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ABSTRACT Blooms of the toxin-producing cyanobacterium Microcystis are increas-
ing globally, leading to the loss of ecosystem services, threats to human health, as
well as the deaths of pets and husbandry animals. While nutrient availability is a
well-known driver of algal biomass, the factors controlling “who” is present in fresh
waters are more complicated. Microcystis possesses multiple strategies to adapt to
temperature, light, changes in nutrient chemistry, herbivory, and parasitism that pro-
vide a selective advantage over its competitors. Moreover, its ability to alter ecosys-
tem pH provides it a further advantage that helps exclude many of its planktonic
competitors. While decades of nutrient monitoring have provided us with the tools
to predict the accumulation of phytoplankton biomass, here, we point to factors on
the horizon that may inform us why Microcystis is presently the dominant bloom for-
mer in freshwaters around the world.
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Expansive seasonal blooms of potentially toxic cyanobacteria now occur globally
(Fig. 1 and Fig. 2). Across scales, blooms routinely threaten our water resources,

compromising access to potable water, human and animal health, and regional socio-
economics (1, 2). While blooms are well documented, scientists still grapple with why
blooms of specific freshwater cyanobacteria occur where and when they do. Under-
standing the causes and constraints on toxic cyanobacterial blooms is complicated by
the nature of the interactions that govern their proliferation.

The accumulation of biomass by phytoplankton is a matter of mass balance;
phytoplankton fix carbon dioxide in a relationship proportional to available macronu-
trients nitrogen (N) and phosphorus (P). This process is constrained by physical param-
eters, including temperature and light. Generally speaking, macronutrients are the
currency facilitating carbon fixation, and thus, nutrient availability often limits both the
rate of primary production and biomass accumulation (3). Indeed, the roles of P (4) and
N (5) as limiting nutrients of freshwater blooms remain hotly debated yet tied to one
truth—more nutrients equals larger blooms. Moving forward, the most direct solution
to stopping cyanobacterial bloom events is to reduce nutrient loading. However, this
comes with costs that often exceed the current political and socioeconomic will. The
main causative organism, Microcystis, is a single-celled cyanobacterium that can form
buoyant colonies. Subsets of the Microcystis community contain the genes needed to
synthesize the potent hepatotoxin microcystin, a compound originally known as “fast
death factor” (6) that has now been detected in surface waters in 79 countries (7).
Beyond this, Microcystis produces other bioactive secondary metabolites requiring
development of additional risk assessment criteria (8); even nontoxic blooms carry
ecosystem-disrupting consequences.

Given the above, a salient question remains why certain phytoplankton proliferate
in certain places at certain times. Theories now considered classic have explored the
proliferation of phytoplankton and constraints on their diversity (9, 10). Yet science is
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still unable to answer the common question raised by the citizen constituents: “Why do
we get Microcystis blooms?” Here, we present a discussion on the many factors
influencing bloom formation, persistence, and decline and the research efforts required
to understand them.

Bottom-up controls. For decades, monitoring efforts have focused on nutrient
concentrations as a predictor of phytoplankton biomass. Yet static nutrient con-
centrations in lakes are as much the residual of biological transformations as they
are a cause of blooms. Moreover, all algae need N and P to support carbon fixation,
although not all algae assimilate all chemical forms of N and P with similar
efficiencies. For example, it is well-known that most marine Prochlorococcus do not
possess nitrate reductase genes allowing for the assimilation of nitrate. A freshwa-
ter parallel may be the assimilation of urea, which has been used increasingly in
recent decades as an agricultural fertilizer (3, 11). Urea is an effective N source for
many organisms, including Microcystis (12, 13). Indeed, the ability to use urea as an
N source has been touted as one of the advantages that Microcystis has over
competing plankton.

Microcystis bloom events commonly increase surface water pH to well above 9 as
the cyanobacterium rapidly consumes available inorganic carbon (14). Under these
conditions, the availability of dissolved CO2 to phototrophs is negligible, and even
bicarbonate concentrations are low. Numerous researchers have noted that cyanobac-
terial carbonic anhydrase gives Microcystis an advantage in the use of bicarbonate as a
carbon source; it should be noted that cyanobacteria are also well adapted to high CO2

concentrations (14). However, recent work has demonstrated that urea can also serve
as a carbon source for Microcystis at alkaline pH (15), offering another selective
advantage. Moreover, at pH conditions �9.26, ammonium is converted to ammonia
that can diffuse from the system in gaseous form, making more stable N species (e.g.,
urea and nitrate) important and decreasing total water column N. Perhaps even more
importantly, the success of Microcystis in raising the pH can create conditions unfavor-
able for other phytoplankton, e.g., the siliceous frustules of diatoms become soluble,
and Si is likely incorporated at lower rates under these pH conditions. That said, pH
swings due to rampant photosynthesis are diel processes, yielding shifts of up to 0.5 pH
units (15). Typically, pH decreases at night due to respiration without coincident CO2

uptake, and thus, diatom success may be linked to whether frustule synthesis can occur
at night. Given the paucity of diel studies on bloom gene expression (16, 17), whether
pH alone can lead to the exclusion of diatoms requires further investigation.

FIG 1 Massive Microcystis bloom (3 August 2019) near the mouth of the Maumee River (Ohio) is typical of recent
events. (Used with permission from David J. Ruck/Great Lakes Outreach Media).
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We note this competition is not restricted to diatoms; pH, along with nutrients and
temperature, is a potential driver that can promote Microcystis success (or lack of) over
other algal taxa and bloom-forming cyanobacteria such as Planktothrix, Dolichosper-
mum, and Cylindrospermopsis (18). Little is known about the factors that constrain their
interactions and the outcomes, although predation, as well as nutrient and anthropo-
genic loads, likely play key roles (1, 19) These observations highlight a key point with
respect to Microcystis populations: how they compete with one type of organism (e.g.,
diatoms) is likely different from how they compete with another (e.g., other cyanobac-
teria).

Increasing temperatures provide another condition that favors some cyanobacteria.
Microcystis populations grow faster at warmer temperatures (20). Yet toxin production
by Microcystis cells responds opposite to this trend; Microcystis strains in culture
produce less toxin per cell when grown at warmer temperatures, consistent with field
observations, where blooms accumulate less toxins as the season progresses (21). While
reduced toxin production has been linked to the loss of microcystin-producing geno-
types from populations (22), the mechanisms that could drive a seasonal and specific
gene loss (or selection for populations) remain unclear (especially when that gene
returns in subsequent years). Other factors, including the possible role of microcystins
in offsetting oxidative stress in cells and the effects of lower temperatures increasing

FIG 2 The seasonal cycle of a cyanobacterial bloom in a large dimictic lake. The availability of nutrients (N, P, and
Si), dissolved CO2, and pH conditions are suggested by the position of acronyms above (high nutrient concentra-
tions or high pH) or below (low nutrients and dissolved CO2, lower pH) black marker lines. Acronym positions are
relative (no scale implied). Bloom formation in many lakes starts as temperatures increase and stores of nutrients
from the winter begin to be consumed and are depleted. As nutrients are depleted and blooms form, cyanobac-
teria like Microcystis are able to drive down CO2 concentrations using nutrients that may not be accessible to other
planktonic phototrophs. This reduces available CO2 and increases pH. As temperatures decrease in fall months,
dimictic lakes turn over and “reset” the system.
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excitation pressure/photoinhibition and the production of oxygen radicals, seem more
plausible given the high cellular Fe quota driving Fenton chemistry and the presence
of photosensitized pigments (23). Regardless of the mechanism, observations point to
the confounding issues of growth, temperature, and toxin production; at lower tem-
peratures (�18°C), populations have slower growth rates, producing lower biomass, yet
cells produce more toxins. At warmer temperatures (�25°C), biomass is higher, but the
toxin cellular quota decreases. Thus, a seasonal shift in toxicity occurs as temperatures
increase into the late summer months. Yet temperatures across seasons are not linear;
daily swings of 1 to 3°C in the surface mixed layer are common (15), and increased
episodic weather associated with climate change (24) may cause water temperature
fluctuations that could lead to bursts of toxin production (21). These confounding
variables also point to a scientific conundrum: to protect public interests, ecosystem
stewards must focus on the toxin per volume water (concentration), as that is where
causative issues lie. Yet for scientists to elucidate why Microcystis makes toxins, they
need to be focusing on cell quotas to understand the process.

Removal processes. Accumulation of Microcystis biomass also depends on removal
mechanisms, namely, grazing, parasites, and virus-mediated lysis. Lab studies have
demonstrated that Microcystis cells are selectively rejected as pseudofeces by filter-
feeding mussels in a process that indirectly promotes Microcystis growth (25). More-
over, despite Microcystis-specific phage occurring at densities that reach 105 ml�1,
these cyanobacteria proliferate at high cell densities for extended periods (26). Part of
their secret may be in the establishment of a lysogenic relationship with phage; in some
other prokaryotes, lysogeny imparts homoimmunity to infections by related viruses
(27). Yet episodes of viral lysis have been suggested to release intracellular microcystins
into the dissolved phase, complicating water treatment protocols (28). The incoming
toxin load can be reduced by flocculation of bloom biomass at the water plant intake,
whereas dissolved microcystins bypass this step and require more costly chemical
treatment(s) (23). Understanding patterns of lytic versus lysogenic infection and factors
contributing to lysogen induction will be useful in developing best practices for water
utilities. Moreover, research focusing on the extent to which pathogens influence
bloom composition and toxicity is required to enable predictive models. Recently,
viruses have been shown to play another understudied role: viral infection of compet-
ing plankton may provide Microcystis with an advantage. In a slight reinterpretation of
the “kill-the-winner” model (29), the presence of viruses infecting competing plankton
(e.g., diatoms) may provide another selective advantage for Microcystis populations
(30).

Microcystis has numerous advantages over competing plankton in lakes and can
both tolerate and exploit conditions of pH, nutrient availability, temperature, and
predation that constrain other plankton. Such conditions depend on season and
location, so ecosystem managers and researchers must recognize that each factor may
contribute to Microcystis success in different ways at different sites around the world.
Beyond the N versus P debate regarding constraints on ecosystem productivity (3),
research must also focus on what competing plankton cannot do or tolerate in working
to understand why Microcystis has become globally successful. Moving forward, a
balance between laboratory work with cyanobacterial isolates, mesocosm manipula-
tions, and fieldwork examining microbial community dynamics will be critical as the
effects of competition with other algae, constraints imparted by the co-occurring
microbial community (phycosphere), and shifting pressures due to climate change are
addressed. Yet for all these complications, integration of data from molecular biology
and physiology with remote-sensing of increasingly “smart” lakes (31) will provide a
path forward in the protection of our most valuable natural resource: clean, potable
water.
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