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Abstract: VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is
expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery
of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and
synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR,
and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative
activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities
were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative
activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly,
compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to
sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell
cycle at the G0–G1 phase and a total apoptosis increase from 3.05 to 19.82%—6.5-fold in comparison
to the negative control. In addition, compound 8 caused significant increases in the expression levels
of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level
(3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and
IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the
control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular
dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and
the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET
and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has
emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and
immunomodulatory effects.
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1. Introduction

Cancer is a pernicious disease characterized by uncontrolled and overexcited cell
differentiation and division, along with the possibility of such cells invading other parts of
the body, leading to death [1]. While progress has been made in treatment and prevention,
the global burden of cancer mortality is increasing tremendously. Epidemiological studies
revealed the responsibility of cancer for one-fifth of all deaths [1]. In 2020, more than
19 million new cancer cases were estimated, and almost 10.0 million deaths because of can-
cer occurred. The most diagnosed cancer was female breast cancer with an yearly estimated
incidence of 2.3 million. Additionally, the incidences of lung, colorectal, prostate, and
stomach cancers were 11.4%, 10.0%, 7.3%, and 5.6%, respectively [2]. In response, research
contentious work to discover new anticancer agents that have maximum effectiveness and
minimal toxicity is still a vitaltrend in anticancer drug development and research [3].

Cancer cells are characterized by biochemical abnormalities [4]. Oxygen and nutrients
are fundamental to cancer cells’ survival and proliferation; hence, cancer cells have to be
located be near to blood vessels to have a high accessibility to the blood circulation [5].
Angiogenesis, the sprouting of new blood vessels from pre-existing vasculatures, is an
essential factor in the process of cancer development and growth [6]. Current evidence
confirmed that the primary tumor and the resulted metastasis depend on angiogenesis [7,8].
The angiogenesis process is under the control of various protein kinases, including the
growth factors [7]. Amidst that growth factors, the vascular endothelial growth factor
(VEGF) is of the most effective angiogenic determinants that can regulate angiogenesis and
be engaged in the progression of a tumor [9,10].

VEGFs exert their angiogenic effects via binding with the different types of kinase
domains of vascular endothelial growth factor receptors (VEGFRs 1, 2, and 3) [11]. VEGFR-2,
the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis [7], is expressed in
various cancer cells and is responsible for the mediation of almost all the cellular responses
to VEGF [12]. Thus, the VEGF/VEGFER-2 pathway is an competent target having vital
selectivity for cancer cells [13]. The inhibition of the VEGFR-2/VEGF signaling pathway or
the down-regulation of its response is a practical method for the discovery of new drugs
for the treatment of several cancer types [12,14].

One of the hallmarks of cancer cells is their ability to avoid apoptosis, permitting
unchecked and uncontrolled proliferation. Accordingly, the activation of apoptosis in cancer
cells is a favorable strategy with which to defeat cancer [15]. The Bcl-2 family comprises
members that are pro-apoptotic, such as Bax protein, which promotes cell apoptosis; and
other members are antiapoptotic, such as Bcl-2 protein, which inhibits cell apoptosis [16].
The regulation of anti-apoptotic and pro-apoptotic proteins (Bax/Bcl-2 ratio) determines
cell fate [16,17].

Several reports have detailed various small-molecule inhibitors of VEGFR-2 that target
the ATP binding sites of the RTKs, resulting in diminished VEGF signal transduction [18–24].
These VEGFR-2 inhibitors can be broadly categorized into three types according to their
modes of binding to the ATP binding pocket [14,18]. Type I inhibitors bind competitively to
the adenine binding region of the ATP binding site in the active conformation (DFG-in) [18,25].
Type II inhibitors act on the ATP binding pocket and additionally function in the new allosteric
hydrophobic pocket to stabilize the inactive conformation (DFG-out) [18]. Type II inhibitors
provide better activity than type I by avoiding competitive inhibition [16]. Type III inhibitors
adopt the inactive DFG-out conformation and bind covalently to the ATP binding site beyond
the gatekeeper residue [25].

Over the last few years, a diverse range of VEGFR-2 inhibitors were designed, includ-
ing sunitinib I, pazopanib II, sorafenib III, regorafenib IV, and trametinib V (Figure 1).
However, drug resistance leads to decreased effectiveness and undesirable side effects.
Therefore, it is essential to discover novel VEGFR-2 inhibitors for the treatment of cancer
that have low toxicity and can overcome drug resistance [26].
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Figure 1. Some reported VEGFR inhibitors.

Rationale and Design

The study of the SAR of various VEGFR-2 inhibitors revealed that the core structures
of most of them shared four fundamental features [16,26]: (i) A hetero aromatic ring (head)
to occupy the catalytic ATP binding domain and participate in H-bonding interactions with
the Cys919 amino acid residue the hinge region [18]. (ii) A “linker” segment occupying the
gatekeeper residues that connects between the DFG domain and the ATP-binding domain.
(iii) A hydrogen-bonding moiety (pharmacophore), such as urea or amide, interacts with
the amino acids (Glu885 and Asp1046) via H-bonds in the DFG motif of the protein [4,15].
(iv) A terminal hydrophobic (tail) moiety directed toward the allosteric hydrophobic pocket,
and binding with it through various hydrophobic interactions [15,16].

In continuation of our previous work on synthesizing new, potent, and safe anticancer
agents [12,27–32], new nicotinamide derivatives were synthesized that keep the essential
pharmacophoric features of VEGFR-2 inhibitors, aiming for the development of efficient
anticancer agents that target VEGFR-2 inhuman cancer cell lines.

The designs of the new derivatives depend on the bioisosteric modifications at the
four pharmacophoric features of the reported VEGFR-2 inhibitors. Firstly, it was reported
that the nitrogen atom of the pyridine ring of sorafenib is a critical point for H-bonding
interactions with Cys919 at the ATP binding domain. In addition, nicotinamidescaffold is
required to occupy the hinge region (compound VI) [14]. Accordingly, nicotinamidemoiety
was utilized as a head in the synthesized compounds to maintain the essential H-bonding
interaction at the hinge region. In addition, it was reported that amide moiety may exert an
anticancer effect [33]. With respect to the linker segment, it is usually 3–5 bond lengths [34].
The designed compounds involve a phenyl ring as a linker moiety to keep a tight fit in
the gatekeeper area through hydrophobic interactions. Regarding the H-bonding pharma-
cophore moiety, we used a hydrazone moiety as an H-bonding center. This was based on
the significant effect of the hydrazone moiety in the binding with VEGFR-2. Previously,
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our team developed compound VII, which has a promising VEGFR-2 inhibitory effect and
comprises a hydrazone moiety as a pharmacophore group [35]. Finally, the terminal phenyl
ring was kept to play its vital role and occupy the allosteric lipophilic pocket. The phenyl
ring was substituted by diverse groups. Additionally, the hydrophobic moieties were
modified to be amide moieties, in hopes of making extra binding interactions (Figure 2).
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2. Results and Discussion
2.1. Chemistry

Schemes 1 and 2 demonstrate the synthetic pathways of the target compounds. Firstly,
heating of nicotinic acid 1 with a thionyl chloride in 1,2 dichloroethane and DMF (cat-
alytic amount) furnished nicotinoyl chloride 2 [16,28]. Reflux of nicotinoyl chloride 2 with
4-aminomethylbenzoate 3 in the presence of triethylamine in acetonitrile afforded the corre-
sponding methyl ester derivative N-(4-acetylphenyl)nicotinamide 4 [16], which was treated
with hydrazine hydrate to produce N-(4-(hydrazinecarbonyl)-phenyl)nicotinamide 5 [28].
The produced hydrazide derivative 5 was then reacted with appropriate aldehydes, namely,
2,4-dichlorobenzaldehyde, 3,4-dimethoxybenzaldehyde, and 3-(4-(dimethylamino)-phenyl)
acrylaldehyde to afford the target compounds 6–8, respectively (Scheme 1).
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Furthermore, nicotinoyl chloride 2 was further allowed to react with the commercially
available p-aminoacetophenone 9 to yield the equivalent N-(4-acetylphenyl)nicotinamide
10 [27,28]. The latter was refluxed in ethanol and a catalytic amount of glacial acetic acid
with appropriate amines, namely, thiosemicarbazide and 2,6-dinitrobenzohydrazide to give
the target compounds 11 and 12, respectively (Scheme 2).

The structures of the synthesized compounds 6, 7, 8, 11, and 12 were authenticated by
1H-NMR, which showed the presence of two downfield singlet signals attributed to the NH
protons. Taking compound 8 as a representative example, it showed two singlet signals at
δ 11.57 and 10.71 ppm. The aromatic and olefinic protons appeared in the aromatic region
from 9.14 to 6.73 ppm. The six protons of the two methyl groups appeared at the aliphatic
area at 2.97 ppm as singlet signals.

2.2. Biological Testing
2.2.1. In Vitro Anti-Proliferative Activities

Two human cancer cell lines (HCT-116; colorectal rectal cancer, and HepG2; hepatocel-
lular carcinoma) were utilized to examine the anti-proliferative effects of the synthesized
compounds. The VEGFR-2 protein is usually overexpressed in the HCT-116 and HepG-2
cell lines [36,37]. Accordingly, these two types of cancer cell lines were utilized in the
presented work. MTT assay was employed with sorafenib as a standard anti-proliferative
drug [35]. The results of cytotoxic activities (Table 1) revealed that compound 8 is the
most active member showing strong cytotoxicity against HCT-116 and HepG2 with IC50
values of 5.4 and 7.1 µM, respectively. These results are comparable to sorafenib’s results
(IC50 = 9.30 ± 0.201 and 7.40 ± 0.253 µM, respectively). Other members showed moderate
activities with IC50 values ranging from 16.5 to 25.07 µM.
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Table 1. In vitro cytotoxic of compounds 6, 7, 8, 11, and 12 against HCT-116 and HepG2 cell lines and
in vitro inhibitory activities against VEGFR-2.

Compounds
Cytotoxicity IC50 (µM) a

VEGFR-2
IC50 (nM) aHCT-116 HepG2

6 17.8 ± 0.059 16.5 ± 0.057 172.3 ± 10.20

7 19.2 ± 0.062 18.8 ± 0.061 112.6 ± 7.23

8 5.4 ± 0.02 7.1 ± 0.03 77.02 ± 4.25

11 25.07 ± 0.07 20.3 ± 0.064 83.41 ± 5.53

12 18.2 ± 0.06 17.5 ± 0.058 115.2 ± 7.33

Sorafenib 9.30 ± 0.201 7.40 ± 0.235 53.65 ± 3.87
a IC50 value is the mean ± S.D. (standard deviation) of three separate experiments.

2.2.2. In Vitro Vegfr-2 Enzyme Assay Inhibition

The obtained compounds were also investigated for their inhibitory potential against
VEGFR-2 to examine the design and predict their inhibitory effect [16]. The VEGFR-2
inhibitory assay results (Table 1) indicated that compound 8 was the strongest inhibitor
with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). In addition, the
other compounds showed moderate inhibitory effects with IC50 values ranging from 83.41
to 172.3 nM.

Depending on the outputs of cytotoxicity and VEGFR-2 kinase inhibition, compound 8,
was selected for further biological investigations.

Safety Pattern of the Tested Compounds

An in-vitro viability test was used to investigate the safety patterns of the tested
compounds at different concentrations. The Vero cell lines were used as a non-cancerous
model to investigate the safety of the targeted compounds. The results of the MTT assays
indicate that the tested compounds have IC50 values ranging from 85.24 to 127.91 µM. Such
values are very high in comparison to the corresponding values on the cancer cell lines,
which reflect the high in vitro safety profiles of the tested members towards the examined
non-cancerous cell lines (Table 2).

Table 2. In vitro anti-proliferative activities of compounds 6, 7, 8, 11, and 12 against Vero cell lines.

Compounds Cytotoxicity Against Vero Cell Lines (IC50 µM)

6 84.72

7 127.91

8 85.24

11 105.28

12 95.37

Selectivity Index (SI)

The selectivity index (SI) of a particular compound is the ratio of its toxic and effective
concentrations (SI = IC50 against non-cancer cells/IC50 against cancer cells) [38]. Relatively,
low SI (<1) means that the tested compound is toxic and cannot be used as a safe drug [39].
All the tested hybrids showed decreased potency against Vero cell lines. This finding
encouraged us to investigate the selectivity profiles of the synthetized compounds. The
selectivity index values of the synthesized compounds against cancer cells are indicated in
Table 3. In general, all compounds showed SI of more than 4.2, indicating high selectivity
of the tested compounds against cancer cell lines.
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Table 3. Selectivity indices (SI) of the synthesized compounds against different cancer cell lines.

Compounds (HCT-116) a (HepG2) b

6 4.76 5.13

7 6.66 6.80

8 15.79 12.01

11 4.20 5.19

12 5.24 5.45
a SI = Cytotoxicity against Vero cells/cytotoxicity against HCT-116 cell lines. b SI = cytotoxicity against Vero
cells/cytotoxicity against HepG2 cell lines.

2.2.3. Cell Cycle Analysis

Anticancer compounds exert their cytotoxicity by aborting the cellular growth at
certain points. These points, phases, are distinguishable in the cell cycle, whose suppression
causes the cessation of cell proliferation [15]. The ability of a compound to arrest the cell
cycle is directly linked to apoptosis induction [40].

Flow cytometry analysis was utilized to investigate the efficacy of compound 8 on the
cell cycle progression and apoptosis induction in the HCT-116 colon cancer cell line [41].
In the test, the HCT-116 cells were treated with compound 8 at a concentration of 5.4 µM,
then incubated for 24 h. The cell cycle distribution was analyzed to identify the definite
phase at which compound 8 can arrest the cell cycle. The results showed that compound
8 significantly declined the cell populations at G2/M and Pre-G1 phases, which were
12.91% (2.11-fold) and 3.05% (6.49-fold), compared to 27.29% and 19.82% for the control,
respectively. Moreover, marked augmentation was observed in G0–G1 phase (55.62%;
1.42-fold) compared to the control (38.96%). This finding suggests that 8 arrested the cell
cycle proliferation of the HCT-116 cell line at the G0–G1 phase (Table 4 and Figure 3).
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Table 4. Effects of compound 8 (5.4 µM) on cell cycle phases of HCT-116 cells after treatment for 24 h.

Sample
Cell Cycle Distribution (%)

%G0-G1 % S %G2-M %Pre-G1

Control (HCT-116) 38.96 33.75 27.29 19.82
Compound 8/HCT-116 55.62 31.47 12.91 3.05

2.2.4. Induction of Apoptosis

As compound 8 produced arrest of HCT-116 cells at the G0–G1 phase, it is highly
important to investigate its ability to induce apoptosis in the experienced cells. Its apoptosis
induction ability was estimated using the Annexin V and PI double staining assay [42]. The
results revealed significant elevations in cell percentages in both early (from 0.7 to 3.74%) and
late apoptosis (from 1.73 to 14.23%) phases. These results indicate an increase in the total
apoptosis from 3.05 to 19.82%—6.5-fold in comparison to the control. These findings clearly
confirm that the cell death was attributable to functional apoptosis (Table 5 and Figure 4).

Molecules 2022, 27, x  10 of 27 
 

 

Table 5. Stages of cell death in HCT-116 cells after exposure to compound 8 (5.4 µM) for 24 h. 

Sample Apoptosis 
Necrosis 

 Total Early Late 

Control (HCT-116) 3.05 0.7 1.73 0.62 

Compound 8/HCT-116 19.82 3.74 14.23 1.85 

 

 

(a) Control (b) Compound 8/HCT-116 

 

(c) Chart of apoptosis distribution 

Figure 4. Flow cytometric analysis of apoptosis in HCT-116 cells after exposure to compound 8 (5.4 

µM) after treatment for 24 h. 

  

Figure 4. Flow cytometric analysis of apoptosis in HCT-116 cells after exposure to compound 8 (5.4 µM)
after treatment for 24 h.



Molecules 2022, 27, 4079 10 of 25

Table 5. Stages of cell death in HCT-116 cells after exposure to compound 8 (5.4 µM) for 24 h.

Sample Apoptosis
Necrosis

Total Early Late

Control (HCT-116) 3.05 0.7 1.73 0.62

Compound 8/HCT-116 19.82 3.74 14.23 1.85

2.2.5. Effects of Compound 8 on the Apoptotic Markers (Bax, Bcl-2, and caspase-8)

The effects of compound 8 on the levels of protein expression of the apoptotic markers
(Bax, Bcl-2, and caspase-8) were estimated. HCT-116 cells were exposed to compound 8 at
a concentration of 5.4 µM for 24 h; then the concentrations of the examined proteins were
estimated using quantitative Real-Time Reverse-Transcriptase PCR (qRT-PCR). The results
display high increases in caspase-8 levels (9.4-fold) and Bax (9.2-fold) compared to the
control cells. Additionally, the Bcl-2 level was decreased by 3-fold comparing the control
cells (Table 6). Such results indicate the significant apoptotic effect of the tested compound.

Table 6. Effects of compound 8 (5.4 µM) on the expression levels of caspase 8, Bax, and Bcl-2; and
TNF-α and IL-6 inhibition in the treated HCT-116 cells for 24 h.

Sample Caspase-8
(Pg/mL)

Bax
(Pg/mL)

Bcl-2
(Pg/mL)

TNF-α
(% Inhibition)

IL-6
(% Inhibition)

8 472.3 387.26 1.844 92.37 94.06

Control 50.317 42.19 5.603 82.47 93.15

2.2.6. Effects of Compound 8 on the Levels of the Immunomodulatory Proteins (TNF-α
and IL-6)

Further investigations were conducted to assess the effects of compound 8 on the
levels of immunomodulatory proteins (TNF-α and IL-6). HCT-116 cells were exposed
to compound 8 at a concentration of 5.4 µM for 24 h, and then the concentrations of the
examined proteins were determined using qRT-PCR. The results revealed a significant
decrease in the level of TNF-α (92.37%) compared to the control (82.47%). On the other
hand, compound 8 exerted a non-significant reduction in the level of IL-6. This suggests that
compound 8 might induce apoptosis in HCT-116 cancer cells through immunomodulatory-
dependent pathways (Table 4).

2.3. In Silico Studies
2.3.1. Molecular Docking

A molecular docking experiment gives deep insight into the binding affinity between
a specific compound and the target receptor [43]. The biological efficacy of a compound is
linked to its better binding energy value and the degree of similarity in the binding mode
compared the reference ligand [43]. To investigate the binding hallmarks of the targeted
compounds against VEGFR-2, molecular docking studies were fulfilled by MOE. 2019.01
(Montreal, QC, Canada). The X-ray structure of VEGFR-2 co-crystallized with sorafenib
was obtained from the Protein Data Bank (PDB ID: 4ASD) [14]. The docking process was
firstly verified by re-docking of sorafenib inside the active pocket of VEGFR-2 (Figure 5).
The low value (≤2.0 Å) of root mean square deviation (RMSD) of the docked conformer
of sorafenib in the experimental crystal validates the utilized scoring function [27,44]. In
the current study, the RMSD between the co-crystallized conformer and the re-docked one
is 0.79 Å. This indicates the correctness of the employed docking protocol. The docking
scores of the tested ligands are summarized in Table 7, and their binding features inside
the active site of the target protein are depicted. The binding poses with the highest energy
scores were selected for analysis. The outputted files from MOE software were visualized
with Discovery Studio 4.0 software (San Diego, CA, USA).
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Figure 5. (A) the superimposition of the re-docked conformer (green) of sorafenib over the co-
crystallized (original) one (pink) with an RMSD value of 0.79 Å. (B) the superimposition of the
re-docked conformer (green) of sorafenib over the co-crystallized (original) one (pink) showing the
essential binding against the active site.

Table 7. The calculated S scores (binding free energies) of the examined compounds and sorafenib
against VEGFR-2 (∆G in Kcal/mole).

Compounds S a [Kcal/mole] RMSD b RMSD_refine c E_conf d E_place e E_refine f

6 −16.45 2.03 2.03 1.23 −130.99 −16.45

7 −20.57 0.06 0.06 0.89 −119.49 −20.57

8 −22.71 0.65 0.65 1.45 −152.95 −22.71

11 −16.02 0.60 0.60 1.34 −85.84 −16.02

12 −15.25 2.20 2.20 1.08 −78.21 −15.25

Sorafenib −36.23 1.91 1.91 1.60 −130.18 −36.23
a S: The placement score of the tested compound inside the binding pocket of the target enzyme utilizing the ASE
scoring function. b RMSD: RMSD in Å, of the examined pose, from the pose of the original ligand. c RMSD_refine:
RMSD between the heavy atoms of the predicted pose after and before refinement. d E_conf: The conformer’s
energy. e E_place: Score from the placement stage. f E_refine: The sum of solvation energies and the van der
Waals electrostatics, under the model of generalized Born solvation (GB/VI).

Tyrosine kinase inhibitors have been divided into two types of binding patterns, (type
I and II). Type I inhibitors bind to the kinase’s active form’s adenosine triphosphate (ATP)
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binding site, resulting in reduced selectivity, whereas type II inhibitors bind to the ATP
site and the allosteric, hydrophobic site, resulting in great selectivity. This interaction takes
place when the kinases are inactive. The kinase enzymes’ active and inactive phases are
controlled by the conserved triad Asp–Phe–Gly (DGF). DGF-in conformation was observed
in the active state, whereas DFG-out conformation was observed in the inactive state. The
front and back pockets make up the VEGFR-2 active site’s basic architecture. A crucial
residue related to the ATP binding front pocket is Cys919. Glu885 and Asp1046 are found
in the back hydrophobic pocket. The Glu885 is located on the C helix, and Asp1046 is a
crucial component of the triad [16].

A molecular docking study of sorafenib was carried out to study its binding interac-
tions and orientation. This binding pattern showed a docking score of −36.23 kcal/mol
with ten hydrogen bonds (H-bonds) and nine hydrophobic interactions. The carbonyl
group of the N- methylpicolinamide head was involved in an H-bond with the vital amino
acid Cys919 in the hinge region. Likewise, the pyridine ring was involved in three hy-
drophobic interactions against the hydrophobic pocket built by the amino acid, Leu1035,
Phe918 (pi–pi stacking), and Ala866. Additionally, the spacer phenyl ring is bound to
another hydrophobic pocket comprised of Lys 868, Val916, and Val899. Further, the urea
moiety was involved in three H-bonds at the DFG motif, where the two NH made two
H-bonds with Glu885 and the carbonyl group of the urea interacted with Asp1046. Finally,
the terminal phenyl ring was involved in hydrophobic interactions (pi–pi stacking) with
Leu1019, Ile1044, and His1026 (Figure 6).
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Figure 6. 2D binding mode of sorafenib in the VEGFR-2 active site. H-bonds (dashed green) were
formed with Cys919, Glu885, and Asp1046. Hydrophobic interactions (dashed organ) were formed
with Leu1035, Phe918, Ala866, Lys 868, Val916, Val899, Leu1019, Ile1044, and His1026.

All the newly synthesized compounds exhibited an interesting binding mode. Two
representative compounds (7 and 8) were selected for analyzing their binding interactions
and orientations against the active pocket of VEGFR-2.

Compound 7 demonstrated a promising binding pattern like that of sorafenib. This
compound bonded tightly to the receptor with a binding energy value of −20.57 kcal/mol.
In its binding, the pyridinyl group engaged with the hinge region forming a H-bond
interaction with the vital amino acid Cys919. In addition, three hydrophobic interactions
were displayed between this head and the hydrophobic pocket of (Leu840, Leu1035, and
Ala866). The phenyl ring was stabilized in the gatekeeper district through four hydrophobic
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interactions with Val916, Val899, Lys868, and Cys1045. However, the pharmacophore
hydrazone moiety achieved its required job by binding to the vital amino acids Glu885
and Asp1046 in the DGF motif. Moreover, the terminal dimethoxyphenyl hydrophobic tail
completely fits in the allosteric site (Figure 7).
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Figure 7. 2D binding mode of compound 7 into the VEGFR-2 active site. H-bonds (dashed green)
were formed with Cys919, Glu885, and Asp1046. Hydrophobic interactions (dashed organ) were
formed with Leu840, Leu1035, Ala866, Val916, Val899, Lys868, and Cys1045.

The best-scored pose (−22.71 kcal/mol) of compound 8 mimicked sorafenib’s key
interactions. It kept the H-bonding interaction with the essential amino acid Cys919 in
the hinge region via the nitrogen of the pyridine ring. The pyridine head was much more
stabilized by many hydrophobic interactions generated with Leu840, Leu1035, Cys919,
and Ala866. Moreover, the phenyl linker was enclosed in the gatekeeper area through
four hydrophobic interactions with Val899, Val916, Lys868, and Cys1045. Furthermore, the
hydrazone moiety interacted as an H-bond donor and acceptor, producing essential H-
bonding interactions with Glu885 and Asp1046 at the DGF motif. Finally, the N,N-dimethyl
aniline tail occupied the hydrophobic allosteric site (Figure 8).
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2.3.2. In Silico ADMET Analysis

The pharmacokinetic characteristics of the prepared compounds were analyzed by
applying Discovery Studio 4.0 [45–47]. Sorafenib was utilized as a reference. The results
of the ADME studies are listed in Table 8 and Figure 9. Except for compound 6, all the
investigated compounds demonstrated low or very low blood–brain barrier penetration.
Compounds 7, 8, and 11 demonstrated good aqueous solubility; compounds 6 and 12
showed weak aqueous solubility. All synthesized compounds enjoyed high levels of
absorption, whereas compound 13 showed a moderate one. All the tested members were
anticipated to be CYP2D6 non-inhibitors. Finally, compounds 6, 7, 8, and 12 can bind the
plasma protein at a rate greater than 90%, and compound 11 was predicted to bind at a rate
less than 90%.
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Figure 9. The predicted ADMET parameters. ADMET_PSA_2D is the polar molecular surface area.
ADMET_AlogP98 is the lipid-water partition coefficient. PSA_2D is 2D polar surface area. Each
examined compound is plotted against the calculated atom-type partition coefficient (ALogP98). The
area enclosed by the ellipse constitutes good absorption without violation of other ADMET features.
Based on Egan et al.’s [48] absorption, the 95% and 99% confidence limits’ ellipses corresponding to
the BBB and intestinal absorption models are demonstrated.
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Table 8. In silico ADMET features of the considered compounds and sorafenib.

Comp. BBB Level a Solubility Level b Absorption Level c CYP2D6 Prediction d PPB Prediction e

6 M L G NIN M

7 L G G NIN M

8 L G G NIN M

11 L G G NIN L

12 VL L VP NIN M

Sorafenib VL VL G NIN M

a BBB level, l, 0 = VH, 1 = H, 2 = M, 3 = L, 4 = VL. b Solubility level, 1 = VL, 2 = L, 3 = G, 4 = O. c Absorption level,
0 = G, 1 = M, 2 = P, 3 = VP. d CYP2D6, cytochrome P2D6, IN = inhibitor, X = NIN. e PBB, plasma protein binding,
(L) = less than 90%, (M) = more than 90%.

2.3.3. Lipinski’s Rule of Five and Veber’s Rule

The oral absorption of a certain compound is normally better if that compound satisfies
at least three of the four Lipinski rules, listed below. (i) H-bond donors ≤ 5; (ii) H-bond
acceptors ≤ 10; (iii) molecular weight < 500; (iv) logP < 5. The results revealed that
all the synthesized compounds given in Table 9, and sorafenib, showed no violation of
Lipinski’s rules.

Table 9. Lipinski’s rule of five and Veber’s rule for the synthesized compounds and sorafenib.

Compound Lipinski’s Rule of 5 Veber’s Rule

Log P Mole. Wt. HBD HBA Lipinski’s Rule Violation No. of Rotatable Bonds TPSA

6 3.646 413.257 2 4 0 5 83.45

7 2.284 404.419 2 6 0 7 101.91

8 2.839 413.472 2 5 0 7 86.69

11 1.414 313.377 3 4 0 5 124.49

12 2.852 420.378 2 9 0 7 158.01

Sorafenib 4.175 464.825 3 4 0 6 92.35

Moreover, Veber’s rule was applied to the synthesized compounds. Veber’s rule
depends on the molecular flexibility, as indicated by rotatable bonds number, and polar
surface area to predict the oral bioavailability [49]. Compounds that have 10 or less
rotatable bonds and a total polar surface area of 140 Å or less are predicted to have good
oral bioavailability [49,50]. The results revealed that all the synthesized compounds obey
Veber’s rule, except compound 12, which has a total polar surface area of 158.01 Å.

2.3.4. Toxicity Studies

Furtherly, the toxicity profile of the considered compounds was estimated using Dis-
covery studio software. The results are demonstrated in Table 10. The results reveal that
all compounds are non-mutagenic, except compounds 8 and 12. Compounds 6, 8, 11, and
12 showed carcinogenic potency TD50 values of 11.304, 29.149, 71.809, and 22.976 g/kg,
respectively. These values are higher than that of sorafenib (14.244 g/kg). On the con-
trary, compound 7 showed lowers values of carcinogenic potency, TD50 (10.934 g/kg).
Compounds 6, 11, and 12 showed maximum tolerated dose values of 0.125, 0.145, and
0.111 g/kg, respectively, which are higher than that of sorafenib (0.089 g/kg); compounds
7 (0.058 g/kg) and 8 (0.064 g/kg) were less tolerated than sorafenib. In addition, except for
compound 11 (0.477 g/kg), the considered compounds showed oral LD50 values ranging
from 1.282 to 2.143 g/kg, which are higher than that of sorafenib (0.823 g/kg). Additionally,
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the chronic lowest observed adverse effect level (LOAEL) was determined for all com-
pounds. The results indicate LOAEL values ranging from 0.055 to 0.231 g/kg, higher than
that of sorafenib (0.0048 g/kg). Finally, all the considered compounds were found to be
non-irritant against the skin but to have mild irritant effects on the eye.

Table 10. In silico toxicity potential of the synthesized compounds.

Comp. Ames
Prediction

Carcinogenic
Potency TD50

(Rat) a

Rat Maximum
Tolerated Dose

(Feed) b
Rat Oral LD50

b Rat Chronic
LOAEL b

Skin
Irritancy

Ocular
Irritancy

6 Non-Mutagen 11.304 0.125 1.486 0.120 None Mild

7 Non-Mutagen 10.934 0.058 4.507 0.103 None Mild

8 Mutagen 29.149 0.064 1.282 0.055 None Mild

11 Non-Mutagen 71.809 0.146 0.477 0.131 None Mild

12 Mutagen 22.976 0.111 2.143 0.231 None Mild

Sorafenib Non-Mutagen 14.244 0.089 0.823 0.005 None Mild

a Unit: g/kg. b Unit: mg/kg /day.

2.3.5. MD Simulations

Molecular dynamics (MD) simulations are close to becoming routine in silico tools
for drug design and discovery [51]. These studies have two major advantages. First is
their explicit ability to examine any change that occurs in the ligand and the protein target,
whether that change is structural or entropic. Second, MD studies compute the changes oc-
curring at determined time steps over a very short period with atomic-level revolution [52].
Consequently, MD studies can correctly determine the kinetic and thermodynamic changes
that occur through the process of ligand-protein binding [53]. These advantages present
MD studies as a powerful tool to reveal the structure–function changes of the studied
ligand–protein complex. They explore essential factors, such as ligand–target stability, in
addition to ligand binding kinetics and energy [54].

The dynamic and conformational changes of backbone atoms of the VEGFR-2–compound 8
complex were evaluated by RMSD to explore the stability upon apo and 8 bonding states.
Figure 10A reveals low RMSD values for VEGFR-2, compound 8, and the VEGFR-2–compound 8
complex over 100 ns, except for a minor fluctuation after 60 ns. VEGFR-2 flexibility was
inspected in terms of RMSF to investigate the fluctuated regions of the examined VEGFR-2
protein over the simulation. Figure 10B shows that compound 8 binding of VEGFR-2 does
not make VEGFR-2 highly flexible. The radius of gyration (Rg) of the examined VEGFR-2
enzyme was explored. As shown in Figure 10C, a slight degree of fluctuation of the VEGFR-2
enzyme throughout 100 ns indicates the compactness of the VEGFR-2 -compound 8 complex.
Additionally, solvent accessible surface area (SASA) was investigated over 100 ns to investigate
the VEGFR-2–compound 8 complex’s interaction with the surrounding solvents. Amazingly,
the VEGFR-2 enzyme featured a reduced SASA value at 100 ns compared to 0 ns (Figure 10D),
indicating the stability of the VEGFR-2–compound 8 complex. Finally, H-bonding in the
VEGFR-2–compound 8 complex was revealed to be up to three H-bonds (Figure 10E).
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2.3.6. MM-PBSA Studies

The molecular mechanical energies with the Poisson–Boltzmann Born and surface
area continuum solvation (MM-PBSA) method is an accurate approach to computing the
exact free energy of the binding of an examined compound inside a specific protein [55].
The exact binding energy of the VEGFR-2–compound 8 complex in the final 20 ns of the
MD was found with an interval of 100 ps from the resulted MD trajectories. Compound 8
demonstrated binding free energy of 220 KJ/mol with the VEGFR-2 enzyme (Figure 11A).
Furthermore, the contribution of every amino acid of VEGFR-2 in the obtained binding
free energy after the interaction with compound 8 was analyzed. The achieved findings
gave an insight into the fundamental residues that had a pivotal role in the binding of the
VEGFR-2–compound 8 complex. It was found that ASP-852, ASP-857, GLU-917, GLU-934,
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and GLU-1038 residues of the VEGFR-2 contributed to the binding energy by more than
−20 KJ/mol (Figure 11B).
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2.3.7. Flexible Alignment

3D flexible alignment of compound 8 with sorafenib was studied. The result of
flexible alignment revealed the general good overlap of compound 8 with sorafenib
with the same spatial orientation. In detail, nicotinamide, phenyl, hydrazone, and 3-
(4-(dimethylamino)phenyl)allylidene moieties of compound 8 showed the same orientation
of the N-methylpicolinamide, phenoxy, urea, and 4-chloro-3-(trifluoromethyl)phenyl) moi-
eties as sorafenib, respectively (Figure 12).
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3. Conclusions

Five new nicotinamide derivatives were designed and synthesized as anti-proliferative
VEGFR-2 inhibitors. The synthesized compounds showed promising antiproliferative activ-
ities against (HCT-116 and HepG2) cell lines, and good VEGFR-2 inhibitory activities. The
most active member, 8, exhibited IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2,
respectively, and an IC50 value of 77.02 nM against VEGFR-2. Deep biological studies were
conducted for compound 8. It showed a promising apoptotic ability (6.5-fold in comparison
to the control) to arrest the cell cycle at the G0–G1 phase. In addition, compound 8 pro-
duced significant increases in the expression levels of Bax (9.2-fold) and caspase-8 (9.4-fold)
compared to the control cells. Furthermore, it caused a significant reduction in the anti-
apoptotic factor (Bcl-2) by 3-fold compared to the control cells. Furthermore, it caused a
significant reduction in the level of TNF-α (92.37%) compared to the control (82.47%), and a
non-significant reduction in the level of IL-6. Docking studies explained the binding modes
of the considered compounds. They showed binding modes like that ofsorafenib. In silico
ADMET and toxicity studies indicated the low toxicity of the considered compounds, and
a good range of pharmacokinetic properties. The molecular dynamics simulations revealed
the high stability of the most active member, 8, in the active site of VEGFR−2. Compound 8
is considered a good lead for further chemical modifications and deep biological testing.



Molecules 2022, 27, 4079 20 of 25

4. Experimental
4.1. Chemistry
4.1.1. General

All reagents, chemicals, and apparatus are shown in the Supplementary data. The
solvents and chemicals were purchased from El-Gomhouria Co. For Trading Drugs, Chem-
icals and Medical Supplies, Cairo, Egypt. Compounds 2, 3, 4, 5, and 10 were previously
reported [56,57].

4.1.2. Synthesis of Compounds 6, 7, and 8

A mixture of hydrazide derivative 5 (0.256 g, 0.001 mol) and 0.001 mol of the suitable aro-
matic aldehyde (0.001 mol), namely, 2,4-dichlorobenzaldehyde, 3,4-dimethoxybenzaldehyde,
or 4-(dimethylamino)cinnamaldehyde, were refluxed in 30 mL of ethanol (absolute) contain-
ing glacial acetic acid (0.15 mL) for 2 h. After reaction accomplishment, the reaction mixture
was cooled, filtered, dried, and recrystallized from ethanol to afford compounds 6, 7, and 8,
respectively.

(E)-N-(4-(2-(2,4-Dichlorobenzylidene)hydrazine-1-carbonyl)phenyl)-nicotinamide (6)

White crystal (yield, 71%); m.p. = 278–280 ◦C; C20H14Cl2N4O2 (413.2580 g/mol);
IR (KBr) ν cm−1: 3301, 3228 (NH), 3034 (CH aromatic), 1644 (C=O), 1593 (C=N); 1H-NMR
(400 MHz, DMSO-d6) δ 12.08 (s, 1H), 10.73 (s, 1H), 9.14 (d, J = 2.3 Hz, 1H), 8.92–8.68 (m, 2H),
8.33 (dt, J = 7.9, 2.0 Hz, 1H), 8.05–8.03 (d, J = 8 Hz, 1H), 8.00–7.98 (d, J = 8 Hz 2H), 7.96–7.94(d,
J = 8 Hz, 2H), 7.70 (d, J = 2.2 Hz, 1H), 7.59 (dd, J = 8.0, 4.8 Hz, 1H), 7.52 (dd, J = 8.6, 2.2 Hz,
1H); 13C-NMR (101 MHz, DMSO-d6) δ 164.92, 163.13, 152.78, 149.18, 142.84, 142.66, 136.06,
135.50, 134.29(2C), 131.22, 130.77(2C), 129.81, 129.07(2C), 128.54, 128.46, 124.03, 120.10.

(E)-N-(4-(2-(3,4-Dimethoxybenzylidene)hydrazine-1-carbonyl)phenyl)-nicotinamide (7)

Off-white crystal (yield, 74%); m.p. = 250–252 ◦C; C22H20N4O4 (404.4260 g/mol); IR
(KBr) ν cm−1: 3311, 3248 (NH), 3037 (CH aromatic), 2945 (CH aliphatic), 1644 (C=O), 1598
(C=N); 1H-NMR (400 MHz, DMSO-d6) δ 11.75 (s, 1H), 10.75 (s, 1H), 9.16 (d, J = 2.2 Hz, 1H),
8.80 (dd, J = 4.8, 1.6 Hz, 1H), 8.52–8.27 (m, 2H), 7.99–7.97 (d, J = 8 Hz, 2H), 7.96–7.94 (d, J = 8 Hz,
2H), 7.60 (dd, J = 7.9, 4.8 Hz, 1H), 7.37 (s, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H),
3.82 (s, 6H); 13C-NMR (101 MHz, DMSO-d6) δ 164.89, 162.91, 152.80, 151.20, 149.55, 149.24,
148.26, 142.39, 136.06, 130.82(2C), 129.04, 128.93, 127.57, 124.02, 122.38, 120.08, 111.95, 108.65,
56.04, 55.92.

N-(4-(2-((1E,2E)-3-(4-(Dimethylamino)phenyl)allylidene)hydrazine-1-carbonyl)
phenyl)nicotinamide (8)

White crystal (yield, 67%); m.p. = 260–262 ◦C; C24H23N5O2 (413.4810g/mol); IR
(KBr) ν cm−1: 3308, 3239 (NH), 3033 (CH aromatic), 2895 (CH aliphatic), 1643 (C=O), 1608
(C=N); 1H-NMR (400 MHz, DMSO-d6) δ 11.57 (s, 1H), 10.71 (s, 1H), 9.14 (s, 1H), 8.80 (d,
J = 4.7 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 8.19 (d, J = 9.1 Hz, 1H), 7.94 (s, 4H), 7.61 (t, J = 6.5 Hz,
1H), 7.47 (d, J = 8.3 Hz, 2H), 6.92 (d, J = 16.0 Hz, 1H), 6.83 (d, J = 9.3 Hz, 1H), 6.73 (d, J = 8.4 Hz,
2H), 2.97 (s, 6H); 13C-NMR (101 MHz, DMSO-d6) δ 164.89, 162.58, 152.82, 151.16, 150.89,
149.23, 144.29, 142.29, 140.19, 138.74, 136.08, 133.38, 130.85, 129.09(2C), 128.89(2C), 124.13,
124.05, 121.05, 120.01, 112.49, 38.79.

4.1.3. Synthesis of Compounds 11 and 12

To a solution of compound 10 (0.24 g, 0.001 mol) in absolute ethanol (20 mL) and
0.15 mL of glacial acetic acid, the appropriate amine derivative, namely, thiosemicarbazide
or 2,5-dinitrobenzohydrazide (10 mmol), was added. The reaction mixture was refluxed for
8 h. The obtained solids were filtered, washed dried, and recrystallized from ethanol to
give the target compounds 11 and 12.



Molecules 2022, 27, 4079 21 of 25

N-(4-(1-(2-Carbamothioylhydrazono)ethyl)phenyl)nicotinamide (11)

Brownish white crystal (yield, 61%); m.p. = 239–241 ◦C; C15H15N5OS (313.3790 g/mol);
IR (KBr) ν cm−1: 3346, 3261 (NH), 3171 (CH aromatic), 1659 (C=O), 1594 (C=N); 1H-NMR
(400 MHz, DMSO-d6) δ 10.56 (s, 1H), 10.18 (s, 1H), 9.13 (d, J = 2.8 Hz, 1H), 8.78 (dd, J = 4.8,
1.7 Hz, 1H), 8.33–8.30 (m, 1H), 8.00–7.93 (m, 3H), 7.84–7.79 (m, 2H), 7.71–7.62 (m, 1H), 7.59
(dd, J = 8.0, 4.7 Hz, 1H), 2.30 (s, 3H); 13C-NMR (101 MHz, DMSO-d6) δ 179.19, 170.39,
164.62, 152.67, 149.18, 147.86, 140.30, 136.01, 133.47, 131.76, 130.96, 127.64, 124.01, 120.10,
14.23. This compound has Z and E forms at 1:0.5

(E)-N-(4-(1-(2-(2,6-Dinitrophenyl)hydrazono)ethyl)phenyl)nicotinamide (12)

Reddish crystal (yield, 61%); m.p. = 265–267 ◦C; C21H16N6O6 (420.3850g/mol); IR
(KBr) ν cm−1: 3299 (NH), 3095 (CH aromatic), 2927 (CH aliphatic) 1679 (C=O), 1611
(C=N);1H-NMR (400 MHz, DMSO-d6) δ 11.15 (s, 1H), 10.67 (s, 1H), 9.14 (s, 1H), 8.92 (s, 1H),
8.80 (s, 1H), 8.43 (d, J = 9.5 Hz, 1H), 8.33 (s, 1H), 8.15 (d, J = 9.6 Hz, 1H), 8.01 (d, J = 7.7 Hz,
2H), 7.92 (d, J = 8.8 Hz, 2H), 7.61 (s, 1H), 2.48 (s, 3H); 13C-NMR (101 MHz, DMSO-d6) δ
164.77, 153.39, 152.76, 149.22, 144.93, 142.92, 137.69, 136.04, 132.80, 130.63, 130.23, 127.73(2C),
127.70, 124.03, 123.56, 120.80(2C), 120.41, 117.09, 13.99.

4.2. Biological Testing
4.2.1. In Vitro Anti-Proliferative Activity

MTT procedure [58,59] was applied as represented in the Supplementary Materials.

4.2.2. In Vitro VEGFR-2 Enzyme Inhibition Assay

VEGFR-2 inhibitory activity was explored using the Human VEGFR-2 ELISA kit [60],
as represented in Supplementary Materials.

4.2.3. Flow Cytometry Analysis for Cell Cycle

This was explored utilizing propidium iodide (PI) staining and flow cytometry analysis
for compound 8, as represented in Supplementary Materials [61].

4.2.4. Flow Cytometry Analysis for Apoptosis

Flow cytometry cell apoptosis analysis was applied for compound 8, as represented in
Supplementary Materials [62–64].

4.2.5. Quantitative Real-Time Reverse-Transcriptase PCR (qRT-PCR) Technique

The effects of compound 8 on the expression of cleaved caspase-3, Bax, Bcl-2, TNF-α,
and IL-6 were determined using qRT-PCR as represented in Supplementary Materials [65–67].

4.3. In Silico Studies
4.3.1. Docking Studies

The synthesized compounds were docked against the crystal structure of VEGFR-2
[PDB: 4ASD, resolution: 2.03 Å] using MOE2019.01 software as represented in Supplementary
Materials [24].

4.3.2. ADMET Studies

ADMET descriptors were determined using Discovery studio 4.0 [23] as represented
in (Supplementary Materials).

4.3.3. Toxicity Studies

The toxicity parameters were calculated using Discovery studio 4.0 [22], as represented
in Supplementary Materials.
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Molecular Dynamics Simulation & MM/PBSA

MD simulations and MM/PBSA (molecular mechanics/Poisson Boltzmann surface Area)
were performed using GROMACS [68] as represented in the Supplementary Materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27134079/s1. Refs. [69–77] are cited in the Supplementary
Materials.
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