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Abstract: The ability to detect and respond to varying oxygen tension is an essential prerequisite to
life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase
domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine
(2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A
and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways
in the context of virus replication in different tissues that experience variable oxygen tension. Current
information supports a model where the PHD-HIF pathway enhances the replication of viruses
infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism
for higher oxygen environments. Differences in oxygen tension and associated HIF signaling
may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that
modulate HIF activity could provide novel treatment options for viral infections and associated
pathological conditions.
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1. Introduction

Oxygen is essential for survival and organisms have developed mechanisms to detect and respond
to variable oxygen tensions. These include the prolyl hydroxylase domain (PHD)/factor inhibiting HIF
(FIH)-hypoxia inducible factor (HIF) pathway [1,2] along with the more recently described cysteamine
(2-aminoethanethiol) dioxygenase (ADO) pathway [3] and lysine-specific demethylase (KDM) 5A
and KDM6A pathways [4,5] (Figure 1). PHDs and KDMs are members of a family of enzymes that
are dependent on oxygen, Fe(II), ascorbate and the Krebs cycle intermediate 2-oxoglutarate (2OG),
that regulate fundamental cellular processes by catalysing the hydroxylation or demethylation of DNA,
RNA or proteins such as histones (reviewed in [6]).

The importance of HIFs in oxygen sensing was recognised by the 2019 Nobel Prize in Physiology or
Medicine awarded to William Kaelin, Peter Ratcliffe and Gregg L. Semenza [7]. HIFs are heterodimeric
transcription factors comprising an alpha and beta subunit that bind a consensus RCGTG(C) motif or
hypoxic responsive element (HRE) in the promoter and enhancer regions of target genes. When oxygen
is abundant, newly synthesised HIFα subunits, including HIF-1α and HIF-2α isomers, are hydroxylated
by PHD or FIH, poly-ubiquitinated via von Hippel-Lindau factor (VHL) and targeted for proteasomal
degradation. However, when oxygen is limiting these subunits are stabilised, translocate to the nucleus
and dimerise with HIF-β to regulate a myriad of host target genes [1]. The PHD-HIF pathway is
known to regulate genes with wide ranging functions, from metabolism and immunity, to DNA repair
and carcinogenesis [8].
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Figure 1. Schematic illustration of oxygen sensing mechanisms. These include the prolyl 
hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, 
lysine-specific demethylase (KDM) 5A and KDM6A pathways and the cysteamine (2-
aminoethanethiol) dioxygenase (ADO) pathway. RGS, regulator of G protein signaling; VHL, von 
Hippel–Lindau tumor suppressor gene. Created with BioRender.com. 
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are stabilised, translocate to the nucleus and dimerise with HIF-β to regulate a myriad of host target 
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As obligatory intracellular parasites, viruses depend on the host cellular machinery to replicate. 
Important factors that shape the cellular microenvironment include temperature, pH and oxygen 
tension. As variable oxygen tension regulates host gene expression, protein modification, metabolism 
and epigenetic regulation, it is not surprising that oxygen availability can influence multiple steps in 
the viral life cycle [4,9]. A wide range of oxygen tensions are found within different tissues and 
organs, ranging from <1% in the skin to 14.5% in arterial blood vessels (reviewed in [10]). However, 
the majority of in vitro studies on viral replication have been conducted at comparatively high 
atmospheric oxygen tension (18%) [11], where HIFs are not active and consequently their role in viral 
replication may have been overlooked. Viral infection, inflammatory responses and tissue damage 
induced reactive oxygen species (ROS) can all stabilise HIF expression, highlighting the complex 
interplay between oxygen sensing pathways and viral replication [12,13]. Viruses have either DNA 
or RNA genomes [14] and this can define whether HIFs regulate viral transcription by direct binding 
to the viral genome or via indirect regulation of host genes. Screening DNA genomes representing 
the major viral families shows an approximate 50-fold variation in the frequency of HREs relative to 
the number of open reading frames (ORFs), ranging from 0.3 for HIV-1 (3 HRE/10 ORFs) to 14.7 for 
Molluscum contagiosum (2395 HRE/163 ORFs) (Figure 2). These data are consistent with variable 
sensitivity of viruses to low oxygen environments. 

Figure 1. Schematic illustration of oxygen sensing mechanisms. These include the prolyl hydroxylase
domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, lysine-specific
demethylase (KDM) 5A and KDM6A pathways and the cysteamine (2-aminoethanethiol) dioxygenase
(ADO) pathway. RGS, regulator of G protein signaling; VHL, von Hippel–Lindau tumor suppressor
gene. Created with BioRender.com.

As obligatory intracellular parasites, viruses depend on the host cellular machinery to replicate.
Important factors that shape the cellular microenvironment include temperature, pH and oxygen
tension. As variable oxygen tension regulates host gene expression, protein modification, metabolism
and epigenetic regulation, it is not surprising that oxygen availability can influence multiple steps in
the viral life cycle [4,9]. A wide range of oxygen tensions are found within different tissues and organs,
ranging from <1% in the skin to 14.5% in arterial blood vessels (reviewed in [10]). However, the majority
of in vitro studies on viral replication have been conducted at comparatively high atmospheric oxygen
tension (18%) [11], where HIFs are not active and consequently their role in viral replication may have
been overlooked. Viral infection, inflammatory responses and tissue damage induced reactive oxygen
species (ROS) can all stabilise HIF expression, highlighting the complex interplay between oxygen
sensing pathways and viral replication [12,13]. Viruses have either DNA or RNA genomes [14] and
this can define whether HIFs regulate viral transcription by direct binding to the viral genome or via
indirect regulation of host genes. Screening DNA genomes representing the major viral families shows
an approximate 50-fold variation in the frequency of HREs relative to the number of open reading
frames (ORFs), ranging from 0.3 for HIV-1 (3 HRE/10 ORFs) to 14.7 for Molluscum contagiosum
(2395 HRE/163 ORFs) (Figure 2). These data are consistent with variable sensitivity of viruses to low
oxygen environments.
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simplex virus type 1 (HSV-1, NC_001806.2), human T-lymphotropic virus 1 (HTLV-1, NC_001436.1), 
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sites. Previous reviews have generally focused on the role of HIFs in viral carcinogenesis and host 
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Figure 3. Schematic illustration depicting how oxygen tension in different tissues affects viral 
replication. Hypoxia inducible factor (HIF) signaling enhances (black arrow) the replication of 
Kaposi’s sarcoma associated herpesvirus (KSHV), hepatitis C virus (HCV), Epstein Barr virus (EBV) 
and dengue virus (DENV). In contrast, human immunodeficiency virus type I (HIV-1), influenza A 
virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication is 
dampened by HIF signaling. HRE, HIF response element, Ub, ubiquitin. Created with 
BioRender.com. 

Figure 2. Frequency of HIF response elements (HRE) in viral DNA genomes. The frequency of HRE
elements (RCGTG) is plotted against the number of open reading frames (ORF) for a range of DNA
viruses with those marked in blue discussed in this review. Referent sequences presented were selected
from Genbank as follows (accession numbers in brackets); adeno-associated virus (AAV, NC_001401.2),
adenovirus (ADV, AC_000007.1), cytomegalovirus (CMV, KU317610.1), cowpox virus (CowPox,
NC_003663.2), Epstein–Barr virus (EBV, NC_009334.1), hepatitis B virus (HBV, NC_003977.2),
human herpesvirus 6 (HHV-6, NC_000898.1), HHV-7 (NC_001716.2), Kaposi’s sarcoma-associated
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herpesvirus (KSHV, NC_009333.1), human immunodeficiency virus type 1 (HIV-1, NC_001802.1),
HIV-2 (NC_001722.1), human papillomavirus 16 (HPV16, NC_001526.4), herpes simplex virus type 1
(HSV-1, NC_001806.2), human T-lymphotropic virus 1 (HTLV-1, NC_001436.1), Molluscum Contagiosum
(Moll.cont, NC_001731.1), Orf virus (Orf, NC_005336.1), parvovirus (NC_000883.2), polyomavirus
(NC_031757.1), varicella-zoster virus (VZV, NC_001348.1) and variola virus (NC_001611.1).

These data prompted us to review the current knowledge on how oxygen tension impacts viral
replication (Figure 3) and how viruses manipulate the PHD-HIF pathway. Using a systems-based
approach we discuss the literature in the context of viruses infecting and replicating in different tissue
sites. Previous reviews have generally focused on the role of HIFs in viral carcinogenesis and host
immunity [15–18]. Finally, we review pharmaceutical agents that modulate HIF activity and discuss
their potential use as novel treatments for viral infections and associated pathological conditions [19–21].
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Figure 3. Schematic illustration depicting how oxygen tension in different tissues affects viral
replication. Hypoxia inducible factor (HIF) signaling enhances (black arrow) the replication of Kaposi’s
sarcoma associated herpesvirus (KSHV), hepatitis C virus (HCV), Epstein Barr virus (EBV) and dengue
virus (DENV). In contrast, human immunodeficiency virus type I (HIV-1), influenza A virus (IAV)
and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication is dampened by HIF
signaling. HRE, HIF response element, Ub, ubiquitin. Created with BioRender.com.

2. The Skin and Epidermis

The skin plays an essential role in responding to environmental stimuli, where specific deletion
of HIF-1α from the epidermis in mice inhibits renal erythropoietin (EPO) synthesis in response to
hypoxia [22]. Furthermore, mice with an epidermal deletion of the VHL factor, a negative regulator of
HIF, show increased EPO expression and polycythemia.

2.1. Kaposi’s Sarcoma Associated Herpesvirus (KSHV)

KSHV is a member of the Herpesviridae double-stranded DNA viruses that infects epithelial cells
and keratinocytes, where the local oxygen tension is in the range of 1–2.5% [10,23,24]. KSHV causes
Kaposi’s sarcoma, the most common acquired immunodeficiency syndrome related neoplasm [25] and
viral lytic gene activation is associated with oncogenesis [26]. In 2003, Haque et al. identified functional
HREs in the promoter regions of the ORF34 and Rta genes, which are involved in lytic switch, late stage
gene expression and viral particle production [27,28]. Hypoxia activated both promoters and while
ORF34 promoter was regulated by both HIF-1α and HIF-2α, the Rta promoter was preferentially
regulated by HIF-2α. In 2006, Haque et al. went on to identify an additional HRE in the ORF35–37
promoter region that was co-regulated by both HIF-1α and HIF-2α [29]. These active HREs in the KSHV
lytic gene promoters support an essential role for HIFs in regulating viral latency. KSHV-associated
tumours are highly vascularised, a process which is partly mediated by virus-induced HIF signaling.
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Firstly, KSHV encoded G protein-coupled receptor (vGPCR) induces vascular endothelial growth
factor (VEGF) expression and associated angiogenesis [25]. The vGPCR induces HIF-1α regulatory
domain phosphorylation via p38/MAPK and mTOR pathways [30]. Secondly, the KSHV-encoded viral
interferon (IFN) regulatory factor 3 (vIFR3) binds to HIF-1α and prevents its degradation [31]. Finally,
the KSHV encoded latency-associated nuclear antigen acts as a transcriptional coactivator interacting
with HIF-1α protein and enhances HIF-1α mRNA transcription [32,33]. These studies are consistent
with the reported 34% overlap between KSHV infection and hypoxia gene expression profiles [34],
suggesting that KSHV exploits the HIF signaling pathway and multiple redundant pathways to
ensure HIF expression. Furthermore, inhibiting HIF in immunodeficient athymic mice reduced VEGF
expression and tumour growth in a syngeneic mouse model [30]. KSHV-associated angiogenesis was
potentiated by the hypoxia mimetic, deferoxamine mesylate [35], demonstrating an essential role for
HIFs in KSHV pathogenesis. KSHV can also cause non-skin related cancers, however, the role of HIFs
in these non-skin related cancers have not been studied.

2.2. Human Papilloma Virus (HPV)

HPV are a family of small double-stranded DNA viruses that infect basal epithelia and specific
strains have been associated with a risk of oncogenesis [36,37]. The link between HPV strains 16 and
18 and cervical cancer has led to their classification as high risk and integration of HPV16 associates
with HIF-1α overexpression [38]. HPV16 and 18 encoded E6 and E7 proteins stabilise HIF-1α and
induce VEGF and IL-8 expression that is associated with increased angiogenesis [39–41]. Three studies
have suggested alternative non-exclusive mechanisms for HPV to stabilise HIFs: (1) E6 prevents
HIF-1α association with VHL [42]; (2) E6 and E7 induce HIF-2α protein via liver kinase B1 (LKB1)
modulation [43] and (3) E2 binding to mitochondrial membrane components of the respiratory chain
induce reactive oxygen species (ROS) [44]. There are limited clinical studies addressing the translational
impact of HIFs in HPV associated cancers. However, in a cohort of patients with oropharyngeal
squamous cell carcinoma there was some evidence for HIF-1α expression in the tumour associating with
clinical outcome [45]. Jo et al. reported that elevated VEGF levels in a cohort of patients diagnosed with
HPV16-associated oropharynx squamous cell carcinoma was independent of HIF-1α expression [46].
Given the technical limitations in staining for HIF-1α in tissue [47] and the oxygen rich environment
of the oropharynx, ex vivo patient sample processing methods may require optimisation before
interpreting these studies. Further clinical studies are required to fully examine the relationship
between HPV, HIFs and patient outcomes.

3. The Liver

The liver is a naturally low oxygen environment with the highest oxygen tension near its periportal
region at 8%, gradually decreasing to 4% in the pericentral area. A recent single cell sequencing study of
the mouse liver [48] reported this oxygen gradient to associate with liver zonation, a phenomenon where
hepatocytes show distinct functional and structural heterogeneity across the liver [49]. These infections
are the leading cause for HCC worldwide and associated with significant mortality, accounting for more
than 1.3 million deaths per year [50]. Hepatitis B and C viruses are a global health problem causing
acute and chronic infections that can lead to liver cirrhosis and hepatocellular carcinoma (HCC).

3.1. Hepatitis C Virus (HCV)

HCV is a positive-sense single-stranded RNA virus in the Flaviviridae family that infects the
liver. Low oxygen has been reported to increase HCV RNA levels in human hepatoma Huh-7 and
HepG2 model systems [51,52]. These studies reported differences in the HIF-dependency of the
low oxygen-increase in HCV RNA that most likely reflects the different oxygen tensions used in the
experimental models: Vassilaki et al. [51] cultured the infected cells at 3% oxygen and showed a
minimal role for HIFs in regulating HCV replication, whereas Wilson et al. [52] reported a positive
role for HIFs in regulating HCV replication at 1% oxygen. Since the HIF-PHD and FIH degradation
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pathways are still functionally active at 3% oxygen there will be limited HIF transcriptional activity,
highlighting the importance of the % oxygen applied in vitro model systems and how this impacts on
HIF signalling. The study by Vassilaki highlights the role for hydroxylases within the 2OG oxygenase
family in regulating HCV replication. A recent report showed the importance of N6-methyladenosine
(m6A) modification in the replication of HCV and other Flaviviridae RNAs and viral particle genesis that
was mediated by fat mass and obesity-associated protein (FTO), a member of the 2OG oxygenases [53].

The phospholipase autotaxin is hypoxic regulated and pharmacological inhibition or siRNA
silencing of autotaxin-lysophosphatidic acid signaling reduced HCV replication, suggesting a role
for HIFs to promote HCV replication via this pathway [54]. Autotaxin generates the biologically
active lipid lysophosphatidic acid that plays a pro-tumorigenic role in a wide number of cancers.
Farquhar et al. reported a positive association between hypoxic gene expression in HCV associated
HCC tissue and autotaxin transcript levels [54]. Furthermore, the HCV encoded core [55–58] and
E1E2 glycoproteins [52] stabilised HIF expression by inducing an unfolded protein-stress response.
Further reports showing that HCV induction of NF-kB, STAT-3, PI3-K-aKT, and p42/44 MAPK
signaling stabilised HIF-1α [54,59–61], highlight the multiple pathways for HCV induced HIF signaling.
Nassimuzzaman et al. [61] reported HIF-dependent VEGF expression in HCV infected cells and
suggested a role for HCV in activating angiogenesis. This observation was extended by Wilson et al. who
showed that HCV-induced VEGF reduced hepatoma cell polarity and potentiated viral transmission [62]
and increased epithelial-mesenchymal transition, suggesting a role for HCV stabilised HIFs in promoting
fibrosis and liver injury.

3.2. Hepatitis B Virus (HBV)

HBV is a member of the Hepadnaviridae family of partially double-stranded DNA viruses that infect
the liver. In contrast to our knowledge of HIFs in regulating HCV, currently there are no published
studies exploring the role of HIFs in regulating HBV transcription. Hallez et al. reported that hypoxia
induced human deoxyribonuclease 1 (DNASE1) could catabolise the encapsidated DNA genomes,
resulting in a high frequency of empty or ‘light’ virions HBV [63]. The majority of experiments
used cobalt chloride and dimethyloxalylglycine, mimetic agents that can inhibit prolyl hydroxylase
enzymes and stabilise HIFs. However, these mimetics have been reported to induce additional
oxygen-independent biological effects [64,65].

Several reports have studied the HBV encoded regulatory protein HBx that interacts with a
myriad of host factors including HIF-1α and contributes to liver pathogenesis. Yoo et al. reported
that HBx induced HIF-1α protein and mRNA upregulation through two independent mechanisms:
(1) upregulation of MTA1 and HDAC1/2 that perturbed HIF-1α deacetylation and (2) prevention
of HIF-1α association with VHL [66–68]. HBx was also reported to bind HIF-1α and increase its
stability [69] and C-terminal truncation of HBx abrogated this association [70]. A significant limitation
of these studies is their dependence on HBx overexpression systems. Lui et al. reported that a variety
of in vitro and in vivo HBV model systems failed to show a role for HBx in stabilizing or modifying
HIF transcriptional activity However, increased HIF target gene expression was observed in liver tissue
from a chronic hepatitis B (CHB) cohort that associated with inflammatory immune responses [71].
Since inflammation and associated oxidative stress are known to induce HIF-transcription, the authors
conclude that HBV-associated inflammation drives HIF expression.

Several clinical studies have reported an association between increased HIF expression and
HBV-related disease outcome. Xie et al. showed that HIF-1α expression in HCC associated with
shorter survival [72]. Similarly, Osman et al. demonstrated that HIF-1α expression in HCC associated
with larger tumour size, multifocal malignancies and more advanced disease [73]. Genetic variation in
HIF-1α has also been linked with HBV-HCC risk, where the CG haplotype associated with increased risk
relative to the CA haplotype [74]. Furthermore, a HIF-2α single nucleotide polymorphism rs13419896
associated with an increased risk of liver cirrhosis [75]. Similarly, high KDM5B expression showed a
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negative association with HCC prognosis [76]. These clinical studies support translational studies to
explore the application of HIF inhibitors to HBV related pathologies.

4. The Immune System

Lymphoid organs operate at oxygen levels in the range of 0.5–4.5% O2 [77–79], which are sufficient
to activate the HIF pathway [80].

4.1. Human Immunodeficiency Virus Type I (HIV-1)

Human immunodeficiency virus type I (HIV-1) is a retrovirus with an RNA genome that is
reverse transcribed into cDNA and integrated into the host genome where it serves as a transcriptional
template. If the integrated provirus is methylated and transcriptionally silenced, the viral genome
becomes latent. Reactivation of HIV from latent reservoirs is a crucial step of ‘shock-and-kill’ treatment
approaches. HIV-1 primarily replicates in CD4+ T cells and the major virus reservoirs are thought to
be in lymphoid tissues: hence this virus has evolved to replicate in cells that may experience widely
differing oxygen tensions. Accumulating evidence shows that a hypoxic environment inhibits HIV
replication and reactivation [81,82]. HIF-2α can repress HIV transcription under low oxygen conditions
(1% O2) via a direct interaction with a conserved HRE in the U3 region of the long terminal repeat
(LTR) [81]. In addition, hypoxic reduction in cyclin T1 activity was reported to reduce Tat mediated
transcription [82]. Duette et al. reported the hypoxia mimetic cobalt chloride induced a modest
1.5 fold increase in HIV-1 replication [83], however, since these mimetics activate additional signaling
pathways [64,65] further investigations are required to explore these differences.

Chronic immune activation, metabolic changes and inflammation during HIV-1 replication
induce mitochondrial ROS [83]. The HIV-1 accessory protein Vpr was reported to increase HIF-1α
expression via induction of ROS [84] and is consistent with an independent report showing that
expression of Vpr in the monocytic cell line U937 increased HIF-dependent glycolysis [85]. In line with
these findings, clinical studies reported HIF-1α expression in the brain of AIDS patients diagnosed
with dementia [84] and increased HIF-2α and VEGF protein in kidney biopsies from patients with
HIV-associated nephropathy [86]. Taken together, these data suggest that the hypoxic environment
may be relevant to any successful shock-and-kill antiviral strategy.

4.2. Human T-Lymphotropic Virus Type 1 (HTLV-1)

The human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that integrates into the host
genome. An estimated 5–10 million people worldwide are infected by HTLV-1 and in 5–10% of
cases this leads to a CD4-T cell malignancy, known as adult T-cell leukemia or a progressive
inflammatory disease of the spinal cord. In contrast to HIV-1, hypoxia enhanced HTLV-1 reactivation
from latency via a HIF-independent process that involved the 2OG metabolite, suggesting a role for
oxygenases in reactivating the genome [87]. Furthermore, there is evidence that the HLTV-1 encoded
transactivator protein, Tax, induces HIF-1α protein expression and suppresses expression of the
cellular proapoptotic BH3-only proteins Bim and Bid [88]. Since HTLV-1 may benefit from a hypoxic
environment through several different mechanisms, a better understanding of these interactions could
identify therapeutic targets.

4.3. Epstein Barr Virus (EBV)

Epstein Barr virus (EBV) is a double-stranded DNA virus in the family of Herpesviridae that
replicates in CD20+ B cells and epithelial cells of the oropharynx and is associated with a number
of malignancies, including Hodgkin’s lymphoma and Burkett’s Lymphoma [89]. As described for
KSHV, HIF-1α directly binds the primary latent-lytic switch BZLF1 gene promoter, Zp, and activates
transcription [90,91]. The EBV latent membrane protein 1 (LMP1), an oncogenic protein capable of
B-cell immortalisation, increases HIF-1α protein expression by upregulating the Siah1 E3 ubiquitin
ligase that degrades PHD1 and PHD3 [89,92–94]. In addition, the loss of VHL/HIF-1α complexes
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stabilises HIF-1α and associated HIF signaling, including pyruvate dehydrogenase kinase 1 (PDK1)
and the pyruvate kinase M2 (PKM2) isoform, resulting in an increase in lactate production and
glucose consumption [95].

There is limited evidence of an association between the survival of patients with EBV+

nasopharyngeal cancers and HIF-1α or VEGF expression [96]. Although LMP1 expression was noted in
all EBV+ nasopharyngeal carcinomas, there was limited evidence of LMP1 co-localisation with HIF-1α.
Despite the lack of a direct correlation between HIF expression and nasopharyngeal cancer clinical
outcome, Yang et al. reported that LMP1 blockade increased the sensitivity of nasopharyngeal carcinoma
to radiotherapy by downregulating HIF-1α and VEGF activity and decreasing phosphorylated
JNKs/c-Jun signaling [97]. This observation was further validated through an in vivo experiment
showing a significant reduction in tumour growth.

4.4. Dengue Virus (DENV)

DENV is a member of the Flavivirus genus that includes yellow fever, Zika, West Nile and Japanese
encephalitis viruses. DENV is the most prevalent arbovirus disease in the world, with a spectrum
of symptoms ranging from asymptomatic to severe haemorrhagic fever. DENV is transmitted by
Aedes aegypti mosquito with potentially 3.9 billion people currently at risk of contracting infection [98].
Severe dengue fever most often occurs in secondary/tertiary infections and is thought to be mediated via
antibody-dependent enhanced (ADE) infection along with a skewed T cell response. DENV primarily
replicates in macrophages [99,100] and infection is associated with an oxidative stress response that
plays a role in the immunopathology of the disease [101]. Gan et al. showed that hypoxia enhanced
antibody-dependent DENV infection of THP-1 cells and primary human monocytes by two independent
mechanisms [102]. Firstly, HIF-1α upregulated fragment crystallisable gamma receptor IIA (FcγRIIA).
Secondly, membranous lipid concentrations were increased under hypoxia independently of HIF-1α.
These processes increased antibody-opsonised DENV infection of monocytes. HIFs were also reported
to promote DENV RNA replication and translation through a HIF-1α dependent mechanism in
Huh-7 hepatoma cells [103]. DENV induces an oxidative stress response that may lead to HIF
expression and hypoxic reprogramming [104]. Frakolaki et al. reported that DENV infection activated
a HRE-luciferase reporter plasmid in Huh7 cells under atmospheric oxygen tension [103]. However,
no further experiments were conducted to directly examine HIF protein levels or transcription of HIF
target genes, limiting the conclusions of the study. Further studies are required to dissect the influence
of physiological oxygen tension and tissue specific mechanisms on DENV regulation as well as the
influence of DENV replication on local oxygen tension and metabolism.

5. The Respiratory Tract

Oxygen levels in the lung can vary in different locations within adults but also during development.
Le et al. reported a median oxygen tension of 5.6% for adult lung tissue [105]. HIFs play an important
role in fetal lung development and when the lung is hypoxic, loss of HIF expression can lead to
impaired lung development or even death [106]. At the same time HIF upregulation due to lung
damage, pulmonary hypertension or in lung cancer can negatively correlate with disease outcome.

5.1. Influenza Virus (IAV)

Influenza A virus (IAV) is a negative-sense single-stranded RNA virus associated with respiratory
infections. IAV strains differ in their preference to infect the upper or lower respiratory tract [107].
Zhao et al. reported that IAV H1N1 (PR8) replicated to a higher titre in mice with targeted HIF-1α
knockout in type II alveolar epithelial cells (AEC2) [108], accompanied by increased lung inflammation
and mortality. Although the underlying mechanisms require further exploration, these data support
an indirect role for HIF-1α in regulating IAV replication by inhibiting autophagy as a result of
decelerated glycolysis. IAV has been reported to increase glycolysis by enhancing glucose uptake,
lactate production and oxygen consumption rates [109,110]. Oral treatment with BEZ235 (a putative
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PI3 K/mTOR inhibitor) decreased glycolysis and reduced virus replication and mortality in a mouse
model [111]. This observation contrasts with data from Zhao et al. [108] that may reflect cell-type
dependent metabolic responses in the lung. It is likely that the role of HIF in influenza infection is
more complicated as Zhang et al. recently showed that RIG-I like receptor (RLR) activation, a key
sensor of IAV infection, suppresses glycolysis by inhibiting hexokinase [112]. HIF-1α is an important
regulator of metabolic processes and is potentially regulated by immune responses against the virus.
Indeed, HIF-1α induces proinflammatory cytokines and plays a key role in AEC2 differentiation and
alveolar repair following IAV infection through activation of Notch signaling [113–115].

Supplemental oxygen (hyperoxia) given to premature infants associates with an increased risk of
lung dysfunction and susceptibility to respiratory infections in adult life [116–118]. In a mouse model
hyperoxia caused a significant reduction of pro-surfactant protein C-positive alveolar epithelial Type
II cells by 8 weeks of age [116]. This finding is supported by a report identifying a protective role of
superoxide dismutase to hyperoxia in a transgenic mouse model. Hence, oxygen tension and metabolic
changes can impact the alveolar epithelial balance and response to injury. Further studies would
elucidate the metabolic effects of HIF on different cell types in the lung, IAV replication, and whether
oxygen tension affects IAV tissue tropism.

Infection with IAV leads to acute lung injury which activates hypoxia signaling and HIF induction.
Several groups reported that IAV infection stabilises HIF-1α, although their proposed mechanisms vary.
Zhao et al. showed an increase in HIF-1α expression in H1N1 (PR8) infected A549 cells with a modest
increase in mRNA levels [108]. Ren et al. observed HIF-1α induction during H1N1 (PR8) infection as
a result of reduced FIH expression [119]. Huo et al. reported no increase in HIF mRNA or protein
levels, but an increase in nuclear translocation. Since IAV infection can result in a caspase-dependent
enlargement of nuclear pores and non-specific protein uptake by the nucleus, this finding requires
further validation [120]. Infection of the murine mastocytoma cell line P815 with different IAV strains
(human H1N1, avian H5N1 and H7N2) showed that HIF-1α was activated by H7N2 but not by
H1N1 or H5N1 [121], suggesting differing abilities of IAV strains to activate HIF-signalling pathways.
It was interesting to note that H7N2 infection which activated HIF-signaling replicated to lower titre.
Given the known effect of HIF-1α on degranulation and inflammatory factor production in immune
cells, these differences could have wide-ranging implications [122]. HIF signaling is likely to be an
important determinant for the outcome and recovery from IAV infections.

5.2. SARS-Coronavirus-2 (SARS-CoV-2)

SARS-CoV-2 is a positive-sense single-stranded RNA virus in the Coronaviridae family and the causal
agent of coronavirus disease 2019 (COVID-19) [123]. As of September 2020, over 30 million people have
been infected by SARS-CoV-2 with 1 million fatalities. SARS-CoV-2 primarily targets the respiratory
tract [124] and can result in pneumonia and severe acute respiratory distress syndrome especially in the
elderly and in individuals with comorbidities [124,125]. Epithelial cell death and lung inflammation
are major hallmarks of SARS-CoV-2 induced tissue damage [126]. Although the clinical presentation is
heterogeneous, with many mild cases, a defining feature of severe COVID-19 is a marked hypoxaemia.
Recent studies show multi-organ involvement in severe COVID-19 disease [127], including the
gastrointestinal tract [128] and central nervous system [127–129]. SARS-CoV-2 encoded Spike protein
binds human angiotensin-converting enzyme (ACE2) and the transmembrane proteases [130,131],
serine 2 (TMPRSS2) and furin, trigger the fusion of viral and cell membranes [130,131]. Hypoxia has
been reported to reduce ACE2 expression in lung pulmonary arterial smooth muscle cells [132] and
haematopoietic stem cell precursors [133] via regulating ACE1. Wing et al. showed that hypoxia and
the HIF PHD inhibitor Roxadustat reduced ACE2 expression and inhibited SARS-CoV-2 entry in lung
epithelial cells via a HIF-1α dependent signalling pathway [134]. Importantly, this study showed that
hypoxia and pharmacological activation of HIFs inhibited SARS-CoV-2 RNA replication, showing
that post-entry steps in the viral life cycle are oxygen-sensitive. This is consistent with a recent report
showing a gradient of ACE2 expression in proximal (high) versus distal (low) pulmonary epithelial
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cells that associates with SARS-CoV-2 infection [124]. In contrast, neonatal hyperoxia increases ACE2
and TMPRSS2 expression in an age-dependent fashion [135] via a loss of type II alveolar epithelial
cells. Given reports that neonatal hyperoxia associates with risk of more severe IAV infection in adults
via a loss of type II alveolar epithelial cells [113–115], this provides an explanation for the increased
severity of COVID-19 in elderly and people with pre-existing co-morbidities.

HIF-1α protein was detected in monocytes isolated from bronchoalveolar lavage and circulating
neutrophils in COVID-19 patients [136,137]. These observations were validated in vitro and showed
that SARS-CoV-2 infection of monocytes induced mitochondrial ROS and stabilised HIF-1α expression
and associated gene transcription [136]. SARS-CoV-2 infection of human brain organoids also
showed evidence of virus-dependent HIF expression [138]. In contrast, Appelberg et al. reported
that SARS-CoV-2 infection of human hepatoma Huh-7 cells repressed HIF-1α expression [139],
suggesting cell-type specific effects of viral infection on this pathway. Codo et al. demonstrated that
pharmacological inhibition of mitochondrial ROS and associated HIF-1α activity in monocytes reduced
SARS-CoV-2 infection and interleukin-1β expression in monocytes [136]. Furthermore, inhibition
of HIF-1α restored T cell proliferation and rescued apoptosis in co-cultured A549 cells. These data
contrast to those reported by Wing et al. who showed that treatment of lung epithelial cells with
the HIF PHD inhibitor Roxadustat significantly reduced SARS-CoV-2 entry and replication [134].
These contrasting observations may reflect cell-type specific differences; for example, monocytes have
limited permissivity to support SARS-CoV-2 replication and viral RNA levels were substantially lower
than reported in lung epithelial cells. Collectively, these studies highlight the importance of hypoxia
and HIF signalling in multiple aspects of SARS-CoV-2 life cycle, suggesting that targeting the HIF
oxygen sensing pathway could offer a novel therapeutic modality for COVID-19. The diverse role of
HIFs and other hallmarks of a low oxygen environment in the inflamed lung are likely to be complex
and are worthy of further investigation.

6. Therapeutic Implications

6.1. HIF Modifiers

Given the important role that the PHD-HIF pathway plays in regulating the replication and
associated pathogenesis of many viruses, inhibitors targeting PHD and HIF undergoing clinical trials
could be repurposed for the treatment of viral diseases. Four PHD inhibitors that stabilise HIFα
have been evaluated in phase II and III clinical trial studies for the treatment of anemia: Roxadustat
(FG4592, FibroGen), Daprodustat (GSK1278863, GlaxoSmithKline), Molidustat (Bay8503934, Bayer),
Vadadustat (AKB-6548, Akebia) [20]. Roxadustat was recently licensed for the treatment of chronic
kidney disease and anemia in China [140]. Future studies could examine the therapeutic potential of
these inhibitors in regulating viruses such as HIV and IAV that are repressed by HIFs.

A number of clinical trials have assessed the efficacy of HIF inhibitors in patients with advanced
or refractory cancers [21]. The HIF-1α synthesis inhibitor Digoxin is undergoing phase II clinical
trial for Kaposi’s Sarcoma [141]. CRLX101, a HIF-1α expression inhibitor, has completed a phase II
trial in combination with bevacizumab, an antibody that targets VEGF, for the treatment of recurrent
platinum-resistance ovarian, tubal, and primary peritoneal cancers and reduce tumor frequency
and size [142,143]. However, a randomised phase II trial in patients with advanced renal carcinoma
did not show any improvement in progression-free survival [144]. A phase II trial for CRLX101 in
combination with capecitabine and radiotherapy for locally advanced rectal cancer is ongoing [145].
The HIF-2α specific dimerisation inhibitors PT2385 [146,147] and PT2977 [148,149] are being tested for
the treatment of recurrent glioblastoma, non-metastatic VHL-associated and advanced clear cell renal
carcinoma [149–151]. Viruses known to be positively regulated by HIF-2α, including KSHV and HCV
could benefit from clinical trials focusing on HIF inhibitors. Furthermore, viruses whose pathogenesis
has been linked to HIF-signalling, including HBV, HCV, HPV, EBV, KSHV and SARS-CoV-2 may benefit
from HIF inhibitors. Since KDM5 demethylases induce a robust interferon response resulting in an
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increased resistant to infection, the first KDM5 inhibitor entered a phase I clinical trial for the treatment
of HBV infection [152,153].

6.2. Engineered Oncolytic Viruses

In addition to direct targeting the PHD-HIF pathway, a number of studies have engineered
oncolytic viruses to encode HRE to promote their replication in hypoxic tumour environments as
anti-cancer agents. Post et al. inserted a HRE within the E1A promoter of the adenovirus genome
and demonstrated enhanced viral-mediated cytolysis of human brain tumour cells under hypoxic
conditions [154]. A similar study using an adenovirus expressing E1A under the control of a HRE
showed preferential lysis of hepatoma, pancreatic cancer and lung tumour cell lines under hypoxic
conditions [155]. The authors reported that the recombinant viruses resulted in a significant survival
improvement in a nude mice xenograft model of prostate cancer. As hypoxia commonly occurs in
solid tumours, such targeted genetic engineering of oncolytic viruses represents a promising novel
cancer treatment modality.

Viruses that are used for vaccination purposes may also regulate HIF pathways. Vaccinia virus
(VACV) has traditionally been used as a vaccine against smallpox and stabilise HIF expression via
the C16 protein [156]. The N-terminal region of C16 binds and inhibits the human oxygen sensor,
PHD2, resulting in HIF expression under normoxic conditions. Mazzon et al. compared the metabolic
alterations of cells infected with wild type VACV or a mutant lacking C16 and found a role for
C16 in regulating nucleotide, glucose and glutamine metabolic pathways [157]. C16 has homologs
in other poxviruses, suggesting an evolutionary conserved role in their replication pathways [156].
Another example of a virus that modulates HIF signaling is the mammalian orthoreovirus [158–161].
This oncolytic virus has completed phase I-III clinical trials against many different types of cancer [162];
yet little is known about the specific mechanisms involved and further studies will greatly enrich
therapeutic options.

7. Concluding Statement

This review has illustrated how variable oxygen tension in different tissues can affect many
stages of the virus life cycle: regulating entry receptors, replication machinery, particle genesis and
host-pathogen interactions (Table 1). Current information suggests that hypoxia preferentially enhances
the replication of viruses with a tropism for low oxygen environments, whereas HIFs can dampen
the replication of viruses that replicate in tissues with higher oxygen levels. Differences in oxygen
tension and associated HIF signaling may play an important role in viral tropism and pathogenesis.
Viruses have evolved to replicate in a tissue specific oxygen environment and developed ways to
manipulate the metabolic micro-environment to their advantage. Given their wide-ranging effects
on cellular metabolism low oxygen environments may influence the efficacy of both antiviral agents
and immune based therapies and is worthy of further study. In vitro cell-based systems that utilise
physiological oxygen tension may provide improved pre-clinical models for evaluating new anti-viral
agents. Further studies to understand these mechanisms are crucial for generating novel or repurposing
existing treatment strategies for viral infection and pathogenesis.

Table 1. Mechanisms in which viruses interact with HIFs.

Virus Viral Component Mechanism
Categorisation Mechanism Description Citation

KSHV G protein-coupled
receptor (vGPCR) Direct interaction

- Triggers HIF-1a phosphorylation via
p38 and MAPK pathways

- Upregulates HIF-1α and HIF-2α
proteins via mTOR
pathway modulation

[30]
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Table 1. Cont.

Virus Viral Component Mechanism
Categorisation Mechanism Description Citation

Latency-associated
nuclear antigen

(LANA)
Direct interaction

- Directly interacts with HIF-1α to
enhance binding to HIF-1α promoter
and upregulate HIF-1α mRNA

[32,33]

Viral IFN
regulatory factor 3

(vIFR3)
Direct interaction

- Stimulates HIF-1a transcription and
protein stability by blocking
HIF-1α degradation

[31]

HPV

HPV16 E6 and E7
proteins Direct interaction - Regulate HIF-2α protein via

LKB1 modulation
[43]

HPV16 E6 Direct interaction
- Prevents HIF-1α and VHL binding and

reduces HIF-1α ubiquitination to
upregulate HIF-1α protein

[42]

HPV18 E2 Indirect interaction

- Upregulates ROS by binding to inner
mitochondrial membrane components
of the respiratory chain to
stabilise HIF-1α

[44]

HCV

HCV virus Indirect interaction

- Oxidative stress stabilises HIF-1α
protein via NF-kB, STAT-3, PI3-K-aKT,
and p42/44 MAPK pathway
dependent mechanisms

[54,59–61]

Core protein Indirect interaction
- Regulates HIF-1α protein but not

HIF-2α by unfolded
protein-stress response

[55–58]

E1E2 Glycoproteins Indirect interaction - Regulates HIF-1α protein by unfolded
protein-stress response

[52]

HBV

HBx protein Direct interaction

- HIF-1α protein and mRNA
upregulation through: (1) upregulation
of MTA1 and HDAC1/2 which
perturbed HIF-1α deacetylation and (2)
prevention of HIF-1α association with
VHL and down-stream degradation

[66–68]

HBV virus Indirect interaction

- Inflammation and oxidative stress
induced by viral infection can
upregulate transcriptional activity
of HIF

[71]

HIV HIV virus, Viral
protein R (Vpr) Indirect interaction - ROS induction increases HIF-1α mRNA

and protein
[83–85,163]

HTLV-1 Transactivator
protein (Tax) Direct Interaction - induces HIF-1α protein expression [88]

EBV Latent membrane
protein 1 (LMP1) Indirect interaction

- HIF-1α protein degradation is inhibited
via proteasomal degradation of PHD1
and PHD3 through Siah1 E3 ubiquitin
ligase upregulation

- additionally, the loss of VHL/HIF-1α
complexes stabilises HIF-1α and
associated HIF signaling

[89,92–95]

DENV DENV Indirect interaction
- induces an oxidative stress response

that might lead to HIF stabilisation and
hypoxic reprogramming

[104]

IAV
(PR8) IAV

Direct interaction - FIH-1 inhibition leads to a reduction in
HIF-1a degradation

[119]

Indirect interaction

- Inflammatory responses (including
acute lung injury) activate hypoxia
signalling and HIF induction

- Increased HIF-1α nuclear translocation

[121]

SARS-Cov-2SARS-Cov-2 virus Indirect interaction - Induces mitochondrial ROS and
upregulates HIF-1α protein

[136–138]
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