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Abstract

Congenital heart defects (CHDs) affect approximately 1% of newborns. Epidemiological

studies have identified several genetically-mediated maternal phenotypes (e.g., pregesta-

tional diabetes, chronic hypertension) that are associated with the risk of CHDs in offspring.

However, the role of the maternal genome in determining CHD risk has not been defined.

We present findings from gene-level, genome-wide studies that link CHDs to maternal effect

genes as well as to maternal genes related to hypertension and proteostasis. Maternal

effect genes, which provide the mRNAs and proteins in the oocyte that guide early embry-

onic development before zygotic gene activation, have not previously been implicated in

CHD risk. Our findings support a role for and suggest new pathways by which the maternal

genome may contribute to the development of CHDs in offspring.

Introduction

Congenital heart defects (CHDs) are the most common group of birth defects, with a preva-

lence of approximately 1% in live births [1]. CHDs are also the leading cause of birth defect-

related mortality [2] and account for the largest percentage of birth defect-associated hospitali-

zations and healthcare costs [3]. As for many birth defects, the risk of CHDs is associated with

several genetically-mediated, maternal phenotypes, including folate status, obesity, pregesta-

tional diabetes, chronic hypertension, and preeclampsia [4, 5]. These associations suggest that

the maternal genotype may contribute to the risk of birth defects in offspring, independent of
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the maternal alleles transmitted to the child. For example, maternal genes involved in folate

transport and metabolism may influence the availability of folate to the embryo, which in turn

influences the risk of folate-related birth defects.

While there has been some interest in assessing the relationship between birth defects and

maternal genotypes (e.g., methylenetetrahydrofolate reductase or MTHFR genotypes) [6–10],

studies of the maternal genotype have considered a relatively small number of maternal pheno-

types and are limited by gaps in our understanding of the genetic contribution to these pheno-

types. Further, studies focused on maternal phenotypes ignore maternal genes that might act

through alternate mechanisms to influence the risk of birth defects. For example, studies in

model systems indicate that mutations in maternal effect genes (MEGs), which provide the

mRNAs and proteins in the oocyte that guide early embryonic development before activation

of the embryonic genome, can result in birth defects in offspring [11–13]. While genome-wide

association studies (GWAS) provide a comprehensive, agnostic approach for identifying dis-

ease associations, only a few GWAS have focused on the maternal genotype [14–17]. Conse-

quently, there is much to be learned about the role of maternal genes in determining the risk

of birth defects such as CHDs.

We have previously conducted a single nucleotide polymorphism (SNP)-based GWAS of

maternal genetic effects for conotruncal heart defects (CTDs) [14], which affect the cardiac

outflow tracts [18] and account for approximately one-third of all CHDs [19]. Although we

identified several maternal SNPs with suggestive evidence of association (p� 10−5) with

CTDs, no association was genome-wide significant (p< 5 × 10−8). Compared to SNP-based

GWAS, gene-based GWAS has the advantage of a less stringent threshold for statistical signifi-

cance. Furthermore, gene-based analyses can include both common and rare variants [20]

and, therefore, capture a greater proportion of the within gene variation than SNP-based anal-

yses, which generally exclude variants with minor allele frequencies (MAFs) less than 5% [21].

Given these advantages, we have undertaken gene-based GWAS and meta-analyses using data

from two large CTD datasets to identify maternal genes associated with the risk of CTDs in

offspring.

Materials and methods

Study subjects

The Children’s Hospital of Philadelphia (CHOP). Patients with CTDs and their parents

were recruited through the Cardiac Center at CHOP (1992–2010), under a protocol approved

by the Institutional Review Board for the Protection of Human Subjects at CHOP [14, 15].

Adult participants provided written consent for themselves and their participating minor

children.

Patients with the following diagnoses were eligible to be a CTD case: tetralogy of Fallot, per-

sistent truncus arteriosus, D-transposition of the great arteries, double outlet right ventricle,

ventricular septal defects (conoventricular, posterior malalignment, and conoseptal hypoplasia

types), aortic-pulmonary window, interrupted aortic arch, and isolated aortic arch anomalies.

Medical records, imaging (e.g., echocardiography and cardiac magnetic resonance imaging),

and operative reports were used to confirm cardiac diagnoses. Potential cases were tested for

the 22q11.2 deletion syndrome using fluorescence in situ hybridization, multiplex ligation-

dependent probe amplification, or both, and those with a deletion were excluded [22]. Poten-

tial cases were also excluded if they had a clinically diagnosed chromosome abnormality or sin-

gle-gene mutation.

Pediatric Cardiac Genomics Consortium (PCGC). Patients with CTDs and their parents

were recruited as part of the PCGC Congenital Heart Defect GEnetic NEtwork Study (2010–
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2012) [23]. Recruitment took place at five main (including CHOP) and four satellite clinical

sites. Informed consent was obtained under protocols approved by the Institutional Review

Board for each study site. Adult participants provided written consent for themselves and their

participating minor children.

Patients recruited through the PCGC included those with the same CTD diagnoses as listed

above. Cardiac diagnoses were confirmed through review of medical records and electronic

case reports, and potential CTD cases were excluded if they had a clinically diagnosed chromo-

somal or genetic disorder. Participants recruited at CHOP as part of the PCGC do not overlap

with the CHOP participants described above.

Genetic methods

Blood samples were collected from cases, and blood or saliva samples were collected from

parents of cases. When blood collection was scheduled in conjunction with a surgical proce-

dure, the sample was collected before any blood transfusion. DNA extraction was performed

using standard techniques. Genome-wide microarray genotyping was performed at the CHOP

Center for Applied Genomics [14]. The CHOP samples were genotyped using the Illumina

HumanOmni-2.5, Illumina HumanHap550 (v2 or v3), or 610 BeadChip platforms, and the

PCGC samples were genotyped on the Illumina HumanOmni-1 or 2.5 platforms.

Imputation and Quality Control (QC) procedures. Standard QC procedures were per-

formed for each dataset using Plink version 1.07 [24] and have been previously described [25].

Before imputation, the genotype data were checked for strand and coding errors. Case-parent

trios were removed if more than 1% of genotyped SNPs had Mendelian errors. Suspected

duplicate samples were identified using pairwise identity-by-descent estimation, and samples

with pi-hat greater than 0.6 were removed. Samples with genotyping rates less than 95% were

also removed. In addition, SNPs with MAF less than 1%, genotyping rates less than 90%, and

all non-autosomal variants were excluded.

Due to differences in microarray genotyping platforms, the CHOP and PCGC case-parent

trios data were imputed separately. After the pre-imputation exclusions, the CHOP data from

different platforms (HumanOmni-2.5, HumanHap550K v2, 550K v3, and 610K) were com-

bined, and the SNPs present across all platforms (N = 283,977 SNPs) were used for imputation.

Similarly, the PCGC data from different platforms (HumanOmni-1 and HumanOmni-2.5)

were combined, and the SNPs present on both platforms (N = 624,419 SNPs) were used for

imputation.

For each dataset, haplotypes were pre-phased using SHAPEIT2 v2.727 [26], and imputation

was performed using Impute2 v2.3.0 [27] with pre-phased haplotype data from the 1000

Genomes Project (version: Phase-I integrated v3 variants set) as the reference population. A

genotype was imputed, only if the posterior probability value exceeded 0.9, the default calling

threshold for Impute2. After imputation, we excluded SNPs with poor imputation quality

(Impute2 information metric score less than 0.8), or genotyping rates less than 90%. Samples

with genotyping rates less than 95% were removed. Because we were interested in assessing

both common and rare SNPs, the post-imputation QC procedures did not include restrictions

based on MAFs.

Statistical analysis

Genome-wide gene-based analyses. Maternal genetic effects were evaluated using a case-

control approach in which mothers and fathers from the CTD trios were considered as cases

and controls, respectively. Genes were defined by their transcription start-stop positions,

including untranslated regions (hg19 reference assembly) plus 1kb upstream and downstream.
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Analyses were conducted separately for the CHOP and PCGC datasets, using the sequence

kernel association test for the combined effect of common and rare variants (SKAT-C) [28]. In

this approach, separate scores were calculated for the common (MAF� 5%) and rare

(MAF < 5%) variants in each gene, and p-values were based on the weighted sum of these

scores. We used the SKAT-C default parameters for weighting common and rare SNPs and

evaluated all autosomal genes with at least one common and one rare variant in our data.

To control for population stratification bias, only the parents of non-Hispanic Caucasian

CTD cases (based on self- or parental-report) were included in the analyses. As race/ethnicity

was based on the report rather than genetic data, we adjusted for the first genotypic principal

component. Genotypic principal components analyses were conducted using Golden Helix

SVS version 8.1 (Golden Helix, Inc., Bozeman, Montana, USA; www.goldenhelix.com), using

the default parameter settings (additive genetic model, MAF-based allele classification, and

each marker data normalized by its theoretical standard deviation under Hardy Weinberg

Equilibrium). A meta-analysis of the gene-based results from the CHOP and PCGC datasets

was performed using Fisher’s combination of probability method [29]. For each analysis, the

genomic inflation factor (λ) was calculated, and quantile-quantile (Q-Q) plots were con-

structed to check for deviation of the observed distribution of the test statistic from the

expected null distribution.

An association was considered genome-wide significant if the meta-analysis p-value was

less than the Bonferroni-corrected p-value, based on the number of genes evaluated. Genes

with meta-analysis p< 10−3 were considered to have suggestive evidence of association. For

genes with at least suggestive evidence of association in the meta-analysis, we considered those

for which the meta-analysis p-value was lower than the p-values in the contributing datasets

(i.e., the evidence for an association was stronger in the combined data than in either of the

individual datasets) as candidate maternal CTD-related genes. When several contiguous genes

met these criteria, which may reflect linkage disequilibrium between variants in genes that are

in close proximity rather than independent association signals, we reviewed gene functions

[30] to identify the most likely candidate gene in the region.

Gene-set enrichment analyses. Enrichment analyses using MetaCoreTM (Thomson Reu-

ters, Life Science Research; https://portal.genego.com/metacore)), were performed for genes

with meta-analysis p< 0.01 to identify enriched gene ontology (GO) processes, diseases (rep-

resented by biological markers), pathway maps, and pathway processes. For these analyses, a

false-discovery rate (FDR)-corrected p < 0.05 was considered statistically significant.

Post hoc analyses of maternal effect genes (MEGs). The most significant association in

our meta-analysis was with a gene that has been suggested to be a MEG [31]. Given this find-

ing, we elected to conduct an a posteriori, MEG gene-set analysis. For this analysis, we consid-

ered a gene to be an established MEG if it was included in at least one of two comprehensive

reviews of the MEG literature (Table A of S1 File) [32, 33]. Fisher’s exact test was used to com-

pare the proportion of established MEGs among all genes with meta-analysis p-values below

and above a specified p-value cut-point (i.e., p< 0.05 versus p� 0.05). A Fisher’s exact

p< 0.05 was considered statistically significant. In addition, we cross-referenced the list of

established MEGs with our list of candidate maternal CTD-related genes.

Results

In both the CHOP and PCGC datasets, the most common diagnosis in the offspring was the

tetralogy of Fallot (Table 1). After QC exclusions, the CHOP dataset included 423 mothers and

380 fathers, and the PCGC dataset included 216 mothers and 219 fathers.
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The number of variants and genes included in the CHOP and PCGC datasets are summa-

rized in Table 2. The Q-Q plots (S1 and S2 Figs) and genomic inflation factors (Table 2) for

the analyses of the individual datasets provided little evidence for systematic bias (Tables C

and D of S1 File). No genome-wide significant associations (p ≲ 2.3 × 10−6) were detected in

either dataset.

Fisher’s method was used to conduct a meta-analysis of the SKAT-C p-values from the

20,962 genes (Table D of S1 File) that were analyzed in both the CHOP and PCGC datasets.

The genomic inflation factor (λ = 1.07) and Q-Q plot provided little evidence of a systematic

deviation from the expected distribution (Fig 1). Although no gene achieved genome-wide sig-

nificance in the meta-analysis (Bonferroni-corrected p< 2.4 × 10−6), the meta-analysis p-

value for the germ cell-specific gene, GGN, was of borderline significance (p = 7.1 × 10−6). The

meta-analysis also provided suggestive evidence of association for an additional 30 genes

(Table 3).

Of the 31 genes with suggestive evidence for association, ten had meta-analysis p-values

lower than the p-values in either individual dataset. These ten genes included one pseudogene

(TBC1D29P), one RNA gene (LOC101928565), and eight protein-coding genes. The eight pro-

tein-coding genes include two contiguous genes located at 3q22.1 (H1FOO and PLXND1);

SLAIN2 at 4p11; and five genes located in an approximately 100,000 base-pair region of

19q13.2 (YIF1B, CATSPERG, PSMD8, GGN, and SPRED3) (Table 4). Based on their known

functions (Table 4), the eight protein-coding genes do not appear to be strong candidates for

maternal genes that act via a maternal phenotype (e.g., obesity and diabetes). However, the

3q22.1 region includes a known MEG, H1FOO (meta-p = 7.9 × 10−4), and the 19q13.2 region

Table 1. Summary of the conotruncal heart defect phenotypes in the offspring of study subjects.

Conotruncal Heart Defect Phenotype CHOP PCGC

N = 483 % N = 244 %

Tetralogy of Fallot 196 40.6 73 29.9

D-transposition of the great arteries 95 19.7 52 21.3

Ventricular septal defects 90 18.6 34 13.9

Double outlet right ventricle 53 11.0 37 15.2

Isolated aortic arch anomalies 22 4.6 7 2.9

Truncus arteriosus 15 3.1 7 2.9

Interrupted aortic arch 6 1.2 6 2.4

Other 6 1.2 28 11.5

Abbreviations: CHOP, The Children’s Hospital of Philadelphia; PCGC, The Pediatric Cardiac Genomics Consortium.

https://doi.org/10.1371/journal.pone.0234357.t001

Table 2. Summary of the genetic data used in the analyses of the CHOP and PCGC datasets.

Dataset (# mothers/# fathers)

CHOP (423/380) PCGC (216/219)

Total variants 5,605,644 6,815,834

Rare variantsa 3,500,915 4,574,369

Number of genes 21,187 22,002

Genomic inflation factor (λ) 1.06 1.05

Abbreviations: CHOP, The Children’s Hospital of Philadelphia; PCGC, The Pediatric Cardiac Genomics

Consortium.
a Variants with minor allele frequency < 0.05.

https://doi.org/10.1371/journal.pone.0234357.t002
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includes a gene that has been proposed to be a MEG, GGN (meta-p = 7.1 ×10−6). Conse-

quently, we propose H1FOO and GGN, as well as SLAIN2 (the single associated gene in the

4p11 region) as the top candidate maternal CTD-related genes identified by our meta-analysis.

Gene-set enrichment analyses

In enrichment analyses of genes with meta-analysis p< 0.01 (N = 204 genes), no pathway map

or pathway process was significant. However, there was evidence of enrichment (FDR

p< 0.05) for 17 GO processes (Table E of S1 File), including several related to transmembrane

transport in general, and calcium ion transport in particular (e.g., GO:1903169, regulation of

calcium ion transmembrane transport, p = 2.9 × 10−2). There was also evidence for enrichment

Fig 1. A quantile-quantile plot. A quantile-quantile plot of meta-analysis p-values obtained by combining SKAT-C test p-values from genome-wide

analyses of the CHOP and PCGC datasets.

https://doi.org/10.1371/journal.pone.0234357.g001
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of genes for biological markers associated with 24 disease processes including, diseases of pro-

teostasis (e.g., proteostasis deficiencies, p = 8.2 × 10−3) and hypertension (FDR p = 3.0 × 10−2)

(Table F of S1 File).

Post hoc analyses of MEGs

Given that the most significant association in our meta-analysis was with GGN (p = 7.1 x

10−6), a gene that has been suggested to be a MEG [31], we elected to conduct an a posteriori,
MEG gene-set analysis. Based on two comprehensive reviews of the MEG literature [32, 33],

we identified a list of 60 MEGs (Table A of S1 File). In our meta-analysis six of the genes on

this list had p< 0.05 (HF1OO, p = 0.0008; KMT2D, p = 0.015; TP73, p = 0.026; BNC1,

p = 0.034; ZAR1, p = 0.036; and RNF2, p = 0.0497). Although GGN also had a meta-analysis

Table 3. Maternal genes with suggestive evidence of association (p< 10−3) with conotruncal heart defects in the meta-analysis.

Gene CHR CHOP PCGC Meta-analysisa

# of variants p-value # of variants p-value p-value

GGN 19 17 6.30 × 10−4 18 7.23 × 10−4 7.10 × 10−6

SPRED3 19 46 5.11 × 10−3 44 2.71 × 10−4 2.01 × 10−5

VARS2 6 88 7.29 × 10−6 84 4.76 × 10−1 4.71 × 10−5

FER1L6-AS1 8 78 5.66 × 10−6 153 7.30 × 10−1 5.54 × 10−5

LOC101927269 7 18 2.80 × 10−1 21 1.71 × 10−5 6.34 × 10−5

LOC151475 2 25 1.49 × 10−5 31 4.08 × 10−1 7.91 × 10−5

SUMO1 2 84 7.48 × 10−1 74 1.12 × 10−5 1.06 × 10−4

PSMD8 19 40 8.51 × 10−4 39 1.06 × 10−2 1.14 × 10−4

SPINT4 20 43 4.38 × 10−1 41 2.08 × 10−5 1.15 × 10−4

SLAIN2 4 292 1.11 × 10−2 262 8.89 × 10−4 1.23 × 10−4

YIF1B 19 52 3.20 × 10−2 58 3.12 × 10−4 1.25 × 10−4

CATSPERG 19 162 4.72 × 10−3 186 2.29 × 10−3 1.34 × 10−4

FER1L6 8 785 4.51 × 10−5 897 2.84 × 10−1 1.57 × 10−4

LOC101928565 1 113 4.45 × 10−2 163 3.14 × 10−4 1.70 × 10−4

SFTA2 6 33 1.01 × 10−4 31 2.73 × 10−1 3.18 × 10−4

PTPRF 1 342 3.56 × 10−1 317 7.95 × 10−5 3.25 × 10−4

PLXND1 3 224 1.26 × 10−3 208 2.35 × 10−2 3.38 × 10−4

TBC1D29 17 19 2.57 × 10−2 12 1.16 × 10−3 3.40 × 10−4

KDM4A 1 161 3.21 × 10−1 120 1.05 × 10−4 3.81 × 10−4

TNK2 3 100 9.79 × 10−2 99 3.77 × 10−4 4.14 × 10−4

ZSWIM3 20 110 2.52 × 10−1 98 1.72 × 10−4 4.80 × 10−4

LOC100505978 12 8 1.32 × 10−1 10 4.15 × 10−4 5.92 × 10−4

MYDGF 19 71 1.21 × 10−4 80 4.52 × 10−1 5.92 × 10−4

FTH1 11 14 1.93 × 10−4 8 3.05 × 10−1 6.33 × 10−4

WFDC13 20 27 6.72 × 10−1 26 9.08 × 10−5 6.53 × 10−4

WFDC3 20 89 5.44 × 10−1 77 1.24 × 10−4 7.13 × 10−4

H1FOO 3 50 2.16 × 10−2 46 3.50 × 10−3 7.92 × 10−4

TBX20 7 102 2.66 × 10−4 124 3.10 × 10−1 8.58 × 10−4

ZNF622 5 40 1.96 × 10−4 45 4.24 × 10−1 8.62 × 10−4

HPS3 3 193 4.54 × 10−4 193 1.90 × 10−1 8.91 × 10−4

STARD7-AS1 2 37 3.53 × 10−1 35 2.74 × 10−4 9.92 × 10−4

Abbreviations: CHR, chromosome; CHOP, The Children’s Hospital of Philadelphia; PCGC, The Pediatric Cardiac Genomics Consortium.
aThe meta-analysis included 20,992 genes.

https://doi.org/10.1371/journal.pone.0234357.t003
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p< 0.05, this gene was not included in either of the review articles and was therefore omitted

from these analyses. The identification of six MEGs with meta-analysis p< 0.05 represents a

2.3-fold enrichment, which is of borderline significance (Fisher’s exact p = 0.057) based on the

standard p-value cut-off for a single statistical test (i.e. p< 0.05).

Discussion

Our genome-wide, gene-based analyses of common and rare variants provide suggestive evi-

dence that maternal genes are associated with the risk of CTDs in their offspring. Based on the

analyses of individual genes, we identified three candidate CTD-related maternal genes,

H1FOO, GGN, and SLAIN2, and propose that these genes are most likely to influence CTD-

risk via effects on early embryonic development.

H1FOO (meta-p = 7.1 × 10−6), a known MEG [33], is an oocyte-specific member of the

linker histone H1 family [34]. Genes in this family are involved in the determination of

higher-order chromatin structure and gene transcription. Knockdown studies of H1foo in

mouse one-cell embryos indicate that maternal H1foo influences the progression of DNA rep-

lication by reducing the deposition of H3 in the perinuclear region of the male pronucleus,

and significantly delays the timing of cleavage into a two-cell embryo [35].

The suspected MEG, GGN, is thought to be involved in DNA repair and is characterized as

a germ cell-specific gene. GGN is expressed at high levels in the adult testis [36], and at lower

levels in the adult ovary and somatic tissues, as well as in Metaphase-II (MII) oocytes and early

embryos [36, 37]. Evidence that GGN may function as a MEG is based on the timing of the loss

of viability in mouse Ggn-/- embryos. Specifically, Ggn-/- embryos are present in expected num-

bers at the two-cell stage but are rarely observed at the morula stage and absent by embryonic

day 7.5, consistent with the loss of viability following the depletion of maternal Ggn mRNA

stores [31].

Table 4. Maternal protein-coding genes with meta-analysis p-values suggestive of association (p< 10−3) and lower than the p-values from the analysis of individual

datasets.

Chr. Gene Positiona Descriptionb Maternal Effect

Gene

CHOP p-

value

PCGC p-

value

Meta-analysis p-

value

19q13.2 YIF1B 38,793,200–

38,807,606

Membrane trafficking protein 3.20 × 10−2 3.12 × 10−2 1.25 × 10−4

CATSPERG 38,825,443–

38,862,589

Sub-unit of the sperm calcium channel,

CATSPER

4.72 × 10−3 2.29 × 10−3 1.34 × 10−4

PSMD8 38,864,190–

38,875,464

Involved in ATP-dependent degradation of

ubiquinated proteins

8.51 × 10−4 1.06 × 10−2 1.14 × 10−4

GGN 38,873,992–

38,879,668

Germ cell specific gene Suggested 6.30 × 10−4 7.23 × 10−4 7.10 × 10−6

SPRED3 38,879,840–

38,891,523

Negative regulation of MAP kinase signaling 5.11 × 10−3 2.71 × 10−4 2.01 × 10−5

3q22.1 H1FOO 129,261,057–

129,271,310

Oocyte specific member of the H1 histone

family

Established 2.16 × 10−2 3.40 × 10−3 7.92 × 10−4

PLXND1 129,273,056–

129,326,582

Cell surface receptor for semaphorins 1.26 × 10−3 2.35 × 10−2 3.38 × 10−4

4p11 SLAIN2 48,342,613–

48,429,215

Promotes cytoplasmic microtubule nucleation

and elongation

1.11 × 10−2 8.89 × 10−4 1.23 × 10−4

Abbreviations: CHOP, The Children’s Hospital of Philadelphia; PCGC, The Pediatric Cardiac Genomics Consortium.
a Gene transcription start/stop positions (hg19) plus 1 kb upstream and downstream.
b Gene descriptions obtained from GeneCards: https://www.genecards.org/.

https://doi.org/10.1371/journal.pone.0234357.t004
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Although SLAIN2 has not previously been implicated as a MEG, SLAIN2 mRNA is abun-

dant in both MII oocytes and one-cell embryos and declines thereafter [37]. Further, SLAIN2
is involved in microtubule dynamics and organization [38], which are essential for several

post-fertilization processes, including meiotic spindle assembly, separation of the parental

genomes, and pronuclei migration [39–42]. Hence, both the expression pattern and known

functions of SLAIN2 are compatible with a potential role as a MEG.

Additional evidence that MEGs may be associated with CTDs in offspring is provided by

the observed 2.3-fold enrichment of established MEGs among genes with p< 0.05 in our

meta-analysis. The established MEGs with meta-analysis p< 0.05 include: H1FOO (discussed

above); the transcriptional regulators, BNC1 and KMT2D; RNF2, which is involved in chroma-

tin remodeling; and, TP73 and ZAR1, which are involved in cell cycle regulation [32].

Although MEGs have not previously been implicated as potential maternal risk factors for

CTDs, studies in model systems demonstrate that mutations in MEGs can have a range of con-

sequences for offspring, including embryonic lethality, developmental delay, and congenital

malformations [11–13]. Similarly, women carrying a MEG mutation (e.g., NLRP5, NLRP7,

and PADI6) experience a range of reproductive outcomes, including hydatidiform moles, peri-

ods of infertility, reproductive loss, offspring with multi-locus imprinting disorders, and unaf-

fected children [43–46]. Although somewhat anecdotal, it is of interest that one (of five)

woman with an NLRP5 mutation, ascertained following the birth of a child with a multi-locus

imprinting disorder, also had a child with an isolated (i.e., apparently non-syndromic) CHD

(atrial septal and ventricular defects) [43].

The observed enrichment of genes mapping to GO processes related to ion transmembrane

transport, and specifically to calcium ion transport, could also be driven by MEGs. Although a

detailed understanding of the genetic regulation of these oscillations is lacking, the known

MEG, NLRP5 (also known as MATER), is required for calcium homeostasis. Specifically,

oocytes from mouse Mater hypomorphs exhibit lower first peak amplitudes and higher fre-

quencies of calcium oscillations (as compared to wild-type oocytes), likely due to a reduction

in calcium stores in the endoplasmic reticulum [47].

Our analyses also identified the enrichment of genes related to hypertension. Maternal

pregestational hypertension is associated with an increased risk of several birth defects, includ-

ing, but not limited, to CHDs [48–51]. These associations appear to be independent of medica-

tions taken for the treatment of hypertension [48, 49], suggesting either that maternal

hypertension, per se, has a negative impact on development (e.g., via an effect on blood flow to

the uterus) or that hypertension and birth defects share common risk factors (e.g., genes with

pleiotropic effects).

Our analyses also identified enrichment of genes related to proteostasis deficiency and dis-

eases associated with protein misfolding and aggregation (e.g., amyotrophic lateral sclerosis).

During pregnancy, the accumulation of misfolded proteins in body fluids and the placenta is

associated with preeclampsia, a maternal condition that is also associated with an increased

risk of birth defects, including CHDs [50–54].

The results of our study must be viewed in light of both its strengths and limitations. We

used a case-control study design, in which we compared the mothers (cases) and fathers (con-

trols) of individuals with CTDs, to identify maternal CTD-related genes. Compared to a case-

control design using unrelated, female controls, our design has the advantage of controlling

for the potentially confounding effects of the genotype inherited by the child but is subject to

bias arising from differences in allele frequencies between males and females. However, sex

differences in allele frequencies appear to be uncommon (< 1% of variants) in autosomal

genes [55]. In addition, while our analyses assess whether there are gene-level differences

between mothers and fathers, they do not indicate which group might carry more (or less)
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disease-related alleles. Our observed associations could, therefore, be driven by paternal rather

than maternal effects. However, since embryonic development prior to zygotic gene activation

is primarily driven by maternal gene products, and the maternal genome has a direct effect on

the in utero environment, any true associations detected in our study are most likely due to

maternal genes. Nonetheless, additional studies (e.g., in model systems) will be required to

confirm and establish the mechanisms underlying these observed associations.

Our analyses were based on two large CTD datasets that were ascertained in the United

States using similar recruitment, and systematic case confirmation (phenotyping) approaches.

Furthermore, our gene-based analyses had a lower multiple-testing burden than SNP-based

GWAS. However, our sample sizes were relatively small for our genome-wide approach, and

the criterion for achieving statistical significance (corrected-p ~ 2.5 × 10−6) remained quite

high. Consequently, associations with maternal CTD-related genes may have been missed in

our analyses due to low power. Genes with suggestive evidence of association and genes associ-

ated with enriched terms, therefore, appear to be strong targets for further investigations of the

maternal genetic contribution to CTDs.

In our analyses, we combined data across different CTD phenotypes, which could have

obscured associations if the maternal contribution to individual phenotypes is distinct. How-

ever, the predominance of evidence suggests that maternally mediated risk factors tend to be

related to a broad spectrum of malformations. For example, maternal hypertension, pre-

eclampsia, diabetes, and obesity are all associated with a spectrum of cardiac and non-cardiac

malformations. Hence, for studies of maternal risk factors, the potential for improved power

resulting from analyses of similar birth defects (e.g., the various CTD phenotypes) outweighs

concerns regarding the potential impact of phenotypic heterogeneity.

This study is the first gene-based GWAS of maternal genotypes and CTDs. We have, how-

ever, previously conducted SNP-based, common-variant GWAS and meta-analysis using the

same datasets as in the current gene-based analyses [14]. In our SNP-based meta-analysis, we

identified several variants with suggestive evidence of association (p� 10−5); however, none

were located in, or within 1kb of the genes with suggestive evidence of association in the cur-

rent, gene-based analyses. Based on these same two datasets, we have also reported that the

risk of CTDs is associated with a maternal genetic risk score for hypertension [10]. However,

only one variant included in the genetic risk score falls within a gene that was included in our

enrichment analyses (i.e., rs11862778 in MTHFR). Hence, these two analyses appear to provide

largely independent evidence that genes related to maternal hypertension are associated with

the risk of CTDs.

In conclusion, our analyses provide provocative new insights into the potential influence of

the maternal genome on embryonic development. While our results are specific to CTDs, both

maternal conditions (e.g., hypertension) and MEGs are associated with a range of adverse

reproductive outcomes, suggesting that our findings may have much broader implications for

the understanding of birth-defect etiology. Further, our findings suggest a link between birth

defects and other adverse pregnancy outcomes (e.g., reproductive loss and infertility). Confir-

mation of such a link would have broad implications for reproductive counseling and plan-

ning. Given these initial, compelling findings, additional studies of the relationship between

the maternal genome and birth defects are warranted.
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