] CNN, ANN, SVM and RF Multi-source dataset (Spectroscopy, RGB 
and HS imageries) 

Robotic weed control system 

[29] RF Sentinel-2A time series OA (88%), kappa (0.84%) 
[30] SVM, DT, K-NN and ML Sentinel-2 images OA (77.2%) with SVM and RF. 
[31] DT Multi-source dataset (Multi-polarized SAR, 

Radarsat-2, and Sentinel-2) 
OA (66%) using single date Sentinel-2 with 2 date Sentinel-1, OA 
(89.5%) by incorporating Radarsat-2 data. 

[32] Kernel PCA, and SVM Radar Sat-2 Images KPCA-based SVM suppress SVM by 7% in OA incorporates 
temporal dataset. 

[33] ANN, SVM, RF and K-NN World View − 2 ANN is an efficient to address UAV multispectral data. 
[34] LR, EN, KNN, SVR. Soil Sampling Data KNN is the worst performance for potato yield estimation 
[35] PSO was adopted to select the most 

effective features for ANN, KNN 
classifier. 

Hyperspectral data (EO-1) The proposed ANN-BA classifier boosts KNN performance in the 
number of misclassified cases. 

[36] SVM, RF, CART, Sequential Feature 
Selection approach 

Multi source dataset (Sentinel-1A and 2 A) SVM outperforms the RF and CART using combined optical and 
SAR datasets. 

[37] RF Multi-source timeseries dataset (Landsat 7/ 
ETM+, Landsat 8/OL, SPOT 6 and 7, 
Sentinel-1) 

Time series dataset was adopted to highly obtain crop 
discrimination over the season and red, NIR, and SWIR bands 
were the most important features. 

[38] SVM and Binary encoding (BE) EO-1 Hyperion imagery OA (90.44%). 
[17] PCA, Minimum Noise Fraction 

(MNF), 
Wavelet Transform 
Fisher Linear Discriminant analysis 
(LDA) and SVM 

HS image data collected by imaging 
spectrometer. 

(8 bands) > OA (85%). 
(15 bands) - > OA (90%). 

[39] ANN and PCA TERRA/AQUA-Modis and Landsat-OLI OA (89%) 
[40] SVM and RF Unmanned Aerial Vehicle (UAV) images SVM achieved the best crop classification based only on spectral 

information. 
[41] Maximum Likelihood and Minimum 

Distance 
Spot-5 images  

[42] Polarimetric Correlation Coefficients. PolSAR dataset. P- and L-band data effectively discriminate crops while C-band 
data slightly overlapped classification.  
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proposed approach for four main stages: data collection and preprocessing, feature extraction, classification pool, ensemble schema. 
First, a time series of multi-source satellite imageries were collected, and their necessary pre-processing was performed. Then, an 
automated environment was set up to extract physical and handcrafted features. Next, the generated features are stored in a distributed 
storage system and processed using Apache Spark. We used five diverse classifiers to build a diverse pool and the proposed weighted 
voting schema is implemented. Finally, the proposed architecture was evaluated on common metrics including overall accuracy, recall, 
precision, F1-measure and Matthews correlation coefficient (MCC). 

3.1. Data collection and preprocessing 

El Salheya is located in Ismaili governorate, Egypt. It is positioned between longitudes 32.00449◦E and latitudes 30.746557◦ N. In 
this work, Sentinel-1 consists of two identical satellites conducting C-band SAR imaging at 5.6 GHz (5.4 cm wavelength) with a 12-day 
revisit duration (6 days considering both satellites). 

The Sentinel-2 dataset is Level-1C, which contains ortho-rectification and sub-pixel spatial registration. Sentinel-2 Level-1C con-
sists of 110 km 110 km tiles in UTM/WGS84 projection and offers TOA reflectance. A total of 106 images were collected from Sentinel- 
2 and Sentinel-1 through the European Space Agency (ESA). In addition, field data was collected to train base classifiers, and validate 
the results. Samples were extracted during several field campaigns carried out for both summer and winter seasons in the period 
between Jan. 2019 and Des. 2021 and supplemented by other samples extracted from Sentinel- 1 and 2. Fig. 3 depicts the spatial 
distribution of the utilized crops in the study area in summer and winter seasons. For summer season, the crop classes are Green Onion, 
Penaut, Selage, Tree Crops, and uncultivated area. In winter season, the classes are AlfaAlfa, Onion, Potato, Sugar Beet, Wheat, Tree 
Crops, and Uncultivated. In all, the dataset is balanced as it contains nearly equal numbers for each class. Data preprocessing is 
mandatory to transform the collected data into a format adequate to the data presentation. The implemented data preparation pro-
cedures include data filtering, data labelling, replacing missing numeric values by average value. 

3.2. Feature extraction 

An automated environment using Python programming was set up to extract physical and handcrafted features, as shown in Fig. 4. 
The fundamental step in any image-based classification is the feature extraction where the image is transformed into useful infor-
mation by performing mathematical operations to extract handcrafted features. Various spectral and textural features are anticipated 
to be effective for crop classification. The features that represent the characteristics of an entity based on reflectance values of the 
satellite image bands are referred to as spectral features. The spectral features considered in this study are briefly described in Table 2. 

Fig. 2. An overview of the proposed architecture for crop identification using a big data framework.  
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Fig. 3. The spatial distribution of the chosen crop types in summer and winter seasons.  

Fig. 4. The proposed ensemble model detailed phases for crop identification.  
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3.3. Classifiers pool 

A diverse pool of classifiers was created to attain high accuracy performance includes Decision Tree (DT), Random Forest (RF), 
Naïve Bayes (NB), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). 

3.3.1. Decision tree 
Decision Trees divided the input data into local regions by a sequence of recursive splits. The tree consists of decision nodes and leaf 

nodes. Leaf nodes are responsible for the prediction according to the local model associated with that node. In training phase, a split 
threshold is chosen to reduce mean square error during the recursive split to be less than or equal to an acceptable threshold. 

3.3.2. Random forests 
The Random Forest model is built on the basis of ensemble learning, to merge several decision trees (the forest) that is built on a 

randomly divided dataset using a randomization algorithm to generate the final output. The random forest clusters the predictions 
based on the majority votes received throughout the voting process. The bigger the number of trees in the forest, the better the ac-
curacy, and the less likely to overfit. 

3.3.3. Naïve Bayes 
The Naive Bayes classifier (NB) is a straightforward yet powerful technique in rapidly developing setting. NB classifier is a 

probabilistic classifier, which means it makes predictions-based on likelihood. It is dubbed naive because it assumes that the existence 
of one characteristic is unrelated to the occurrence of other traits. It is termed bayes because it is based on Bayes’ Theorem, which is 
used to assess the likelihood of a hypothesis when previous knowledge is available. It is conditional on the likelihood. 

3.3.4. Support Vector Machine 
Support Vector Machine (SVM) is a nonlinear supervised classifier characterized by separating hyperplane. The decision hyper-

plane helps in deciding the boundaries between data points with different labels within the training dataset. SVM was designed to find 
the optimal hyperplane for the training data. Accordingly, the decision plan helps categorize the new data points. 

3.3.5. K-Nearest Neighbors 
The K- Nearest Neighbors (KNN) method is one of the simplest and earliest techniques that achieves competitive results especially 

when combined with prior knowledge. A typical K-NN classifies each unknown occurrence in the training dataset based on the closest 
K-NN neighbors. The distance measure metric used to determine the closest neighbors influences the performance. In the absence of 
prior knowledge, most K-NN classifiers employ basic Euclidean metric to measure the distance between training data. Other distance 
metrics include Minkowski and Chebyshev. 

3.4. Proposed ensemble schema 

Assume the training dataset to be {(x1, y1), (x2, y2)…(xn, yn)}, where x ε Xw, w is feature vector dimension, n is the number of 
training samples. A classifier Ψ : X → Ω maps the input feature x into a set of potential class labels set Ω = {ω1,…..ωn}.

A set Ψ = {Ψ1 ,…..Ψk} represents classifiers in diverse pool that could map the input feature set into possible class through a score 
function. The majority voting mechanism is traditional score functions that counts the base classifier outputs for each class and output 
the most votes, as described in equation (1): 

ΨSUM = argmax
ωi

∑k

k=1
I(Ψ k(x),ωi), (1)  

where I(.) is the indicator function with the value 1 in the case of the correct classification of the class described by the feature vector x, 
i.e. when Ψk(x) = ωi. In this context, the output class label was defined by weight each classifier participated in our pool based on its 
performance and Bayesian weighted voting was considered in voting calculation. 

Table 2 
The adopted vegetation and water indices.  

Indices Equation 

Normalized Difference Vegetation Index (NDVI) NDVI = (NIR-RED)/(NIR + RED) 
Normalized vegetation Index (NVI) NVI = (COASTAL - BLUE)/(COASTAL + BLUE) 
Difference vegetation Index (DVI) DVI = COASTAL - BLUE 
Ratio vegetation Index (RVI) RVI = COASTAL/BLUE 
Enhanced vegetation index (EVI) EVI = 2.5 * ((NIR - RED)/(NIR + 2.5 * RED +1)) 
Soil Adjusted vegetation index (SAVI) SAVI = ((NIR - Red)/(NIR + Red + L)) x (1 + L) 
Modified Soil-Adjusted vegetation index (MSAVI) MSAVI= (2 * NIR + 1 – sqrt ((2 * NIR + 1)2–8 * (NIR - RED)))/2 
Normalized Difference Water Index (NDWI) NDWI = (NIR- SWIR)/(NIR + SWIR)  
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3.5. Experimental setup 

The proposed benefits from open-source component, which include Hadoop Distributed File System (HDFS), to handle the 
distributing file storage of massive satellite images. Apache Spark is used for efficient preprocessing of big data, while Python is 
adopted for in-depth analysis of large amounts of data. The experiments were carried out on Apache Spark cluster consisting of a 
master and two slave nodes, with Ubuntu operating system. The master node has Intel Core TM i-7-550. A brief description of the used 
open-source software components in our architecture is described in Table 3. Technically, the collected data was split per crop to 60% 
for training, 20% validation, 20% testing. 

3.6. Evaluation metrics 

To evaluate our proposed architecture, we employed various evaluation metrics that are commonly used in classification problems 
as described in Table 4. Typically, True positive (TP), False Negative (FN), False Positive (FP) and True Negative (TN). 

4. Results 

We conducted many experiments using a big data environment for crops classification. First, five base ML classification models are 
constructed using 5-fold cross-validation and evaluated using various assessment metrics as given in Table 5. 

Fig. 5 compares five base classifiers on the basis of precision, recall, F1-score, accuracy, and MCC, respectively. From Fig. 5 (a, b), 
the SVM and DT classifiers recorded the highest and lowest precision and f1-score values, respectively. According to Fig. 5 (c, d), the 
accuracy and F-measure are largest and lowest for the SVM and DT classifiers, respectively. Additionally, SVM provided the highest 
average accuracy, 85%, followed by 80% for both RF and DT (Fig. 5). According to Fig. 5, SVM achieves the best score using MCC, 84% 
(representing the greatest correlation between predicted and actual data labels), followed by DT, 76%. 

Next, we conducted a comparative analysis between the proposed ensemble and traditional ensemble methods (majority voting, 
stacking) on the basis of considering all base classifiers. The obtained classification results in terms of precision, F-score, Overall 
Accuracy (OA) (%), and Matthews correlation coefficient (MCC) for the proposed ensemble, traditional approaches (majority voting, 
and stacking considering all of classifiers) are illustrated in Table 6. 

From Fig. 6, the obtained values for traditional ensemble approaches (majority voting, stacking) and proposed method can be 
visualized. It clearly reveals that the obtained value for proposed approach is the best. Also, Fig. 7 compares traditional and proposed 
ensemble approaches. Vividly, the proposed ensemble has the highest precision/F-Measure. 

Next, Fig. 7 compares the obtained OA (in percentage) between base classifiers, traditional and proposed ensemble methods. It can 
be observed that all ensemble methods achieve better accuracy compared with SVM (best base classifier). In addition, the proposed 
ensemble schema suppresses traditional ensemble methods and attains better accuracy in comparison with majority voting and 
stacking. It worth to be noting that the same accuracy had been achieved by stacking all classifiers and stacking only top 3 base 
classifiers. As a result, the use of the best set of classifiers instead of all classifiers decreases calculation time. 

Finally, Fig. 8 illustrates the obtained MCC values for the performance of base classifiers, traditional ensemble methods, and the 
proposed crop identification schema. It can be observed that the value of obtained MCC achieved almost complete mark for each 
ensemble method which vividly ensures that ensembles achieve high correlation between predicted and actual data labels. The 
proposed ensemble schema attains the highest MCC value. Thus, the proposed ensemble schema may be utilized to increase the 
generalization performance for crop identification. 

5. Discussion 

This study showed the effectiveness of integrating ensemble learning with big data platform to help in large scales crop identifi-
cation utilizing medium resolution satellite images remote sensing. Moreover, different vegetation indices calculated to boost crop 
classification in different seasons. The changes in VI’s trends of different crops added value to the input data variation for different 
applied algorithms. According to Ref. [43], the highest classification accuracy achieved of 95% with a voting classifier ensemble in 
crop mapping in United States using Google earth Engine (GEE). Using cloud platforms, several high-resolution land cover/use maps at 
the global scale were recently produced [44,45]. However, these datasets have one category for cropland, including all types of 
herbaceous crops, horticulture crops. The detailed information on the crop types is essential for various agricultural applications. 
Hence, producing crop type maps from remote sensing data was intensively addressed in earlier studies [46–48], with more focus on 
the classification of herbaceous crops. In Ref. [9], GEE cloud platform was used for tree crop mapping in Egypt and the comparative 

Table 3 
Open-source software components.  

HDFS Hadoop Distributed File System is commonly used in large scale distributed data due to fault tolerance, fast, and simplicity. 

Apache Spark Apache Spark is a robust and scalable processing engine that utilizes resilient distributed dataset (RDD) due to fault-tolerant units. Compared to 
Hadoop and MapReduce, it has notable boosting performance. 

Python 
Language 

Python is utilized for data-intensive analysis since it has a vast ecosystem of scientific libraries and practically all key ML research publications 
use Python for implementation. PySpark, a Python API for Apache Spark, and Jupyter Notebook were adopted in the development.  

S. Ahmed et al.                                                                                                                                                                                                         
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accuracy analysis showed that using time series Sentinel-2 spectral bands (SBs) and vegetation indices (VIs) can classify various tree 
crop types with very high accuracy (96%), while using Sentinel-1 polarization channels with some added Sentinel-1 textural features 
could yield a high classification accuracy (85.2%). The results shown high over all accuracy 0.84, 0.85, 0.86, 0.86, 0.85, 0.87, 0.91 and 
0.91 for Majority Voting (All classifiers), Majority Voting (SVM, RF, DT), Weighted Voting (All classifiers), Weighted Voting (SVM, RF, 
DT), Stacking (All classifiers), Stacking (SVM, RF, DT), Proposed Schema (All classifiers) and Proposed Schema (SVM, RF, DT) 
respectively. The challenge of the proposed approach applicability in Egypt is return to the lack of the agriculture sector data 

Table 4 
Evaluation metrics.  

True Positive Rate (TPR) TP/(TP + FN) 

True Negative Rate (TNR) TN/(TN + FP) 
False Positive Rate (FPR) FP/(TP + FN) 
False Negative Rate (FNR) FN/(TP + FN) 
Precision TP/(TP + FP) 
F-Measure (2 × TP)/(2 × TP + FP + FN) 
Accuracy (TP + TN)/(TP + FP + TN + FN) 
Matthews Correlation Coefficient (MCC) (TP × TN)- (FP × FN) 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√

Table 5 
The obtained classification results (%) using five base classifiers.  

Classifier Recall Precision F1-score OA MCC 

NB 0.78 0.8 0.75 0.79 0.72 
KNN 0.77 0.79 0.75 0.73 0.74 
DT 0.78 0.72 0.75 0.8 0.76 
SVM 0.84 0.82 0.83 0.85 0.84 
RF 0.74 0.79 0.81 0.8 0.75  

Fig. 5. A comparison of five base classifiers on the basis of a) Precision/F1-score, b) Recall, c) overall accuracy (OA), and d) MCC.  

S. Ahmed et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e13339

9

infrastructure and fragmentation of agricultural holdings in the majority of old heavy texture soils in Nile delta and Valley. 

6. Conclusions 

Crop classification plays an important role in smart agriculture technology. Satellite imageries are vital in crop classification due 
their adequate cost and time. However, the exponential growth of collected imageries emphasizes the need to integrate big data 

Table 6 
Comparison of traditional ensemble methods with proposed ensemble methods.  

Ensemble Method Precision Recall F-score OA MCC 

Majority Voting (All classifiers) 0.82728 0.84248 0.85569 0.84171 0.84522 
Majority Voting (SVM, RF, DT) 0.83029 0.86984 0.88783 0.85462 0.80449 
Weighted Voting (All classifiers) 0.81715 0.80944 0.88842 0.85502 0.81693 
Weighted Voting (SVM, RF, DT) 0.82138 0.82186 0.86002 0.86352 0.83054 
Stacking (All classifiers) 0.81368 0.8509 0.85141 0.8487 0.86826 
Stacking (SVM, RF, DT) 0.80616 0.85372 0.86438 0.86984 0.86391 
Proposed Schema (All classifiers) 0.89076 0.87007 0.90603 0.9052 0.87593 
Proposed Schema (SVM, RF, DT) 0.89464 0.86443 0.91788 0.91145 0.89039  

Fig. 6. Comparison of best base classifier, traditional and proposed ensemble methods in terms of precision, recall and F-score.  

Fig. 7. Comparison of best base classifier, tradition ensemble and proposed ensemble method using accuracy.  

S. Ahmed et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e13339

10

technology in agriculture. Traditional crop identification approaches have been proved to be ineffective in big data setting. Therefore, 
we developed a crop identification approach based on ensemble learning and big data technology. The proposed approach is composed 
of four stages: data collection and preprocessing, feature extraction, classification pool, ensemble schema. Apache Spark is used as 
framework for distributed computing. In data collection and processing stage, different preprocessing techniques were applied to the 
collected imageries. In feature extraction, eight vegetation and water indices were computed. Next, a pool of five base classifiers (DT, 
RF, NB, SVR, and KNN) was constructed. Finally, the proposed weighted ensemble schema was computed based on the performance of 
each of the base classifiers. Experiments were conducted on El Salheya, Ismaili governate and results indicate that the proposed 
approach is superior to other comparative baseline methods in crop identification from satellite imageries. The proposed ensemble 
schema improved precision, recall, F-score, OA, and MCC by 6.5%, 1.9%, 4.4%, 4.9%, and 4.7%, respectively. In the future, we plan to 
use the proposed approach to identify other important crops in Egypt. Moreover, we consider integrating the proposed model to other 
imbalanced crops dentification dataset to further test the effectiveness of the proposed method. 
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