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Background: Brain-derived neurotrophic factor (BDNF) is a type of growth factor that 
promotes growth and survival of neurons. Fetal exposure to opiates can lead to postnatal 
withdrawal syndrome, which is referred as neonatal abstinence syndrome (NAS). Preclinical 
and clinical studies have shown an association between opiates exposure and alteration 
in BDNF expression in the brain and serum levels in adult. However, to date, there are no 
data available on the effects of opiate exposure on BDNF levels in infant who are exposed 
to opiates in utero and whether BDNF level may correlate with the severity of NAS.

Objective: To compare plasma BDNF levels among NAS and non-NAS infants and to 
determine the correlation of BDNF levels and the severity of NAS.

Methods: This is a prospective cohort study with no intervention involved. Infants ≥35 weeks 
of gestation were enrolled. BDNF level was measured using enzyme-linked immunosorbent 
assay technique from blood samples drawn within 48 h of life. The severity of NAS was 
determined by the length of hospital stay, number of medications required to treat NAS.

results: 67 infants were enrolled, 34 NAS and 33 non-NAS. Mean gestational age did 
not differ between the two groups. Mean birth weight of NAS infants was significantly 
lower than the non-NAS infants (3,070 ± 523 vs. 3,340 ± 459 g, p = 0.028). Mean BDNF 
level in NAS group was 252.2 ± 91.6 ng/ml, significantly higher than 211.3 ± 66.3 ng/
ml in the non-NAS group (p = 0.04). There were no differences in BDNF levels between 
NAS infants that required one medication vs. more than one medication (254 ± 91 vs. 
218 ± 106 ng/ml, p = 0.47). There was no correlation between the BDNF levels and 
length of hospital stay (p = 0.68) among NAS infants. Overall, there were no significant 
correlations between BDNF levels and NAS scores except at around 15 h after admis-
sion (correlation 0.35, p = 0.045).

conclusion: Plasma BDNF level was significantly increased in NAS infants during the 
first 48 h when compared to non-NAS infants. The correlations between plasma BDNF 
levels and the severity of NAS warrant further study. These results suggest that BDNF 
may play a neuromodulatory role during withdrawal after in utero opiate exposure.

Keywords: intrauterine opiate exposure, effect of opiate exposure, neonatal abstinence syndrome, neurobehavioral 
outcome, brain derived neurotrophic factor

Abbreviations: BDNF, brain-derived neurotrophic factor; NAS, neonatal abstinence syndrome; CREB, cAMP response ele-
ment binding; ADHD, attention-deficit hyperactive disorder; PGi, nucleus paragigantocellularis; LC, locus coeruleus; VTA, 
ventral tegmental area; THC, tetrahydrocannabinol.
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inTrODUcTiOn

Brain-derived neurotrophic factor (BDNF) is a member of 
neurotrophin family that is highly expressed in central and 
peripheral nervous system. The functional maintenance and 
survival of neurons depends on the availability of BDNF (1, 2). 
BDNF regulates neuronal survival, promotes neurite outgrowth, 
and maintains synaptic connectivity in the nervous system (3). 
BDNF has a neuromodulatory effect on learning and memory 
(4) and drug addiction (5, 6). BDNF plays significant role in 
brain synaptic plasticity (7) and locomotor sensitization (8) after 
opiate withdrawal. Furthermore, several studies demonstrated 
alterations of serum or plasma BDNF levels in drug abuser (9, 
10) and implicated BDNF in the development of addiction (11).

Brain-derived neurotrophic factor is synthesized by neuronal 
and glial cell populations (12); however, BDNF is also expressed 
in several non-neuronal tissues such as immune cells and vascu-
lar endothelium (13–15). Altered levels and expression of BDNF 
may lead to abnormal fetal growth and brain development (16). 
Preclinical study reported increasing peripheral BDNF levels that 
were positively correlating with the cortical BDNF levels as the 
animal maturating from early postnatal period to young adults 
(17). Although there are no normative data for BDNF levels dur-
ing infancy, study showed that plasma BDNF levels also increased 
during the early perinatal period in healthy full term infants (18). 
There was a wide range of peripheral BDNF levels in healthy 
adult human; however, BDNF levels decreased significantly with 
increasing age or weight and was affected by gender (19, 20). 
Expression of BDNF is influenced by many conditions including 
stress, cigarette smoking (21), alcoholic consumption (22), and 
depression (23). Decreased serum BDNF levels were found in 
adults with attention-deficit hyperactive disorder (24) and other 
neuropsychiatric disorders (23).

In the past decade, neonatal abstinence syndrome (NAS) has 
been a major health problem. There has been substantial increase 
in incidence of maternal opiate use and NAS leading to increased 
health related costs (25). NAS signs include poor sleep, high 
pitch cry, increased muscle tone, jitteriness, loose stool, poor 
feeding, etc. Prenatal opiate exposure also results in long-term 
deleterious consequences including behavioral problems, speech 
and cognitive deficits, poor social skills, anxiety, aggression, and 
poor fine and gross motor coordination (26, 27). To date, no reli-
able biomarker has been identified to predict the severity of NAS 
and long-term outcomes of children exposed to opiates in utero. 
However, BDNF may be a good candidate biomarker. Opiate 
exposure is known to induce apoptosis, downregulate cAMP 
response element binding expression, and decrease in dendritic 
branching and spine density, and BDNF protects neurons against 
these effects (28). Opiate withdrawal can affect serum BDNF level 
(29) and BDNF expression in the brain (30). Decreased BDNF 
expression and protein in the brain is associated with behavioral, 
learning, and memory problems (12, 24, 31). Previous study 
using a rat model found that opiate exposure compromised 
memory, increased anxiety levels, and decreased BDNF precur-
sors in the hippocampus (31). Although these studies suggested 
the likely effects of in utero opiate exposure on the BDNF level 
and its role in long-term neurobehavioral outcome, to date, there 

has been no published study on the correlation of NAS/opiate 
exposure on the levels of BDNF in human infants. Therefore, in 
the present study, we aimed to assess possible changes in serum 
BDNF levels in opiates exposed infants compared to unexposed 
infants and to determine the correlation of BDNF levels with the 
severity of NAS.

MaTerials anD MeThODs

This prospective cohort study was performed on 68 infants born 
at ≥35 weeks of gestation age (GA) and admitted to Kentucky 
Children’s Hospital Neonatal Intensive Care Unit (NICU) and 
Newborn Nursery between 2015 and 2016 in Lexington, KY, 
USA. Inclusion criteria for NAS infants were infants born to 
mother with history of opiate intake or urine drug screen (UDS) 
test positive during pregnancy and were admitted in NICU for 
withdrawal symptoms. These infants were born in University of 
Kentucky or transferred from outside hospital within 1 week of 
life. Infants unexposed to opiates by history and/or UDS negative 
were enrolled in non-NAS group. The exclusion criteria were 
neonates with major congenital anomalies, infants of mothers 
<18 years of age, infant transferred from outside hospital after 
1 week of life, infant born at GA < 35 weeks, infant who are criti-
cally ill, parental refusal to consent, and parents unavailable to 
consent. The study was approved by the University of Kentucky 
Institutional Review Board.

Parents of infants who met the inclusion criterion were identi-
fied and approached. The informed consent was obtained from 
the parents. Blood samples, 1.2 ml, were collected from all the 
subjects at 48 h of life in the non-NAS group and within the first 
48 h after the admission to the NICU in the NAS group during 
the regular blood draw for lab work. Plasma was separated by 
centrifugation and stored in −80°C till all samples were collected. 
Measurement of plasma level of BDNF was performed by an 
enzyme-linked immunosorbent assay (ELISA) method using 
the human BDNF kit (RayBio Human BDNF ELISA, RayBiotech 
Inc., GA, USA), according to the manufacturer’s instructions. 
Plasma samples were diluted 1:100 for BDNF measurement. All 
BDNF measurement was performed in duplicate. Both NAS and 
non-NAS were run together in the same plate. The BDNF content 
was expressed as nanogram (ng) of human recombinant BDNF 
protein per milliliter of plasma.

We followed the clinical practice guideline for NAS treatment 
for all NAS infants. NAS scoring using the Finnegan Scale was 
performed every 3 h after admission, equaled to total of 16 time 
points in the first 48  h after admission. Opiate replacement 
therapy with morphine sulfate was started at 0.05 mg/kg, q3 h 
was started when met the criteria: 3 consecutive scores each ≥9 
or 2 consecutive scores ≥13. Morphine dose was increased by 
25% of the prior dose if the consecutive scores still met the above 
criteria and symptoms not captured until reached the maximum 
dose of 0.12 mg/kg/dose. Second medications were added if the 
symptoms were still not under controlled with scores met the 
criteria despite being on the maximum morphine dose based on 
the history; clonidine for opiate use, phenobarbital for barbiturate 
use, and diazepam for benzodiazepine use. Morphine weaning 
was started if the scores remained at desired limits for at least 
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FigUre 1 | Scatter plots and mean plasma brain-derived neurotrophic factor 
(BDNF) (±SD) levels (ng/ml) among neonatal abstinence syndrome (NAS) 
infants during withdrawal phase compared to non-NAS; *p = 0.04.

TaBle 1 | Baseline characteristics.

neonatal 
abstinence 

syndrome (nas)

non-nas p-Value

n = 34 n = 33

Maternal age (years), mean (SD) 27 (5) 29 (6) 0.1
Gestational age (weeks), mean (SD) 38.5 (1.3) 39 (1.2) 0.84
Gender: Male (%) 21 (62%) 18 (54.5%)

Female (%) 13 (38%) 15 (45.5%)
Birth weight (g), mean (SD) 3,070 (523) 3,340 (459) 0.028
APGAR: 1 min, median (range) 9 (8–9) 8 (6–9) NS
5 min, median (range) 9 (8–9) 9 (8–9) NS

Mean birth weight of the NAS infants was significantly lower than the non-NAS infants, 

3,070 ± 523 vs. 3,340 ± 459 g, p = 0.028.
NS, not significant.
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48 h by 0.02 mg per dose q 24–48 h. The infants were monitored 
for at least 48  h after morphine was discontinued before dis-
charge. If the infants were also on second medications, they were 
discharged home on tapering doses with close follow-up at the 
NICU graduate clinic.

statistical analysis
An independent sample t-test was conducted to compare the 
BDNF levels between NAS group and non-NAS group. A value of 
p ≤ 0.05 was considered to indicate significance. We also studied 
the correlation between BDNF levels and the severity of NAS 
among infants exposed to opiates in utero. The severity of NAS 
was defined by the length of stay in hospital and whether more 
than one medicine was needed to treat withdrawal symptoms. 
Pearson correlation test was performed to study the possible 
association between BDNF level and length of stay. SAS version 
9.4 (SAS Institute, Cary, NC, USA) was used for analyses.

resUlTs

Total of 67 infants were enrolled, 34 in NAS group and 33 in non-
NAS group. One infant from NAS group withdrew from study by 
the parents.

Mean gestational age did not differ between NAS 
(38.5 ± 1.3 weeks) and non-NAS groups (39 ± 1.2 weeks), p = 0.84 
(Table 1). Mean birth weight of the NAS infants was significantly 
lower than the non-NAS infants, 3,070 ± 523 vs. 3,340 ± 459 g, 
p = 0.028 (Table 1). Mean BDNF level was significantly higher 
in NAS infants compared to non-NAS infants (252.2 ± 91.6 vs. 
211.3 ± 66.3 ng/ml, difference 41 (2, 80) p = 0.04) (Figure 1).

The area under the receiver operating characteristic curve 
(ROC) curve is estimated to be 0.641. Based on the minimum 
Euclidean distance using the ROC curve, the estimated optimal 
cutoff BDNF level for predicting groups is 240. Using this cutoff 
value, estimated sensitivity is 61.7%, specificity is 60.6%, positive 
predictive value is 61.7%, and negative predictive value is 60.6%.

Among the NAS group, 29 infants required one medication 
whereas 4 infants required two medication for the treatment of 
NAS, 1 infant did not required any medication for the treatment. 
There were no differences in BDNF levels between NAS infants 
who required one medication vs. more than one medication 

[254 ± 91 vs. 218 ± 106 ng/ml, difference 36 (−64, 137), p = 0.47]. 
The correlation between the BDNF levels and length of hospi-
tal stay among NAS infants was not detected using Pearson 
Correlation (correlation 0.07, p = 0.68) (Figure 2).

In the first 48 h after admission for NAS, there were no sig-
nificant correlations between the BDNF levels and NAS scores 
at 15 of the 16 time points (Spearman Correlation 0.31 to −0.21, 
p  =  0.07–0.95). However, there was a marginally significant 
correlation between BDNF levels and NAS scores at time point 
5 (around 15  h after admission) (Spearman correlation 0.35, 
p = 0.045). There were no significant correlations between BDNF 
levels and maximum scores (p > 0.05), and the means or the total 
scores in the first 48 h of admission (p = 0.43). The distribution 
of the NAS scores significantly changed over time based on 
Friedman’s test (p < 0.0001) as depicted in Figure 3.

Infants in the NAS group were also exposed to other sub-
stances, which include cocaine, benzodiazepines, tetrahydrocan-
nabinol (THC), tobacco, amphetamine, methamphetamine, and 
gabapentin. When BDNF levels among infants with NAS were 
compared across levels in the given variables, there was no sig-
nificant difference (Table 2).

DiscUssiOn

To our knowledge, this is the first study on plasma BDNF level 
in infants exposed to opiates in utero. Our results showed that 
plasma BDNF level was significantly increased in NAS infants 
in early withdrawal phase compared to non-NAS infants. There 
were no statistically significant correlations between plasma 
BDNF levels and the severity of NAS based on the length of hos-
pital stay or the number of medications needed for treatment. The 
BDNF levels did not correlate with NAS scores at any given time 
point except at around 15 h after admission for NAS, at which 
point, most of the infants had been started on morphine. The 
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FigUre 3 | Distribution of neonatal abstinence syndrome (NAS) scores at each time point (every 3 h, total of 16 time points) in the first 48 h after admission for 
NAS. The scores significantly changed over time based on Friedman Test (p < 0.0001).

FigUre 2 | Pearson correlation showed no relation between Plasma Brain derived neurotrophic factor (BDNF) level (ng/ml) and length of stay among neonatal 
abstinence syndrome infants; p = 0.68.
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NAS Scores distribution became less dispersed over time after 
being treated as could be expected. Based on the data, we did not 
find the cutoff BDNF level that will provide good sensitivity or 
specificity to predict NAS.

The lower birth weight in NAS infants was consistent with 
the effect of opiates on the birth weight previously described 
in the literature (32), but whether this factor may contribute 
to the higher BDNF levels in this group remains to be further 
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TaBle 2 | Brain-derived neurotrophic factor levels among infants with neonatal abstinence syndrome and comparisons across levels in the given variables.

Variable Yes no Difference

Tobacco 244 ± 80 (n = 28) 289 ± 138 (n = 6) 44 (−39, 128), p = 0.29
Alcohol No use No use
Cocaine 223 ± 101 (n = 4) 256 ± 91 (n = 30) 33 (−67, 133), p = 0.51
Benzodiazepine 292 ± 79 (n = 7) 242 ± 93 (n = 27) −51 (−129, 28), p = 0.20
Tetrahydrocannabinol 248 ± 93 (n = 10) 254 ± 93 (n = 24) 6 (−66, 77), p = 0.88
Other medications 218 ± 93 (n = 15) 279 ± 83 (n = 19) 61 (−1, 123), p = 0.053
Hepatitis C 269 ± 82 (n = 19) 230 ± 101 (n = 15) −39 (−103, 25), p = 0.06

Mean ± SD (n).
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elucidated. The existing data regarding the effects of low birth 
weight/intrauterine growth restriction on the BDNF levels are 
still conflicting; at term, the BDNF levels of infants with IUGR 
were not different from those born appropriate for gestational age 
(AGA) (33) while the BDNF levels were lower in very preterm 
infants with severe growth restriction (34).

Our results regarding the increased BDNF levels were in 
line with previous preclinical and clinical studies. Chronic 
opiate exposure and acute withdrawal induced upregulation of 
BDNF genes expression in the nucleus paragigantocellularis in 
rats (30). Similarly, serum BDNF levels in heroin addicts were 
higher at the baseline and remained higher than in control 
subjects after 1 month of heroin cessation (29). Serum BDNF 
levels correlate well with changes in cortical BDNF levels (17) 
and measurement of the peripheral BDNF levels may reflect 
BDNF concentrations in the central nervous system (CNS) 
and processes in the CNS in opiate-use disorders (35). We, 
therefore, may postulate that the increase in plasma BDNF level 
during this early phase of NAS could indicate the upregulation 
of the BDNF gene expression in the CNS. Together, these sup-
port the concept that BDNF might play a critical role in NAS. 
BDNF plays an important role in the opiate-induced plasticity 
of noradrenergic locus coeruleus neurons (36), which is impli-
cated in pathogenesis of addiction and withdrawal in adult (37). 
Additionally, increased BDNF expression may counteract the 
effect of chronic opiate exposure on the neurons; chronic opiate 
administration contributed to biochemical and morphological 
changes in ventral tegmental area (VTA), and some of these 
changes in VTA were prevented or reversed by the infusion of 
BDNF into this brain region in rat (38, 39). Taken together, the 
increased plasma BDNF level in our study is perhaps reflective 
of the increased BDNF expression in the CNS as a compensa-
tory response to neuronal insult.

Brain-derived neurotrophic factor levels can be influenced 
by various factors commonly found among substance users such 
as smoking (21), alcoholic consumption (22), and various neu-
ropsychiatry disorder, which includes depression, anxiety, bipo-
lar disorder, and schizophrenia (23). Recent study by Ghassabian 
et al. reported that smoking and drinking during pregnancy was 
associated with lower neonatal BDNF levels (40). In attempt to 
control for these factors, infants in the control group were not 
exposed to cigarette smoking during pregnancy. Infants in both 
groups were not exposed to alcohol during pregnancy. In addition, 
we compared the BDNF levels among the infants in NAS group 

with the given variables including maternal smoking, maternal 
use of other substances including cocaine, benzodiazepine, THC 
and other neuropsychiatric medications, maternal hepatitis C 
infection; we found no differences in the BDNF levels in these 
small subgroups.

Besides the CNS and peripheral nervous system, BDNF is 
synthesized in other tissues including vascular endothelium and 
immune cells (13–15). In addition to fetal and neonatal synthesis, 
maternal passage and placenta synthesis can contribute to the 
difference in BDNF levels in the newborn (41–43). Thus, it is pos-
sible that these factors also contributed to the increased BDNF 
level in our study.

Our study had certain limitations including maternal poly-
substance use as mentioned, inconsistent timing of the blood 
draw depending on when the infants were admitted for NAS 
management, and some infants received initiation of treatment 
with morphine before blood draws; these factors could affect 
the BDNF levels. Larger sample size is warranted for the study 
in the future to be able to control for these confounders. Our 
plasma BDNF levels had a wide distribution consistent with 
the literature (18); however, the means were higher than previ-
ously reported by others. This could be due to different assays 
used and perhaps the samples had clotted, therefore, became 
serum samples, which reported to give much higher BDNF 
levels (44).

In summary, we observed that serum BDNF levels were 
increased in NAS infants during early withdrawal phase when 
compared to non-NAS infants. These results suggested that 
increased serum BDNF levels might be associated with the 
pathophysiology of opiate exposure and withdrawal in the 
neonates. Serial measurement of plasma BDNF levels during 
the withdrawal phase in infants with NAS and during devel-
opmental follow-up of these infants would be vital to further 
understand the role of BDNF in NAS and the outcomes of these 
infants.

eThics sTaTeMenT

This study was carried out in accordance with the recommenda-
tions of University of Kentucky, Institutional Review Board with 
written informed consent from all subjects. All subjects gave 
written informed consent in accordance with the Declaration 
of Helsinki. The protocol was approved by the Institutional 
Review Board.
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