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Inverse Modeling of Thermal Decomposition of Flame-Retardant
PET Fiber with Model-Free Coupled with Particle Swarm
Optimization Algorithm
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ABSTRACT: The thermal decomposition model of flame-retardant 5
polyethylene terephthalate (FRPET) fiber is essential for predicting its
fire behavior and do relevant fire simulation. In this work, the thermal
decomposition character of FRPET is investigated via thermogravimetric
analysis at four heating rates. Two kinetic schemes are proposed based on
the analysis of experimental data and model-free methods. The model-free
methods (Friedman and advanced Vyazovkin methods) are employed to
determine possible search range for particle swarm optimization algorithm
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better performance. The performance of CFPSO on the second model is

further compared with improved generalized simulated annealing algorithm, and CFPSO was found to be more effective.
Furthermore, global sensitivity analysis was conducted via the Sobol method to investigate the influence of kinetic parameters for the
second model on predicted results. The most influential parameters are In A and E,, of the second reaction and reaction order n of
the third reaction.

1. INTRODUCTION

Polyethylene terephthalate (PET) has been widely used due to
its merits such as high tensile strength, low cost, and light
weight." However, this material is relatively flammable due to
its organic nature, and this undermines its applicabili‘cy.2 Thus,
PET is usually added with flame retardants (FRs) to suppress

usually vary with the extent of conversion because of the
complex reaction, which might be less useful in building the
model. On the other hand, the model-fitting approach uses
different algorithms to minimize the error between the
experimental data and predictions to find the kinetic
parameters. This approach, therefore, is a type of an inverse

the combustion process and meet the regulatory criteria when
used in high-risk situations (e.g., upholstered furniture and
mass transport). To assess the fire risk and mitigate the fire
hazard in this situation, the knowledge of thermal decom-
position character of flame-retardant PET (FRPET) is
essential. This is because thermal decomposition is the first
step of combustion—the combustible volatiles released in the
thermal decomposition process could feed the flame zone and
further facilitate the fire growth. The product yield in this
process could be described using a kinetic model. Therefore, to
further understand and predict the fire behavior of FRPET, the
kinetic modeling of its thermal decomposition is important.”*

The modeling of thermal decomposition usually starts with
the kinetic parameter estimation. Those parameters could be
obtained with thermogravimetric (TG) tests coupled with the
model-free or model-fitting method. Model-free methods
could evaluate kinetic parameters without knowing the
reaction scheme.” However, those obtained kinetic parameters
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modeling method, and the kinetic parameters in this approach
are invariant for a single reaction. There have been many
algorithms used in the model-fitting method (i.e., Levenberg—
Marquart algorithm,® Genetic algorithm,” Shuffled Complex
Evolution algorithm,® etc.). Most of those studies need proper
initial guess (from previous studies or from model-free
methods) to determine the fittest kinetic parameters.”” Few
studies noticed that the Friedman method and advanced
Vyazovkin method could provide proper search range for the
model-fitting method, and thus, the model-free and model-
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fitting methods could be coupled to find the fittest kinetic
parameters without initial guess.

Model-free and model-fitting methods have been employed
in many reported literatures on decomposition of PET.
Jenekhe et al. evaluated the kinetic parameters of PET in
non-isothermal decomposition using the Flynn—Wall meth-
od."”® Cooney et al. utilized Kissinger, Freeman-Carroll, and
other model-free methods to evaluate the kinetic parameters of
decomposition of PET in air.'' They also established that at
least three reaction stages occurred in decomposition of PET.
On the other hand, Yang et al.'” employed model-fitting
methods on decomposition of PET in nitrogen and obtained
an activation energy of 242 kJ/mol. Saha used the model-fitting
method to evaluate the kinetic triplet of PET in non-isothermal
and isothermal decomposition processes and found that nth
order model could better predict the experimental data.'’
Martin-Gullén et al."* and Molt6 et al,' respectively, modeled
the decomposition process of PET in a nitrogen atmosphere
and air with the model-fitting method. Although model-free
and model-fitting methods were frequently used for kinetic
estimation and kinetic modeling of pyrolysis of pure PET, rare
studies employed the model-free coupled with model-fitting
method to model the pyrolysis process of FRPET.

Consequently, the model-free coupled with model-fitting
method are proposed in this work. It is applied to model the
decomposition process based on two decomposition mecha-
nisms, which are developed based on the experimental data
and results of model-free methods. The model-free methods
also determined possible search range for the model-fitting
method. Then, particle swarm optimization algorithm using
constriction factor (CFPSO) as the model-fitting method was
used to find the fittest kinetic parameters. The obtained kinetic
parameters for two proposed mechanisms are validated by
reconstruction of the experimental data. To show the
performance of CFPSO on the second model, the results of
this method are compared with results from improved
generalized simulated annealing algorithm. Furthermore, to
analyze the influence of input kinetic parameters on output of
the second model, global sensitivity analysis (SA) was
performed via a Sobol method.

2. EXPERIMENTAL AND METHODS

2.1. Samples. The FRPET samples were cut from bus seat
assembly cover materials (supplied by Zhongtong Bus Holding
Co., Ltd.). Those cover materials followed the requirement of
the FR performance of GB 38262-2019 standard—flamma-
bility of interior materials for buses. The samples were sliced
into pieces (less than 1 mm) and were then dried for 24 h to
eliminate the moisture.

2.2. TG Analysis. TG analysis experiments were conducted
in SDT Q600 (TA instruments). 4—5 mg samples are used
because smaller sample weight could reduce the thermal lag
effect. The samples were heated from room temperature to 800
°C, and the heating rates were S, 10, 15, and 20 °C/min,
respectively. All tests were conducted under nitrogen flow (100
mL/min) using alumina crucibles without lid.

2.3. Kinetic Modeling. The reaction rate of the solid
material in the non-isothermal experiment for a single reaction
is usually modeled based on the following kinetic equation'”

da E,
ple Af(a)exp(—ﬁ] o

where f = dT/dt is the heating rate, T is the absolute
temperature, R is the gas constant, A and E, are the pre-
exponential factor and activation energy, and f(a) is the
function that represents the reaction model. For polymer
thermal decomposition, (f(a) is usually represented by the nth
order reaction model.”'*"” Thus, f(a) = (1 — a)" was used in
this work and a is the extent of conversion, which is given by
m; —m

a=——"

m; — mg 2)
where m;/m; are the initial mass/final mass, and m is the
sample mass in the experimental process. Based on this
equation, the TG curve can be transformed into the a—T
curves.

2.4. Model-Free Isoconversional Methods. Model-free
isoconversional methods could evaluate the dependence of
activation energy on conversion. In this study, the Friedman
method and advanced Vyazovkin method were used to obtain
both activation energy E, and pre-exponential factor A.

2.5. Friedman Method. Friedman proposed the following
expression by taking the natural logarithm of 1'®

da E,
i pS2 ] = mtayca)) - 22 o

In 3, the values of da/dT can be evaluated numerically by
differentiating the experimental data. Therefore, by plotting
Pa/dT) against 1/T for different heating rates at given «, the
activation energy E, and Af(a) can be obtained from the slope
and intercept, respectively.

2.6. Advanced Vyazovkin Method. The Friedman
method is sensitive to instantaneous experimental noise and
might introduce inaccuracy.” Therefore, the activation energy
E, and Af(a) were also evaluated with the advanced Vyazovkin
method.”*° This method could avoid inaccuracy in the
Friedman method, and it is free of the approximations of
temperature integral used in other integral methods like
Flynn—Wall—Ozawa methods and Kissinger—Akahira—Sunose
methods. According to Vyazovkin, for a set of n experiments
with different heating programs, the activation energy at
certain & can be obtained by finding the E, value which
minimizes the following function

s A *)

where i and j indicate ith and jth experiment, and J(E,) is

defined as
To E
1E) = [ exp[——“]dT

fl i,a—Aa

RT; (5)

This integration was evaluated numerically from a — Aa to
a using modified Simpson’s rule, and the minimization of
®(E,) is solved with the Brent method.”" This process is
repeated for each certain @, then dependence of E, on a can be
obtained.

After that, the Af(a) for each a was evaluated using the
following equation proposed by Lina™*

Aa
Af(Q) = ——
fle) J(E,) (6)

This equation is based on the assumption that for small
interval Aq, only one reaction occurs, and therefore, the Af(a)
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and E,, can be treated as constant, where J(E,) is the average

of J(E,) for all experiments based on optimized activation
energy.

For both the Friedman method and advanced Vyazovkin
method, analysis is performed between a = 0.02 — 0.9, and A«
is set to 0.02. For particular @, the experimental data is
interpolated using quadratic interpolation with scipy.interpo-
late.interp1d.”

With obtained Af(«), the pre-exponential factor A can be
determined by substituting fla) = (1 — a)" with different
reaction order. In this study, the reaction order n was set to [0,
5] as in Ding’s work.”* Thus, by substituting the f(a) with n =
0 and n = S for each Af(a), the range of A can be obtained.
Finally, those obtained kinetic parameters can be used to
determine the search range of model-fitting methods.

2.7. Non-linear Model-Fitting Methods. All model-
fitting methods involve minimizing the error between
predictions and the experimental data.” However, the classical
linear model-fitting method shows worse performance when
dealing with complex reactions. Thus, the non-linear model-
fitting methods are employed in this study.

Before doing model fitting, the decomposition mechanism of
FRPET must be determined. This mechanism is based on the
analysis of the results of TG test and model-free methods.
With the determined decomposition mechanism, a system of
ordinary differential equations (ODEs) can be developed to
describe the reaction rate of FRPET in the decomposition
process. This part will be detailed discussed later.

When the ODE system is developed, the unknown
parameters in the ODE system can be estimated by fitting
the experimental data. In this process, the error between the
experimental data and solutions of the ODE system are
minimized with optimization tools. Therefore, the optimal
parameters which could best reproduce the experimental data
were determined. However, this inverse problem is highly non-
linear with high dimensional search space. To solve this
problem, particle swarm optimization (PSO) algorithm as an
efficient stochastic global optimization algorithm is employed
in this study.”

2.7.1. Particle Swarm Optimization Method Using
Constriction Factors. CEPSO is proposed by Clerc,””*” who
has established that using the constriction factor could ensure
the convergence of PSO. According to Clerc, the velocity and
position of each particle are updated, according to the
following equation

o= K+ enp — x(0) + anlp, () = x(O)] ()

k+1 k+
x; =x; + v

1 (8)
where k and i indicate the kth iteration and ith particle. r; and
r, are two random values between [0, 1] following the uniform
distribution, while p; and p;, are the best position and global
best position of particles for each iteration. The constriction
factor K is given by

2
2~ ¢~ ¢ — 49l ()

where ¢ = ¢; + ¢, ¢p > 4. Typically, ¢ issetto4.1and ¢, = ¢, =
2.05. Thus, K = 0.729.

2.7.2. Improved Generalized Simulated Annealing Algo-
rithm. The improved generalized simulated annealing (IGSA)

K

algorithm is derived from Tsallis’s work.>*?? IGSA algorithm
combined the local search strategy and generalized simulated
annealing (GSA) algorithm. The GSA algorithm is developed
by Tsallis by generalizing classical simulated annealing
algorithm and fast simulated annealing algorithm, according
to Tsallis statistics.””

The original GSA algorithm used distorted Cauchy—Lorenz
visiting distribution, which is governed by parameter g,.

[, ()34

1/q—1+D—1/2

g, (Ax(t)) o
) (Ax())

1+ (q, - DW

(10)
where t is the artificial time and D is the dimension of search
space. This visiting distribution is used to generate a trial jump
distance Ax(t) of variable x(t) under artificial temperature
Tqv(t). The artificial temperature is decreased according to

2471 1

T, (1) = Tqv(l)(l_i_t)qf_1 (11)

Then, a generalized Metropolis algorithm is used for the
acceptance probability

p, =min{1, [1 = (1= q)BAE"" %) (12)
where f§ = 1/KT,, is the Lagrange parameter and AE is the
energy spectrum. The details of GSA can be found in refs 29
and 30.

Finally, the original GSA is improved with Broyden—
Fletcher—Goldfarb—Shanno (BFGS) algorithm,31 which is a
large-scale bound-constrained local search strategy. The IGSA
has been proved to show good performance,”**” therefore it is
employed in this work.

2.8. Objective Function. The objective function is used
for measuring the difference between the experimental data
and predictions, as mentioned before. Many objective
functions have been employed in previous studies for inverse
modeling problems.”> Bustamante Valencia tested and
compared different objective functions, and then, he developed
a new objective function considering the phase difference and
distance error between curves. This objective function can be
expressed as follows

F= Z cos[L(&',j}')][M} ]
p=t s (13)

1]
where ¥ and J are vectors of experimental and estimated mass
loss rate (MLR) as a function of temperature.

2.9. Global Sensitivity Analysis. The model proposed in
this study has multiple input variables. Therefore, we want to
identify which input parameter has more influence on the
result of objective function via SA. SA methods could be
classified into the local SA method and global SA method.
Local SA studies consider from small input variation on the
model output, while global SA considers the whole variation of
the inputs and tries to apportion the output uncertainty to
input uncertainty.y"35

The Sobol method is a variance-based global SA method
which decomposes the output variance into parts attributed to
input variables and combinations of variables.”> Most of the
Sobol method used the first-order effect index S; and total

https://doi.org/10.1021/acsomega.1c00599
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effect index St; to measure the main effects of inputs on the
outputs and the contributions from inputs to the outputs
including interactions among inputs, resgectively.36 Since the
Sobol method has been widely used,””* it was employed in
this work.

According to Saltelli et al,® given a model of the form Y =
fXy, X5,.-4Xy), it can be decomposed into 14. In this study, Y is
the result of objective function and X; is the input kinetic
parameter.

d d
Zf, (Xl) + th] (Xi) Xj) + ..+ fl,z,...,d (Xl) Xz; Y] Xd)
i=1 i<j

] (14)

By assuming f(x) is square-integrable, the function could be
squared and integrated, then we could get variance (VAR) for
Y

d d
Var(Y) = Z Vi + Z Vit o+ Viag
i=1 i<j (15)
where
V.= VarX{(EX:[(YlXi)) (16)
Dividing both sides of 15 by Var(Y), we could obtain
d d
DS+ DSt Sy =1
i=1 i<j (17)

where S, is the first-order effect index and therefore it can be
evaluated with 18.

V.

1

5= Var(Y) (18)

While the total effect index Sp; can be evaluated with 19

B EX”(VarXX(YIX:i))
B Var(Y) (19)

The inputs X; are generated with Sobol sequence, which is a
low-discrepancy sequence. This sequence shows better
performance when used in integration with higher dimensions
and therefore was used.”

2.10. Implementation. Both model-free and model-fitting
numerical methods and global SA method used in this study
were implemented in Python.

The details of implementation of the model-free method can
be found in our previous work.*

For CFPSO and IGSA model-fitting methods, the NumPy,
SciPy, and Matplotlib module were mainly used.””*"* To
speed up the calculation, the Numba is used.*” The ODE
system in the model-fitting method is solved with odeint from
SciPy. This module uses LSODA algorithm and could
automatically select algorithm to deal with non-stiff and stiff
problems.** The population size and iteration number of
CFPSO are set to 2500 and 5000 in this study. The IGSA
comes from the scipy.optimize module. The max iteration
number is set to 5000.

For global SA, the SALib module was used in this study.*
The sampling number N of the Sobol method is set to 10,000.
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Figure 1. TG curves of FRPET at §, 10, 15, and 20 °C/min and pure
PET at 10 °C/min."*
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Figure 3. Friedman plots of FRPET.

3. RESULTS AND DISCUSSION

3.1. TG Analysis. The normalized TG curves of FRPET at
different heating rates with pure PET at 10 °C/min are shown
in Figure 1. For FRPET, the TG curves show that at least two
decomposition stages are involved for all heating rates. In the
first stage, the sample loses about 3% of mass. While in the
second decomposition stage, about 79% of mass was lost, with
the residue mass of 15.5%. Since the first stage is not shown in
pure PET, this stage is probably related to the decomposition
of additives.

The differentiated TG (DTG) curves of FRPET are shown
in Figure 2. It shows two peaks in the decomposition process.
The peaks of DTG curves would shift to higher temperature
with the increasing heating rate. The first decomposition stage

https://doi.org/10.1021/acsomega.1c00599
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Figure S. Evaluated In A and search range for CFPSO.

is between 150 and 250 °C, while the second decomposition
stage occurs between 330 and 510 °C. The temperature range
of the second stage is similar to previous findings on pure
PET.'**" Since the first stage is not shown in pure PET, this
stage might be related to the decomposition of FR additives
like ammonium polyphosphate. This is because phosphorus-
based FR additive has been widely used for many years in PET
textiles."” Meanwhile, the second stage is correspondlng to
decomposition of pure PET. Bednas et al.*® established that
FR do not greatly influence the mechanism of pyrolysis of
PET. Therefore, the reaction mechanism might be split into
two parts—decomposition of FR and decomposition of pure

PET, respectively. For the simplicity of kinetic analysis, the
following parallel decomposition mechanism is proposed in
this work

FR — kpgresidue + (1 — kgg )volatile (20)

PET — kpgrresidue + (1 — kpgr)volatile (21)

3.2. Kinetic Analysis. Figure 3 shows the plotted lines
obtained from the Friedman method for a from 0.05 to 0.85. It
can be seen that plotted points fitted line very well and
therefore show high R? values. The curves of activation energy
E,, versus extent of conversion @ obtained from Friedman and
advanced Vyazovkin methods are presented in Figure 4. The
trends of E, from two methods are similar. The E, increases at
first for & < 0.04, which is between 62 and 140 kJ/mol. The E,
values obtained from the Friedman method are different from
values evaluated with the advanced Vyazovkin method. This is
because the reaction rate is quite small at this stage and can be
affected easily by noise. For 0.04 < a < 0.7, the E, fluctuates
around 200 kJ/mol. The fluctuation at the start of this stage
might be related to the stop of the first decomposition reaction
and the start of the second decomposition reaction of FRPET.
At high conversion (a > 0.7), the kinetic values increased
slowly to about 250 kJ/mol. Therefore, the reaction interval
can be split into three parts: [0, 0.04], [0.04, 0.7], and [0.7, 1].
Therefore, the E, — a curve revealed three decomposition
stages. This is not shown in DTG curves of FRPET (Figure 2),
indicating two overlapping reactions occurred in the second
mass loss stage of FRPET, which is related to the
decomposmon of pure PET. Buxbaum® and Martin-Gullén
et al.'* have shown that pure PET followed a two consecutive
reaction mechanism. Therefore, another two-step decomposi-
tion model for FRPET can be developed

FR — kgpresidue + (1 — kgg)volatile (22)
PET — kpprintermediate + (1 — kpgp)volatile (23)

intermediate — k,  residue + (1 — k;, )volatile (24)

The pre-exponential factor A is evaluated using equations 3
and 6 for Friedman and advanced Vyazovkin methods using
obtained activation energy, and then, they were converted to
the logarithm form. The evaluated results are shown in Figure
S. As can be seen, the evaluated In A based on the different
reaction order are similar at first. Then, with the increasing a,

Table 1. Search Range of Parameters for Both Models and Optimized Parameters

search range of model 2

optimized values (CFPSO)  optimized values (IGSA)

parameters search range of model 1 optimized values
Yir [0, 0.25] 0.09
In A, [In(1/5)] [5.06, 25.79] 20.65
E,, (KJ/mol) [47.45, 167.7] 85.18
n1 [0, 5] 1.45
k [0, 1] 0.74
Yopr 091
In 4, [In(1/5)] [24.36, 58.95] 38.44
E,, (KJ/mol) [148.01, 293.89] 22826
n, [0, 5] 0.98
k, [0, 1] 0.15

In A; [In(1/s)]
Egs (KJ/mol")
n3

ks

[0, 0.25] 0.13 0.18
[5.06, 25.79] 20.9 11.96
[47.45, 167.7] 86.14 53.70
[0, 5] 1.83 1.10
[0, 1] 0.78 0.84
0.87 0.82
[24.36, 47.13] 34.93 34.30
[148.01, 252.59] 206.2 203.36
[0, 5] 0.84 0.94
[0, 1] 0.54 0.46
[26.72, 58.95] 29.25 48.46
[165.36, 293.89] 165.36 237.27
[0, 5] 1.82 5.0
[0, 1] 0.16 0
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the differences of In A increased. In the final stage, the higher
reaction order # leads to higher In A. Obviously, the In A with
the different reaction order 0 < n < § is between evaluated In A
curves.

Comparing Figures 4 and S, the trends of E, and In A curves
are similar, this can be explained by the kinetic compensate
effect. However, this technique was not suitable for analysis of
the consecutive reaction mechanism and therefore was not
used.

Function Evaluations

Figure 11. Convergence curve of CFPSO and IGSA for model 2.

3.3. Kinetic Model. Based on the decomposition
mechanism discussed above, the ODE system can be derived.
The MLRs for each component of parallel model 1 can be
expressed as

dm —E " NER
FR — _mFR,O X AFReXp[ FR] FR
dt RT |\ mg (25)
MpET
dmpgr _ —Epgr || Mppr
= —Mppr,o X Apgrexp| ——— || ——
dt R MpET,0 (26)
dmres'd e deR deET
—LeSdUe — o X —k x
dt T PR g (27)
dm dm, dm. .
total MLR = FR PET residue
dt dt dt (28)

For two-step consecutive model 2, the MLR for each
reaction is as follows

NpR.
deR _ A _EFR Mpr
= —tgg g X Apgexp|——| —
dt R MER,0 (29)
fpET
dmpgr A —Eppr || mppr
= —Mpgr0 X Appr®XP| —— || —
d RT MpET,0 (30)
dm,, dmpgr [_ , t}
int __ _k'n - = Aine in X mm e
dt int t XP RT ( t)
(31)
dm esidue deR dm. t
—residue _ oo —FR O poox in
dt T BT (32)
dm dm dm. dm._.
total MLR = FR + PET + int + residue
dt dt dr dt
(33)

where k; is the stoichiometric yield and mgpy and mpgr,
represent the normalized initial mass fraction of FR and PET.
For both models, mgy o + mpgry = 1, thus only one initial
mass fraction needs to be determined. Therefore, for model 1,
nine parameters are needed for calculating the reaction rate:
two kinetic triplets (A, E;, and n,), two stoichiometric yields k;
and one initial mass fraction mgpp, respectively. While for
model 2, another four parameters (A, i My and k) are
needed. As a consequence, there are 9 and 13 unknown
parameters for model 1 and model 2, respectively.
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Table 2. Samples Obtained With Sobol Sequences for the Sobol Method”

no. Y In A, E, ny k, In A,
1 0.07 15.40 139.64 3.77 0.30 29.10
2 0.13 20.60 49.45 0.02 0.55 34.79
3 0.00 10.20 109.58 2.52 0.06 46.18
4 0.16 12.80 64.48 4.39 0.18 43.33
S 0.04 23.20 124.61 1.89 0.68 31.95
6 0.22 18.00 94.55 3.14 0.43 26.25
7 0.10 7.60 154.67 0.64 0.92 37.64
8 0.05 8.90 56.97 3.46 0.74 27.68
9 0.18 19.30 117.09 0.96 0.24 39.06
10 0.11 24.49 87.03 4.71 0.98 44.75
11 0.24 14.10 147.16 2.21 0.49 33.37
12 0.08 11.50 102.06 0.33 0.37 30.52
13 0.21 21.90 162.19 2.83 0.86 4191
14 0.02 16.70 72.00 1.58 0.12 36.22
15 0.14 6.30 132.13 4.08 0.61 24.83
16 0.11 6.95 75.76 1.11 0.40 46.89
17 0.23 17.35 135.88 3.61 0.89 35.50
18 0.04 22.55 105.82 2.36 0.15 29.81
19 0.17 12.15 165.95 4.86 0.64 41.20
20 0.01 14.75 90.79 2.99 0.52 38.35

“Taking the first 20 sets of kinetic parameters as example.

5.5 1, k, In A, E, 13 ks
227.23 3.16 0.32 28.86 281.50 0.14 0.04
201.09 191 0.07 36.92 249.37 1.39 0.29
148.80 441 0.56 53.03 185.11 3.89 0.79
188.01 1.29 0.19 40.94 265.44 2.02 0.91
240.30 3.79 0.69 57.06 201.17 4.52 0.41
214.16 0.04 0.94 49.00 169.04 3.27 0.16
161.87 2.54 0.44 32.89 233.30 0.77 0.66
155.33 1.60 0.25 38.93 193.14 1.08 0.60
207.62 4.10 0.75 55.05 257.40 3.58 0.10
233.77 0.35 1.00 46.99 289.54 4.83 0.35
181.48 2.85 0.50 30.87 225.27 2.33 0.85
168.40 0.98 0.87 42.96 241.34 421 0.97
220.69 3.48 0.38 26.84 177.07 1.71 0.47
246.84 2.23 0.13 34.90 209.20 0.46 0.22
194.55 4.73 0.63 51.02 273.47 2.96 0.72
223.96 3.32 0.10 56.05 20S.19 3.11 0.88
171.67 0.82 0.59 39.94 269.45 0.61 0.38
197.82 4.57 0.84 31.88 237.32 1.86 0.13
250.11 2.07 0.35 47.99 173.06 4.36 0.63
210.89 3.95 0.97 27.85 285.52 2.49 0.50
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Figure 12. First-order indices of the Sobol method.
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Figure 13. Total order indices of the Sobol method.

As mentioned before, the results obtained from the model-
free method could provide guidance for search range of kinetic
parameters in the model-fitting method. In this way, those two
methods were coupled to estimate the kinetic parameters
which minimize the objective function.

The search range of E, and In A is set to 80% of smaller
values and 120% of the larger values evaluated from model-free
methods. It is shown as filled area in Figures 3 and 4. Based on

the analysis of the experimental data, model 1 contains two
reaction stages (0 < a < 0.04 and 0.04 < @), while model 2
shows three decomposition stages (0 < @ < 0.04, 0.04 < a <
0.7, and 0.7 < a, respectively). Consequently, the search range
of E, and In A for each reaction is based on the upper and
lower bounds of filled area for each reaction stage of model 1
and model 2. However, for reaction order , the search range is
assumed to be 0—35, as mentioned before.

The initial mass of FR is set to 0—0.25. This is because most
of FR additives used for PET are less than 25%.*” However for
stoichiometric yield k; for each reaction, no related reference
range can be found. Thus, k; was assumed to be between [0, 1]
in this study. Table 2 summarizes the search range of kinetic
parameters for two models. Although some studies show that
the results of the model-free method can be used for initial
guess, it was not used in this study and the initial guess is
generated randomly in search space.

The experimental data at S, 10, and 20 °C/min were used to
estimate the parameters for two proposed mechanisms with
CFPSO, while the data at 15 °C/min were used for validation.
The optimized results are listed in Table 1. The obtained
activation energy for the main reaction (second reaction) of
model 1 and model 2 are consistent with previous studies.'”"*
However, the differences between obtained kinetic values and
other studies might be related to the choice of the model and
material.

3.4. Model Performance. Figures 6 and 7 show the
comparison between experimental and predicted TG and MLR
data at the S, 10, and 20 °C/min. The prediction of model 1
fits well with the experimental data at the first stage. However,
this model cannot explain the mass loss in the final stage.
Meanwhile, the prediction of model 2 agrees well with the
experimental data for the whole decomposition process.

The validation of optimized parameters at the heating rate of
15 °C/min for model 1 and model 2 is presented in Figures 8
and 9. Obviously, both reconstructed MLR curves closely
match the experimental data where R” values are greater than
0.98. However, the two-step model shows better performance.
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This result is consistent with discussion before. The predicted
MLR curve for pseudo components of FR, PET, and residue
could help us understand the decomposition process of
FRPET.

As a consequence, the kinetic parameters obtained from the
model-free coupled with CFPSO method could reasonably
predict the experimental data. It means that this newly
developed method is an effective tool for kinetic inverse
modeling.

3.5. Performance Comparison of CFPSO and IGSA. To
further compare the performance of CFPSO, the IGSA was
employed to evaluate kinetic parameters for model 2. The
estimated parameters from IGSA are also listed in Table 1. We
could see those parameters are quite different from parameters
obtained from CFPSO for the first reaction and third reaction.
Therefore, the predicted MLR curve based on those
parameters from IGSA at 15 °C/min is shown in Figure 10.
Compared with predicted results of CFPSO, the biggest
difference is that no residue is generated in the third reaction
and the most of residue are produced in the first
decomposition stage of FRPET. This means that residue is
generated from additives instead of PET. Obviously, this could
not be true. Figure la shows that residue weight is about 10%
after the decomposition of pure PET. Therefore, the obtained
parameters from IGSA are not acceptable from this viewpoint.

The performance of IGSA is further compared with CFPSO
using the convergence curve (Figure 11). The fitness of IGSA
would converge to its best fitness after about 750,000 function
evaluations, while CFPSO would reach to its best value with
1,000,000 function evaluations. Since the optimal fitness of
CFPSO is lower than IGSA, the results of IGSA are trapped in
local minima. Adenson et al.”’ suggested to use algorithms
which show better performance on obtaining the global
minimum. Therefore, CFPSO is more effective than IGSA on
this inverse modeling problem.

3.6. Global Sensitivity Analysis. Since model 2 shows
better performance and contains more input parameters, the
Sobol method was employed to conduct the global SA on
those kinetic parameters. As mentioned before, the input
parameters were generated using Sobol sequence, the samples
of those input parameters are listed in Table 2.

The evaluated Sobol first-order indices and total order
indices are shown in Figures 12 and 13. The In A,, E,, and ny
are top three most influential input parameters, indicating that
objective function is mainly sensitive to those three parameters
and they should be paid more attention. However, the first-
order indices k;, k,, and Ygy appear to have little influence. On
the other hand, the total order indices for all parameters are
higher than first-order indices, indicating higher-order
interactions between each input parameter.

4. CONCLUSIONS

The decomposition kinetic parameters for two models of
FRPET are estimated with a new method by coupling model-
free and model-fitting methods. The model-free methods—
Friedman and advanced Vyazovkin methods supplied guidance
for the search range of model-fitting method, and therefore,
initial guess is unnecessary. The CFPSO is employed as a
model-fitting method to find the optimal kinetic parameters.
With the possible decomposition mechanism based on analysis
of experimental results, both developed model in this study
could accurately predict experimental data, and the second
two-step consecutive model shows better performance. The

performance of CFPSO on the second model is compared with
improved generalized simulated annealing algorithm. The
CFPSO shows better performance on determining the global
optimum on this problem. The global SA with the Sobol
method shows that the top three influential kinetic parameters
for the second model are In A and E, of the second reaction
and reaction order n of the third reaction.
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