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Toward community-based wheelchair
evaluation with machine learning
methods

Pin-Wei B Chen and Kerri Morgan

Abstract

Introduction: Upper extremity pain among manual wheelchair users induces functional decline and reduces quality of

life. Research has identified chronic overuse due to wheelchair propulsion as one of the factors associated with upper

limb injuries. Lack of a feasible tool to track wheelchair propulsion in the community precludes testing validity of

wheelchair propulsion performed in the laboratory. Recent studies have shown that wheelchair propulsion can be

tracked through machine learning methods and wearable accelerometers. Better results were found in subject-specific

machine learning method. To further develop this technique, we conducted a pilot study examining the feasibility of

measuring wheelchair propulsion patterns.

Methods: Two participants, an experienced manual wheelchair user and an able-bodied individual, wore two acceler-

ometers on their arms. The manual wheelchair user performed wheelchair propulsion patterns on a wheelchair roller

system and overground. The able-bodied participant performed common daily activities such as cooking, cleaning, and

eating.

Results: The support vector machine built from the wrist and arm acceleration of wheelchair propulsion pattern

recorded on the wheelchair roller system predicted the wheelchair propulsion patterns performed overground with

99.7% accuracy. The support vector machine built from additional rotation data recorded overground predicted wheel-

chair propulsion patterns (F1¼ 0.968).

Conclusions: These results further demonstrate the possibility of tracking wheelchair propulsion in the community.
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Introduction

Evidence suggests that wheelchair usage may induce
abnormalities in joints of the upper limb1–4 and
increase the prevalence of upper limb pain.5,6

Researchers have hypothesized that the increased
chance of upper limb pain is due, in part, to repetitive
overuse during wheelchair propulsion (WP).5,7–10

Numerous examples from the biomechanics literature
show that WP is a high-force daily task with a repetitive
nature.11–15 Shoulder pain and other upper limb inju-
ries induce functional decline,16,17 impede mobility and
independence,18 and reduce quality of life.16,19,20 To
prevent upper limb injuries and pain, researchers have
theorized that reducing the amount of repetition and

increasing the force efficiency in WP may reduce upper
limb pain and injuries. The common WP patterns can
be classified into four categories: arc, single loop over
(SL), semicircle, and double loop over (DL) propul-
sion.21–23 Researchers have found that certain WP
patterns, such as the semicircular and DL patterns,
are biomechanically more efficient.13,24,25 Based on
the kinematic and kinetic evidence, clinical practice
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guidelines (CPG) have been issued to suggest efficient
propulsion to prevent upper limb injuries.15,26

Ecological validity of previous WP evidence is being
challenged. Laboratory-based research assumes that
wheelchair performance will most often reflect perform-
ance in the real world and that chronic overuse of the
WP patterns performed in the laboratory is associated
with upper limb injuries. However, a 3-year longitu-
dinal study (n¼ 192) found that daily wheelchair
usage measured through an odometer and self-report
does not predict the chance of upper limb pain.27 On
the other hand, this study was limited in that self-report
is often retrospective and prone to reporting errors; it
also utilized odometers, which only measure the dis-
tance traveled throughout the day but do not report
the context of daily activities such as WP patterns
and the number of upper limb movements made.
Therefore, a reliable tracking system for daily WP
and activities is needed.

Several existing solutions may solve this problem of
ecological validity. One solution is to utilize dynam-
ometer-enhanced wheels, such as the SmartWheel, to
capture force input and the trajectory of propul-
sion.28,29 The SmartWheel has been used in numerous
WP studies to find the most efficient way to propel
a wheelchair.11,24,30 The advantage of using the
SmartWheel is its ability to capture numerous kinetic
measures including contact force, tangential force,
and overall force. The disadvantage of using the
SmartWheel is that users can only push on the handrim
where force can be measured. Many manual wheelchair
users (MWUs) do not always push on the handrim;
therefore, asking users to change their behavior may
temper the assumption that we are measuring how
MWUs perform in their daily lives. Furthermore, the
cost of a SmartWheel prevents researchers from study-
ing MWUs outside of the laboratory.

Another solution is to utilize numerous ambient
monitors such as accelerometers,31 odometers,32 pres-
sure sensors,33 and location sensors34 (see review,
Tsang et al.35). However, most of these methods do
not provide information regarding the context of
daily living such as the types of activities the participant
engages in, the quality of his or her WP, or the number
of times each activity is performed. Context of the
activity is important; ignoring the context may result
in over-estimating the amount of energy expended
during propulsion and physical activity levels in a
real-world scenario, in which activities are performed
intermittently throughout the measurement.

Activity recognition using machine learning (ML)
and wearable sensors has been established over the
last 20 years.36,37 Several papers have demonstrated
the use of ML to recognize different WP patterns and

other related activities.38–41 However, some studies are
limited to WP patterns,38 some studies only show crude
contexts of activity (e.g., lying on a bed or sitting),39,41

and others show limited activity predictions (e.g., desk
work, pushing or being pushed in a wheelchair).40

Furthermore, generalized ML recognition often suf-
fers from lower accuracy due to between-subject vari-
ability in movement patterns. On the other hand,
although subject-specific (i.e., individualized) ML rec-
ognition provides higher accuracy in activity recogni-
tion, recording activities for each individual may be a
burden.

In this pilot study, we aim to further demonstrate
the possibility of standardizing a subject-specific,
ML-based daily wheelchair usage monitoring system
using wearable accelerometers and tracking simulated
daily activities. The goal is to overcome the recording
burden and utilize a subject-specific ML model to rec-
ognize propulsion patterns with high accuracy. We
tested the feasibility in two ways: (1) by building ML
algorithms within a WP training session with a station-
ary roller system to identify overground WP perform-
ance, and determining the minimum amount of data
required to achieve high accuracy in propulsion pattern
prediction (Study 1), and (2) by building ML algo-
rithms to identify WP patterns in simulated scenarios
with different daily activities involved, and determining
the benefit of using inertial measurement units (IMUs)
that include rotation data in addition to the acceler-
ation data, as per Study 1 (Study 2).

Study 1 methods

Participants

One experienced adult MWU who has transverse mye-
litis participated in this study. The experienced MWU is
a trainer of WP and is experienced with the CPG.
Ethical approval was granted by the Institutional
Review Board (#20170447) at Washington University
in St. Louis School of Medicine. The participant gave
written, informed consent.

Equipment

The WheelMill System. The WheelMill System (WMS) is
a stationary roller system that can simulate different
terrains such as uphill and cross-slope42 (Figure 1).
The WMS can also apply different resistances to simu-
late the propulsion experience of carpet or tile.
The benefit of using the WMS is that the MWU
can focus on practicing WP without environmental
distractions.43 In our first experiment, we tested the
feasibility of tuning an ML algorithm using data
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collected during the WP training session on the WMS43

and using this WMS-tuned algorithm to predict over-
ground WP.

Accelerometers. Two GT3x (ActiGraph, Pensacola, FL)
accelerometers were fitted to the dominant arm of the
participant. The accelerometers collected three-axle
acceleration data at a 30Hz sampling rate.

Procedures

The participant wore two accelerometers, one around
the humeral lateral epicondyle and one around the
dorsal wrist of the dominant arm. The participant per-
formed four different WP patterns—arc, SL, semicircle,
and DL—on two different surfaces: (1) the WMS and
(2) a smooth, flat overground surface. The WMS trials
simulated propulsion on a flat, smooth surface. The
overground trials were conducted in a 150 foot
indoor garage with a concrete flooring surface. The par-
ticipant was told to go back-and-forth in oval-shaped
laps; each direction was 60 feet long, for a total of
120 feet per lap. During the ‘‘U-turn,’’ participants
were instructed to turn with the propulsion pattern
they currently perform. The participant was asked to
continuously perform each propulsion condition (i.e.,
arc, SL, semicircle, DL) for 5min, with 2min breaks
between each condition. The total data recording time
was 20min. During each trial, a research staff member
observed and confirmed that all propulsion repetitions
were performed using the requested pattern.

Data analysis

Preprocess. All data analyses were performed with R
version 3.3.0.44 The caret package was used extensively
throughout data analysis.45 Each type of propulsion

data was first cut into various epochs ranging from
1 s to 4 s. Feature variables, which were used to feed
into the ML algorithm, were created with each epoch as
one data point. Feature variables were generated with
each axle of data (i.e., x, y, and z) by the time-domain
features.36 These features were created according to
French et al.38; however, no frequency-related features
were included, as suggested by Holloway et al.46

Collinearity was removed, if any. To ensure that there
were no mistakes in participants’ performance of
desired propulsion patterns, researcher observation
was used to mark any mistakes made by the participant
during each propulsion trial. Any mistakes would be
timestamped and removed from the feature space.
The participant performed the desired propulsion pat-
tern even when turning, and no observable error was
found during the trials. Therefore, we proceeded to
label data accordingly to tune the ML algorithm and
to evaluate the algorithm.

Machine learning. To tune a supervised ML algorithm, it
is ideal to collect separate training data and testing
data. Training data are used for tuning the ML algo-
rithm to associate movement patterns into specific
activity bins. To independently evaluate the result of
the tuning, a testing dataset, which ideally should be
a separate recording, is used. The references are created
from human observation as the truth and compared
with the prediction from the ML algorithms. WP move-
ment patterns recorded from the WMS trial were used
as the training dataset to tune both the k-nearest neigh-
bor (kNN) and the support vector machine (SVM) with
linear kernel. The tuned ML algorithms were then used
to test data recorded from the overground WP move-
ment patterns. The prediction of the ML algorithm
then was compared against human observation. The
comparison method was multi-class, one against all.

Figure 1. The WheelMill System.
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To ensure that the protocol provided the greatest accur-
acy with the least amount of training recording, the
accuracy of the ML algorithm was compared with vary-
ing minutes of data needed and varying cutting win-
dows (i.e., epochs). This ranged from 1min of each
propulsion condition to 5min. The statistical measures
of algorithm performance were calculated including
specificity, precision, sensitivity, and F1 measures.
The F1 measure was calculated with the following
formula:47,48

F1 score ¼
2� True Positive

All TrueþAll Positive

Because the F1 score is the harmonic mean of pre-
cision and recall, it is a comparative score that has been
used throughout ML literature.

Study 1 results

No statistical significance test was compared. When
comparing the accuracy of the two different models,
the highest accuracy for the kNN method was 94.9%,
and the highest accuracy for the SVM method was
99.20% (Tables 1 and 2). SVM modeling also had
better overall accuracy across different variations of
epoch and amounts of data used, and higher accuracy
when there was a shortage of training data. The

optimal prediction accuracy for SVM is 5min of data
for each propulsion pattern with 4 s of epoch window,
with 99.7% accuracy. However, because the goal was to
find a balance between the training burden and optimal
accuracy, we thought the second-best accuracy (99.2%
accurate) with a 2 s epoch window and that only
requires 3min of data collection was our best option.
The third-best option with 3min data was with a 3 s
epoch window, with 99.0% accuracy. Tables 3 and 4
compare the differences in specificity, precision, sensi-
tivity, and F1 scores of the second- and third-best
options. The conclusion is that both of the 3min
recordings were viable options with optimal accuracy.

Study 2 methods

Participant

One experienced adult MWU who has transverse mye-
litis participated in this study. The experienced MWU is
a trainer of WP and is experienced with the CPG. One
able-bodied individual who has no cognitive or motor
deficits also participated. Ethical approval was granted
by the Institutional Review Board (#20170447) at
Washington University in St. Louis School of
Medicine, and both participants gave written, informed
consent.

Table 2. Percentage accuracy of linear SVM algorithm with

different amounts of data for each propulsion condition in dif-

ferent epoch windows.

SVM 1 min 2 min 3 min 4 min 5 min

1 s 0.963 0.980 0.976 0.962 0.967

2 s 0.857 0.968 0.992 0.987 0.981

3 s 0.712 0.758 0.990 0.990 0.987

4 s 0.916 0.741 0.879 0.872 0.997a

SVM: support vector machine.
aHighest accuracy among varying time windows.

Table 1. Percentage accuracy of kNN algorithm with different

amounts of data for each propulsion condition in different epoch

windows.

kNN 1 min 2 min 3 min 4 min 5 min

1 s 0.751 0.832 0.843 0.850 0.859

2 s 0.867 0.897 0.914 0.938 0.944

3 s 0.894 0.937 0.944 0.942 0.949a

4 s 0.882 0.916 0.923 0.923 0.933

kNN: k-nearest neighbor.
aHighest accuracy among varying time windows.

Table 4. The evaluation of SVM predictions with 3 min of data

for each propulsion condition and 3 s epoch window.

3 s Specificity Precision Sensitivity F1

Arc 1.000 1.000 1.000 1.000

DL 0.987 0.960 1.000 0.980

SC 1.000 1.000 0.960 0.980

SL 1.000 1.000 1.000 1.000

DL: double loop over propulsion; SC: semicircle; SL: single loop over

propulsion.

Table 3. The evaluation of SVM predictions with 3 min of data

for each propulsion condition and 2 s epoch window.

2 s Specificity Precision Sensitivity F1

Arc 1.000 1.000 0.987 0.993

DL 0.993 0.980 1.000 0.990

SC 1.000 1.000 0.980 0.990

SL 0.995 0.987 1.000 0.993

DL: double loop over propulsion; SC: semicircle; SL: single loop over

propulsion.
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Equipment

Inertial measurement unit. Two IMUs, BPMpro (270
Vision Limited, Chilbolton, UK), were fitted onto the
same arm position as the accelerometers in Study 1.
However, unlike in Study 1, the IMUs included
three-axle acceleration and three-axle rotation data.
The IMUs recorded both acceleration and rotation
inertia with a 100Hz sampling rate.

Procedures

Both participants wore two IMUs, one around
the humeral lateral epicondyle and one around the
wrist of the dominant arm. The MWU performed
two different WP patterns—SL and DL—overground.
The MWU also maneuvered through ramps to simulate
pushing uphill, rolling downhill, and navigating a cross-
slope. The able-bodied participant performed eight
different daily activities in a simulation laboratory
similar to a studio apartment, including a kitchen, a
bedroom, and a bathroom. The eight common daily
activities performed included: (1) grabbing and reach-
ing to upper cabinet, (2) grabbing and putting items
into lower cabinet, (3) cleaning vertical closet door
with cloth, (4) cleaning table with cloth, (5) mixing
nuts and ice cream, (6) eating ice cream, (7) folding
clothes, and (8) stirring food in a pan. The MWU
did not perform activities of daily living because
we were trying to reduce the burden of the
MWU in this pilot study. Both participants
were asked to perform each activity for 3min, with
2min breaks between each activity condition. The rec-
ording time of 3min was determined based on Study 1
results.

Data analysis

All data analyses were identical to that of Study 1,
except (1) rotation data were used to compare the benefit
of utilizing rotation information in addition to the accel-
eration-only (as per Study 1), and (2) due to the limited
amount of data recorded, a 10-fold stratified cross-

validation technique was used. Training and testing
datasets were divided 10-fold. Each time, 1/10 of the
data points for each activity were used as testing data,
and 9/10 of the data points for each activity were used to
tune the ML algorithm; this was repeated 10 times
with different data being used as the training set. The
statistical measures of algorithm performance were cal-
culated including specificity, precision, sensitivity, and
F1 measures.

Study 2 results

No statistical significance was compared due to limited
sample size. Overall, rotation information helped
increase the accuracy of several activities (Table 5,
Figure 3). There was no obvious difference between 2 s
and 3 s epoch windows. The SVM algorithm was able to
dissociate maneuvers and daily activities with fairly high
accuracy. A 2 s epoch showed slightly higher accuracy
than the 3 s epoch for detecting wheelchair maneuvers.
The 3 s epoch showed slightly higher accuracy than the
2 s epoch for detecting the eight different daily activities.
The details of the performance for each activity can be
found in the normalized confusion matrices (Figures 2
and 3). Because maneuvering cross-slope and uphill
both utilize an arc propulsion pattern, cross slope
and uphill wheelchair maneuvers were often confused
by the model. The folding clothes activity received
lower accuracy when rotation information was not
included in the model (Figure 4). The mixing food activ-
ity received relatively lower accuracy compared to other
activities. Detailed statistical evaluation of the
IMU-based model can be found in Tables 6 and 7.

Discussion

In this study, we demonstrated with high accuracy an
individualized WP tracking system using a subject-spe-
cific ML algorithm and wearable sensors. We were able
to record training data during a WP practice session
and use it to predict overground propulsion. We
found that, for detecting specific WP patterns, one
needs only 3min of data for each type of propulsion
pattern to achieve high accuracy. This short recording
session can be easily implemented into an inpatient
rehabilitation session for MWUs. We also established
knowledge between different prediction accuracies in
terms of choice of ML algorithm, type of sensors, and
epoch windows. Importantly, we demonstrated that it
is possible to distinguish daily activities from manual
wheelchair usage.

The results of our study follow the ML literature
that WP data can be recorded in the laboratory in a
controlled setting. French et al. demonstrated, with a
single-subject study, the possibility of using ML to

Table 5. Average F1 measures of the activity.

F1 measure 2 s IMU 3 s IMU 2 s Acc. 3 s Acc.

Average maneuver 0.968 0.965 0.936 0.944

Average daily activity 0.979 0.989 0.927 0.940

Average all activity 0.975 0.980 0.930 0.941

This table compares the epoch windows of 2 s and 3 s with or without

rotation data.

Acc.: accelerometer; IMU: inertial measurement unit, records acceler-

ation and rotation information.
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Figure 2. Three-second epoch window normalized confusion matrix for (a) accelerometer and (b) IMU.

Figure 3. Two-second epoch window normalized confusion matrix for (a) accelerometer and (b) IMU.

Figure 4. F1 score comparison between different sensors and different epoch windows.
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classify four different propulsion patterns with fairly
high accuracy on a dynamometer.38 However, the
accuracy of recording on other surfaces (e.g., tile or
asphalt) drops below 90%. They also found that
kNN predicts propulsion patterns better than the
SVM model (in which they used a radial kernel). In
our study, we demonstrated not only the possibility of
predicting WP with high accuracy, but also the

feasibility of integrating the protocol into a WP train-
ing program using the WMS. Other studies have
attempted to document different wheelchair activities
but did not include data as rich in context and type
of propulsion as our current study.35,46,49 In human
activity recognition literature, several researchers have
already documented numerous methods of predicting
daily activities.36,37,40 However, most of these daily
activities focus on dissociating the posture of the user
(e.g., standing, sitting, lying) from movement (e.g.,
ambulatory or sedentary). Our study is innovative,
because we provide higher granularity of the type of
activities and demonstrate the potential separation of
wheelchair-related activities from all other activities.

There are several limitations to this study. First, this
is a single-subject study. It is very possible that optimal
settings may change across different subjects. However,
this type of design is common in initial feasibility test-
ing in human activity recognition research.36,38,50

Because the main goal of this pilot study was to test
the feasibility of implementing ML algorithms and to
determine parts of the experimental protocol, we
believe that this study provides important information
for further development. Second, in Study 2, we col-
lected daily activity movement patterns from an able-
bodied individual instead of an MWU. The reason for
this was to reduce the burden on the MWU in this
study. It is very possible that the movement patterns
of an MWU are different from those of able-bodied
individuals when performing the eight daily activities.
However, the objective was to test the possibility of
dissociating different activities from WP. These results
provide proof-of-concept for further investigation.
Another limitation to this study was the limited
number of activities included. It is possible that we
have not encountered activities that will increase the
chance of error in monitoring wheelchair maneuvers.
In future research, we will include more defined activ-
ities and a null category in which all non-defined activ-
ities will be recorded. We will also further investigate
the possibility of recording ML data from different
propulsion patterns before and after a WP training pro-
gram. The results of the future study can inform us how
to implement this method into inpatient rehabilitation
and further the possibility of tracking post-rehabilita-
tion progress for MWUs.

In conclusion, the current study demonstrates the
potential for using ML and wearable sensors to track
WP. Current literature has already shown laboratory-
based evidence for improving WP. However,
wheelchair maneuvers often change depending on
environmental factors such as terrain, ramps, and
cross-slopes. It is imperative to provide more evidence
of community-based WP and wheelchair usage to fully
understand the prevalence of upper limb injury. This

Table 6. Evaluation of the algorithm using both acceleration

and rotation data with 2 s epoch.

2 s IMU Specificity Precision Sensitivity F1

Reaching up 0.999 0.992 0.992 0.992

Reaching low 1.000 1.000 1.000 1.000

Closet wiping

with cloth

0.999 0.992 0.992 0.992

Table wiping

with cloth

0.999 0.989 0.989 0.989

Mixing food

with spoon

0.995 0.891 0.980 0.933

Eating food 1. 000 1.000 0.996 0.998

Folding clothes 0.998 0.956 0.977 0.966

Stirring food 0.999 0.990 0.942 0.966

Cross-slope 0.999 0.980 0.943 0.962

Pushing uphill 0.999 0.977 0.956 0.966

Rolling downhill 0.999 0.960 1.000 0.980

Single loop 0.996 0.957 0.965 0.961

Double loop 0.995 0.968 0.973 0.970

Table 7. Evaluation of the algorithm using both acceleration

and rotation data with 3 s epoch.

3 s IMU Specificity Precision Sensitivity F1

Reaching up 1.000 1.000 1.000 1.000

Reaching low 1.000 1.000 1.000 1.000

Closet wiping

with cloth

1.000 1.000 1.000 1.000

Table wiping

with cloth

1.000 1.000 1.000 1.000

Mixing food

with spoon

0.995 0.892 1.000 0.943

Eating food 1.000 1.000 1.000 1.000

Folding clothes 1.000 1.000 1.000 1.000

Stirring food 1.000 1.000 0.942 0.970

Cross-slope 0.998 0.941 0.914 0.928

Pushing uphill 0.998 0.933 0.933 0.933

Rolling downhill 1.000 1.000 1.000 1.000

Single loop 0.997 0.974 0.987 0.981

Double loop 0.997 0.984 0.984 0.984
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study further establishes a tool to track wheelchair
usage in the lived environment, enabling researchers
to further understand the topic. Further development
of this tool is currently underway. Our hope is to pro-
vide a tool to not only understand but eventually pro-
vide feedback through mobile devices as a wheelchair
usage intervention.
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