
Research and Applications

Exploiting hierarchy in medical concept embedding*

Anthony Finch ,1 Alexander Crowell ,1 Mamta Bhatia ,1,2 Pooja

Parameshwarappa ,1 Yung-Chieh Chang ,1 Jose Martinez,1 Michael Horberg 12

1Kaiser Permanente Mid-Atlantic Permanente Medical Group, Rockville, Maryland, USA and 2Kaiser Permanente Mid-Atlantic

Permanente Research Institute, Rockville, Maryland, USA

Corresponding Authors: Anthony Finch, MS, Kaiser Permanente Mid-Atlantic Permanente Medical Group, 2101 E. Jeffer-

son St., Rockville, Maryland 20852, USA; Anthony.J.Finch@kp.org and Michael Horberg, MD, MAS, Kaiser Permanente

Mid-Atlantic Permanente Research Institute, 2101 E. Jefferson St., Rockville, Maryland 20852, USA; Michael.Horberg@k-

p.org

Received 15 December 2020; Revised 2 February 2021; Editorial Decision 20 February 2021; Accepted 26 February 2021

ABSTRACT

Objective: To construct and publicly release a set of medical concept embeddings for codes following the ICD-

10 coding standard which explicitly incorporate hierarchical information from medical codes into the embed-

ding formulation.

Materials and Methods: We trained concept embeddings using several new extensions to the Word2Vec algo-

rithm using a dataset of approximately 600,000 patients from a major integrated healthcare organization in the

Mid-Atlantic US. Our concept embeddings included additional entities to account for the medical categories

assigned to codes by the Clinical Classification Software Revised (CCSR) dataset. We compare these results to

sets of publicly released pretrained embeddings and alternative training methodologies.

Results: We found that Word2Vec models which included hierarchical data outperformed ordinary Word2Vec

alternatives on tasks which compared naı̈ve clusters to canonical ones provided by CCSR. Our Skip-Gram

model with both codes and categories achieved 61.4% normalized mutual information with canonical labels in

comparison to 57.5% with traditional Skip-Gram. In models operating on two different outcomes, we found that

including hierarchical embedding data improved classification performance 96.2% of the time. When control-

ling for all other variables, we found that co-training embeddings improved classification performance 66.7% of

the time. We found that all models outperformed our competitive benchmarks.

Discussion: We found significant evidence that our proposed algorithms can express the hierarchical structure

of medical codes more fully than ordinary Word2Vec models, and that this improvement carries forward into

classification tasks. As part of this publication, we have released several sets of pretrained medical concept

embeddings using the ICD-10 standard which significantly outperform other well-known pretrained vectors on

our tested outcomes.
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BACKGROUND

Concept embedding has become an increasingly pervasive technique

in applied machine learning. The core conceit of this methodology is

that it is significantly more efficient to construct a dense representa-

tion of a large set of entities than it is to treat observations of those

entities as orthogonal (i.e., sparse). Since its introduction by Miko-

lov et al., the Word2Vec embedding framework has become one of

the most popular methods of constructing dense numerical represen-
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tations of sparse feature sets.1 This model and its competitors have

revolutionized applications in Natural Language Processing such as

neural machine translation, sentiment analysis, topic modeling, and

other traditional NLP mainstays.2–4

Within a clinical context, concept embedding has had a growing

impact on patient modeling. The first model to employ this concept

was introduced by Choi et al, and a growing community of modelers

and clinicians have demonstrated that concept embedding can be

successfully applied to medical records.5–7 In most such models,

researchers treat patients as “documents” and medical codes (such

as ICD-9 or ICD-10 codes) as “words”.5–8 However, this analogy is

imperfect. Crucially, medical data occur within the context of a time

continuum, as opposed to occurring within a simple sequence (as

words do). This adds a layer of complexity, as modelers must choose

if and how to incorporate time into their models.7,8

Furthermore, there is significantly less data available to clinical

researchers than to language modelers, especially in the public do-

main. This sparsity of data would typically increase the value of tech-

niques such as transfer learning, which allow modelers to “transfer”

concepts learned from one dataset to another; however, surprisingly

few pretrained concept embeddings have been published.7 Those that

have been published have typically followed the ICD-9 standard,

which has been discontinued for several years.6,7

On the other hand, there are rich, publicly available datasets

which can be used to augment clinical data. While these sources

have frequently been used to evaluate concept embeddings or to of-

fer an algorithm a “warm-start,” there is limited research into how

this data can be used to improve either the construction or use of

medical concept embeddings. Patel et al., for example, used the hier-

archical code structure of ICD categories to initialize code embed-

dings with their categories’ embeddings when training a model for a

medical NLP task.9 However, this hierarchical training was only

used as a “warm start,” and has not appeared in other contexts out-

side of this NLP task. Poincare embedding has been proposed as a

modern methodology for training hierarchical embeddings. As it

was originally implemented, Poincare embeddings are trained ex-

plicitly on a tree of hierarchical relationships (e.g. WordNet),10,11 as

opposed to empirical co-occurrence; however, Beaulieu-Jones et al.

demonstrated that the model could alternatively be trained with

medical codes using empirical co-occurrence relationships.11 The

chief difficulty with these types of hyperbolic embeddings is that the

resulting vectors can be used only sub-optimally with classification

models operating in Euclidean space. While there is a growing litera-

ture built around hyperbolic spaces in machine learning, there are

no mature tools that allow users to build models of this type.12–14

In this paper, we propose that modelers explicitly employ hierar-

chical data when training and using embeddings. We do this by add-

ing clinical groups, as defined by the Clinical Classification Software

(Revised), to patient records as additional entities in both the em-

bedding and the modeling steps.15 We expected this extension to im-

prove the quality of code embeddings and to add valuable

information when employing this data in classification tasks. Our

technique is simple and requires no extensions to the mathematical

formulation of the Word2Vec model; however, it also employs hier-

archical data which has remained underexploited in the literature.

While this technique does not inherently account for complexities

introduced by time distances and code proximity, it is compatible

with more sophisticated models which incorporate corrections for

such considerations that were out of scope for this study.

We train both Continuous Bag-of-Words and Skip-Gram

Word2Vec models on a large, recent dataset from a regional health

system and demonstrate how the resulting embeddings perform on

clustering and modeling tasks. In contrast to previous research, our

data are both extensive and current, allowing us to build embed-

dings that are practically useful in contemporary health contexts

without resorting to imperfect translation between coding stand-

ards. We examine how training code categories can improve perfor-

mance on both metrics. Critically, we also publish the pretrained

embedding vectors for all our training methods.

METHODS

Data
To train our models, we employed data from the Kaiser Permanente

Mid-Atlantic States (KPMAS) medical system. KPMAS is an inte-

grated medical system serving approximately 780,000 members in

Maryland, Virginia, and the District of Columbia. KPMAS has a

comprehensive electronic medical record system which includes data

from all patient interactions with primary or specialty caregivers,

from which all data are derived. The study collected two datasets.

One included patient records for the 6 months prior to 1/1/19 (used

when training classification models) and the other included patient

records for the 12 months after 1/1/19 (used when constructing code

embeddings).

To construct a dataset to train embedding models, we included

all members of the KPMAS system that were aged 18 or older with

active coverage as of January 1, 2019. With these inclusion/exclu-

sion criteria, we had 626,269 members. We present a demographic

summary of this population in Table 1.

Once we had identified this set of patients, we gathered all medi-

cal codes assigned to patients during the period from January 1,

2019 through December 31, 2019. We eliminated codes with fewer

than 5 appearances within the dataset and all patients with 1 or

fewer codes assigned. After employing this preprocessing, 537,451

patient records remained with 11.4 million distinct code instances,

representing 5,428 distinct codes. To build the code categories, we

LAY SUMMARY

Modern machine learning techniques using electronic medical records frequently construct numerical representations of di-

agnosis codes to use as inputs into these models. This makes it easier for the machine learning algorithm to interpret pa-

tient health information and tends to improve model performance. This technique, called “embedding,” has typically been

evaluated by comparing distances between codes with known hierarchical structures in diagnosis codes.

In this study, we propose an expansion to established embedding practices. Our technique incorporates hierarchical diag-

nosis information directly into the algorithm, instead of using it purely as an evaluation metric. We demonstrate that this

technique improves the quality of the embeddings and of models that use those embeddings to predict patient outcomes.
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employed the 2020 version of the Clinical Classifications Software

Refined (CCSR) for ICD-10.15 Within the CCSR dataset, each ICD-

10 code is assigned to one or more categories, with one such cate-

gory designated as the default. For the purposes of our modeling,

each code was considered a member of only its default category.

To build classification models, we employed similar data col-

lected over the 6-month period leading up to January 1, 2019. We

limited to this period to ensure that all data was recent, since our

model did not include adjustments for older codes. Because mortal-

ity and hospitalization events were so rare in younger patients, we

included only patients age 45 or older by January 1, 2019 in both of

our classification datasets. This yielded 311,179 patients with a total

of 4.3 million instances of embedded codes.

Model
The Word2Vec architectures were originally proposed by Mikolov,

et al.1,16 In the classic Continuous Bag-of-Words (CBOW) ap-

proach, the average context surrounding a word is used to predict a

target word. This objective can be expressed as a softmax which

maximizes the network’s ability to obtain the missing word. In con-

trast, the most typical implementation of the Skip-Gram model

employs a Negative Sampling technique.16 In this construction, each

word is paired with each of its context words and with several ran-

dom “negative” samples. The task is then for the model to distin-

guish between true pairs and randomly sampled ones. The

mathematics of these models are described in detail by Rong.17 For

our modeling, we employ model implementations provided by Gen-

Sim.18

Model training
We trained 12 sets of embeddings with settings differing across three

parameters. Our first parameter was the selection of training algo-

rithm, where we trained both CBOW and SG models. Each model

was trained using dimension k of 10, 50, and 100. Furthermore,

each model-dimension combination was trained with categories and

codes trained separately and together (referred to hereafter as “co-

trained embeddings” or “co-embeddings”). Each model was trained

for 10 iterations. We employed an arbitrarily large context win-

dow (100), since all codes necessarily occurred within a short period

(1 year).

Evaluation metrics
As Xiang et al., we employ two sets of evaluation metrics. Our first

set compares naı̈ve clusters of our code embeddings to the known

categories determined by CCSR.7 Note that category embeddings

were not used in any way for evaluating our clustering metrics. This

methodology was used successfully in Cai by comparing the result-

ing clusters using Normalized Mutual Information scores (NMI).8

NMI scores provide a method to compare two groups of clusters op-

erating on the same set of points. The score is normalized so orthog-

onal clusters obtain an NMI score of 0 and perfectly correlated

clusters obtain a score of 1. As detailed by Vinh et al., we observed

that NMI scores tended to increase with the number of clusters

used; thus, we also included Adjusted Mutual Information (AMI)

scores, which adjusted NMI scores to offer more consistent behavior

as we increased the number of clusters.19

Finally, we explored the use of silhouette scores when using the

CCSR categories as our canonical labels. Silhouette scores compute

the average ratio of the distance between a point and its cluster cen-

ter to the distance between that point and its next-closest cluster

center. For the sake of this study, we have employed silhouette

scores by choosing a code’s canonical cluster as its assignment.

While the NMI and AMI scores are standard within the literature,

we felt that silhouette scores could offer a useful alternative perspec-

tive, since it was possible that codes would be near their canonical

clusters while still technically falling into another, similar cluster.

For example, it was conceivable that codes from two clusters with

similar codes may be randomly distributed within a space that was

well-defined and distant from other clusters. In such a case, NMI

and AMI scores may show very low scores for these clusters when

comparing with the known classifications; however, the silhouette

score (as described here) may penalize these clusters less than a raw

Mutual Information score would.

For each set of the code embeddings, we produced 20 sets of

clusters using the K-Means clustering algorithm, with between 20

and 400 clusters. Then, we compared the labels produced by these

clusters to the canonical clusters as labeled by the CCSR categories.

We employed NMI and AMI as measures of comparisons. In addi-

tion, we constructed artificial cluster centers by assigning each code

to its canonical cluster and computing the resulting centers. These

canonical centers were then used to compute silhouette scores from

a code to its “true” center.20

For our second set of evaluations, we built logistic regression

models to predict patient mortality and unplanned hospital admis-

sion events on patients 45 or older. Models were trained on patient

code embeddings using the Scikit-Learn implementations of cross-

validation and logistic regression.21 For each model, we averaged all

de-duplicated codes observed for each patient from the period be-

tween January 1st, 2018 and December 31st, 2018. With each set of

embeddings, we produced three sets of features: one with only the

code embeddings, one with only the category embeddings, and one

that concatenated both. We used average ROC-AUC scores from a

10-fold cross-validation to evaluate how well a model would per-

form when predicting the given target. Our two targets were patient

mortality throughout the year of 2019 and patient hospital admis-

sions during the first six months of 2019. Cross validation fold

membership was consistent across all embedding models. Note that

no additional data (e.g. demographics) or deep learning models

were used in building this model to isolate the effects of the various

embedding algorithms.

Med2Vec comparison
As a baseline comparison, we employed pretrained vectors pub-

lished by Choi as part of the Med2Vec distribution.22 These vectors

were trained with k ¼ 200 dimensions on an external dataset by the

original authors. Med2Vec was originally trained using the ICD-9

coding standard; we employed ICD-9 to ICD-10 mapping.23

Table 1. Demographic details of 626,269 members of KPMAS

Demographic Result

Average age 48.1 years

Age inter-quartile range 27.9 years

Percentage female 53.8%

Percentage Asian/Pacific Islander 13.0%

Percentage Black/African American 36.3%

Percentage Hispanic/Latino origin 12.0%

Percentage White 28.1%

Percentage other/unknown race 10.4%
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In order to verify that performance differences between Med2-

Vec embeddings and our own results were not solely attributable to

our new dataset, we also trained the Med2Vec model on our data

using its default settings, including the default vector size (200) and

a training regime of 10 epochs. We grouped all codes occurring on

the same calendar date as Med2Vec “visits.” Our Med2Vec model

benchmark did not include categorical entities or other novel inno-

vations. Our Med2Vec model was trained using the public reposi-

tory associated with the original publication.5

RESULTS

Cluster evaluation
In the clustering evaluation, the Skip-Gram model consistently out-

performed CBOW, given the same dimensionality and co-

embedding setting. Furthermore, we found that co-embedding and

added embedding dimensionality tended to improve clustering

performance. We observed that the Skip-Gram model with co-

embedding and either 50 or 100 dimensions were the best two mod-

els by a wide margin, although these models were very competitive

with one another. On the AMI task with 400 clusters, the 100-di-

mensional SG with co-trained embeddings achieved a score of

0.3107, comparing favorably with the second-highest score of

0.2864 achieved by the equivalent model with 50-dimensional

embeddings. In contrast, the 50-dimensional embedding model

achieved a score of 0.6144 on the NMI task with 400 clusters, com-

pared to a score of 0.6134 achieved by the 100-dimensional version.

In both cases, the third-best model trailed by a relatively wide mar-

gin. The 100-dimensional SG model without co-training achieved an

AMI on 400 clusters of 0.2797, and the 50-dimensional SG model

without co-training achieved an NMI on 400 clusters of 0.5905. In

addition to these numerical results, we also analyzed the qualitative

results of embeddings by examining how codes from similar catego-

ries interacted (Supplement 1).

As a final check, we also filtered embeddings for the SG model

with co-training and 100 dimensions to only include codes which

were present in the Med2Vec dataset. In Table 2, these rows are

marked with a (*) to indicate that they do not represent the com-

plete set of embedded codes. This subsampling allowed us to per-

form a direct comparison between the two to verify that

performance differences were not attributable to excluding codes.

We found that there was very little difference in performance on the

clustering tasks due to code exclusions. When excluding these codes,

NMI scores both increased (since this increases the ratio of clusters

to true labels, this is expected behavior); however, the AMI score

with 400 clusters decreased from 0.3107 to 0.2598. This new score

was still better than all but three of the other models and was signifi-

cantly better than the score of 0.0437 achieved by the pretrained

Med2Vec embeddings. These results lead us to conclude that

Word2Vec models displayed substantial improvement over the pre-

trained Med2Vec embeddings on the clustering task. Furthermore,

we found that training Med2Vec embeddings on our own data pro-

duced inferior results to those obtained by the pretrained embed-

dings, with an AMI score of 0.2400 with 400 clusters and a

silhouette score of �0.5822.

Classification evaluation
In almost all cases, combining the code and category embeddings as

feature inputs yielded increased performance, although this differ-

ence was not always significant. As shown in Table 3, when we con-

trol for the embedding model, dimension, and level of co-training,

the model which included both categories and codes outperformed

the stem-only model in all cases except when training the Skip-Gram

model with dimension 50 on the Mortality target. Co-training the

code and category embeddings tended to marginally improve perfor-

mance. When controlling for embedding model, dimensionality, and

included data, co-training improved the ROC-AUC score in 77.8%

of cases with the mortality target and 55.6% of cases with the hospi-

talization target.

Overall, the Word2Vec models compared favorably with the

Med2Vec model trained on our own data, which produced a ROC-

AUC score of 87.09% on the mortality target and 79.13% on the

hospitalization target. This performance was substantially lower

than the traditional Skip-Gram without co-embedding or categorical

features in both cases. The co-trained SG model with dimension k

¼ 100 tended to be our best-performing model, although it was

marginally outperformed on the hospitalization task by the

separately-trained model when our logistic regression was fit only

Table 2. Clustering scores by embedding method

Model Embedding Embedding dimension NMI (200) NMI (400) AMI (200) AMI (400) Silhouette

Med2Vec Sep 200 0.2011 0.2400 0.0498 0.0480 �0.5822

CBOW Sep 10 0.4254 0.4774 0.1493 0.1408 �0.4647

CBOW Sep 50 0.4261 0.4635 0.1776 0.1679 �0.3897

CBOW Sep 100 0.4011 0.4335 0.1702 0.1622 �0.3884

SG Sep 10 0.5221 0.5737 0.2052 0.1837 �0.3161

SG Sep 50 0.5500 0.5905 0.2754 0.2572 �0.1981

SG Sep 100 0.5288 0.5751 0.2852 0.2797 �0.2001

CBOW Co 10 0.4313 0.4773 0.1590 0.1429 �0.4639

CBOW Co 50 0.4576 0.4935 0.2287 0.2133 �0.3549

CBOW Co 100 0.4478 0.4825 0.2323 0.2154 �0.3448

SG Co 10 0.5220 0.5798 0.2035 0.1913 �0.3197

SG Co 50 0.5726 0.6144 0.2979 0.2864 �0.1648

SG Co 100 0.5605 0.6134 0.2963 0.3107 �0.1615

Med2Vec* N/A 200 0.2755 0.3472 0.0524 0.0437 �0.5001

SG* Co 100 0.5843 0.6448 0.2559 0.2598 �0.1722

*Models trained on a subsample of codes which occurred in the translated Med2Vec comparison.

Note that the “Co” designation in the embedding column indicates a model which trained category and code embeddings jointly, whereas a “Sep” designation

indicates that these embeddings were trained separately.
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with code data (Table 4). We also compared this model directly with

the pretrained Med2Vec benchmark. To compare against the pre-

trained Med2Vec vectors, we eliminated all codes from patient

records which were not represented in our converted Med2Vec em-

bedding dictionary. We then trained a new model on this reduced

dataset (denoted with a * in Tables 3 and 4). We found that this re-

duction in feature data only minimally decreased model performance.

DISCUSSION

Contributions
We introduced several new approaches tailored to the use of embed-

ding algorithms on medical codes. We began by proposing the use of

code categories as additional features in the construction and use of

embeddings, whereas previous work had only used categorical labels

to evaluate embedding performance. With this basis, we explored

how category embeddings could be co-trained with basic code

embeddings to improve the quality of both sets of embeddings.

Our results yielded several critical new observations. Combining

embeddings from both codes and their high-level categories as fea-

ture inputs substantially improves performance on predictive model-

ing tasks. Furthermore, co-trained hierarchical and specific

embedding tasks can improve the performance of both sets of

embeddings on clustering and classification tasks.

In addition to these theoretical observations, we note that there

are relatively few pretrained sets of medical code embeddings in the

literature. Most of those which have been made available employ

the ICD-9 standard, which is outdated and not directly translatable

to the ICD-10 standard. A major additional contribution from this

study is our public release of an additional set of pretrained code

vectors which adheres to the latest standards.

Model performance
All embedding models performed very well on the classification

tasks, with little practical difference between methods. Our most

significant observation was that including category embeddings

Table 3. Mortality model performance by embedding method.

Embedding Model Embedding Dimension Code-Only AUC Category-Only AUC Combined AUC

Med2Vec Sep 200 0.8709 N/A N/A

CBOW Sep 10 0.8788 0.8632 0.8810

CBOW Sep 50 0.8824 0.8696 0.8859

CBOW Sep 100 0.8830 0.8724 0.8903

SG Sep 10 0.8812 0.8655 0.8865

SG Sep 50 0.8914 0.8714 0.8929

SG Sep 100 0.8942 0.8755 0.8951

CBOW Co 10 0.8736 0.8643 0.8756

CBOW Co 50 0.8831 0.8710 0.8882

CBOW Co 100 0.8864 0.8753 0.8937

SG Co 10 0.8827 0.8652 0.8854

SG Co 50 0.8937 0.8739 0.8936

SG Co 100 0.8951 0.8777 0.8972

Med2Vec* N/A 200 0.7851 N/A N/A

SG* Co 100 0.8882 0.8713 0.8905

*Models trained on a subsample of codes which occurred in the translated Med2Vec comparison.

Note that the “Co” designation in the embedding column indicates a model which trained category and code embeddings jointly, whereas a “Sep” designation

indicates that these embeddings were trained separately.

Table 4. Hospital admission model performance by embedding method.

Embedding model Co-embedding Dimension Code-only AUC Category-only AUC Combined AUC

Med2Vec Sep 200 0.7913 N/A N/A

CBOW Sep 10 0.7912 0.7753 0.7923

CBOW Sep 50 0.7929 0.7824 0.7940

CBOW Sep 100 0.7919 0.7827 0.7949

SG Sep 10 0.7914 0.7770 0.7924

SG Sep 50 0.7946 0.7822 0.7955

SG Sep 100 0.7954 0.7844 0.7969

CBOW Co 10 0.7869 0.7791 0.7896

CBOW Co 50 0.7916 0.7810 0.7940

CBOW Co 100 0.7929 0.7842 0.7959

SG Co 10 0.7888 0.7779 0.7905

SG Co 50 0.7951 0.7842 0.7959

SG Co 100 0.7951 0.7852 0.7971

Med2Vec* N/A 200 0.7107 N/A N/A

SG* Co 100 0.7899 0.7808 0.7911

*Models trained on a subsample of codes which occurred in the translated Med2Vec comparison.

Note that the “Co” designation in the embedding column indicates a model which trained category and code embeddings jointly, whereas a “Sep” designation

indicates that these embeddings were trained separately.
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consistently improved model performance. Among models with

equivalent inputs, we saw that SG outperformed CBOW and that

co-trained embeddings tended to outperform independently trained

versions of the same model.

We observed significantly more differentiation on the clustering

task. Our SG model outperformed the CBOW model by a wide mar-

gin in all cases (e.g. SG with dimension 100 and without co-training

achieved an AMI with 400 clusters of 28.0% compared to CBOW’s

16.2%), and co-training the embeddings consistently improved mu-

tual information scores (e.g. the equivalent SG model with co-

trained embeddings achieved an AMI with 400 clusters of 31.1%).

While results from this paper are not directly comparable with those

achieved by others because of differences in code inclusion and data-

sets, we note that our margin of outperformance is similar to that

achieved by Cai, et al., whose novel attentional extension to Word2-

Vec achieved an improvement of 1.5 percentage points in NMI over

traditional Skip-Gram (65.46% to 63.96%) on a similarly-sized

dataset [7]. This is comparable to our performance improvement of

2.41 percentage points (61.44% to 59.05%) when comparing 50-di-

mensional Skip-Gram models using a 400-cluster NMI score.

Finally, we observed substantial improvements over public

benchmarks. While the pretrained Med2Vec embeddings performed

better than our re-trained embeddings on the clustering tasks, the

pretrained embeddings performed very poorly on the classification

task. Furthermore, both sets of embeddings underperformed relative

to their Word2Vec counterparts. Given this contrast in performance,

it seems likely that there are sufficient differences between ICD-9

and ICD-10 that embeddings trained in the prior standard should

not be used to predict on datasets using the latter.

Limitations and further investigation
Our models were trained with a limited dataset, including members

of a single insured health system and in a single year. While this

helped us to train many embedding models with limited computa-

tional resources, larger datasets may not require the hierarchical in-

formation we employed. The limited size of this dataset also

eliminated many rare codes because we had insufficient data with

which to model them. We have intentionally incorporated a large

window size (100) to minimize complications arising from the dif-

ference between proximity with respect to sequence and proximity

with respect to time. In principle, this could train a code’s embed-

ding with less relevant neighbors and introduce noise; however, this

decision also simplifies the model definition and ensures that impor-

tant code pairs are not eliminated by chance. In addition, our predic-

tive evaluations did not make extensive use of the richness of the

embedding structure. We employed a simple model to evaluate only

the results of the embeddings, which may not have captured all

available information in the embeddings. Further investigation is

necessary to determine whether various embeddings will behave dif-

ferently under more sophisticated modeling regimes.

We compared results from our model to results generated by the

Med2Vec pretrained vectors.22 This was not an ideal comparison

because we had to eliminate some codes from our dataset which did

not have appropriate matches in the Med2Vec dataset. For all evalu-

ations, we only included codes with a direct mapping; all other

codes were removed from both evaluation tasks. Given sufficient

time and expert clinical input, it may be possible to find approxi-

mate matches for most unmapped codes; however, this is not likely

to be practical in most settings considering the complexity of map-

ping between coding standards. This left us with 2,959 embedded

codes (54.5%). For our classification task, we were forced to elimi-

nate 965,617 code instances that were included when training classi-

fication tasks for our own models (22.5%). This highlights the

difficulties of trying to convert vectors from one coding standard to

another. The results we obtained when deploying our own Word2-

Vec model on this same down-sampled dataset indicate that this

may have caused the Med2Vec model to slightly overperform on the

clustering task and slightly underperform on the classification task.

In comparison, any researcher interested in using our embeddings

can always fall back to the category embeddings we have provided,

which are much more universal than specific code standards.

When training our Med2Vec benchmark, we did not optimize

training parameters or apply our categorical labels as additional en-

tities. We had difficulty training this model, since it depends upon

outdated versions of Python and several dependencies. Furthermore,

we found that the model was very slow to train (approximately 35

hours) when compared to the GenSim model (20-40 minutes,

depending on size and data). To limit the scope of work on our

benchmark, we employed the default parameters suggested by the

model’s original authors.5 While it may be possible for Med2Vec to

achieve results comparable to our own with optimization on our

specific modeling tasks, our results suggest that the model could be

further improved by incorporating categorical embeddings.

We employed only default categories from the CCSR classifica-

tion set. This was necessary to limit the scope of our investigation;

however, future research may benefit from applying all categories to

each of their relevant codes. This may further improve the quality of

hierarchical embedding strategies by adding relevant entities to the

embedding task, allowing both the code and category embeddings to

incorporate secondary diagnostic information. However, adding

this data may require careful selection of how secondary categories

are weighed in relation to primary categories.

Our algorithms do not include sophisticated corrections for time

distance information. While each code’s context only includes other

codes occurring within one year, this does not allow for proximity

to strongly influence our embeddings. Fortunately, it is simple to in-

corporate the insights from this paper in alternative models.8

CONCLUSION

In this study, we introduced the idea of using medical code catego-

ries to augment the creation of both code embeddings and models

based on those embeddings. We demonstrated that co-training

embeddings with their hierarchical information improved perfor-

mance on a variety of tasks. Finally, we have published pretrained

code vectors as part of this research, which are more up-to-date than

alternatives that are publicly available.
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