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Abstract

Rett syndrome is a severe pediatric neurological disorder caused by loss of function mutations within the gene encoding
methyl CpG-binding protein 2 (MeCP2). Although MeCP2 is expressed near ubiquitously, the primary pathophysiology of
Rett syndrome stems from impairments of nervous system function. One alteration within different regions of the MeCP2-
deficient brain is the presence of hyper-excitable network responses. In the hippocampus, such responses exist despite
there being an overall decrease in spontaneous excitatory drive within the network. In this study, we generated and used
mathematical, neuronal network models to resolve this apparent paradox. We did this by taking advantage of previous
mathematical modelling insights that indicated that decreased excitatory fluctuations, but not mean excitatory drive, more
critically explain observed changes in hippocampal network oscillations from MeCP2-null mouse slices. Importantly,
reduced excitatory fluctuations could also bring about hyper-excitable responses in our network models. Therefore, these
results indicate that diminished excitatory fluctuations may be responsible for the hyper-excitable state of MeCP2-deficient
hippocampal circuitry.
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Introduction

Rett syndrome is an X-linked genetic disorder that largely

affects females, and stems from mutations in the gene encoding

methyl-CpG-binding protein 2 (MeCP2) [1]. While the severity of

symptoms differs between individuals [2–4], common impairments

in Rett syndrome patients include loss of fine motor skills, failure to

develop speech, impaired locomotive ability, breathing irregular-

ities, diminished cognitive ability, and seizures [2,5,6]. Although

MeCP2 is near ubiquitously expressed, the CNS is more affected

than peripheral tissues as a consequence of impaired MeCP2

function. Electroencephalography (EEG) studies conducted on

Rett syndrome patients illustrate altered neural function. Dimin-

ished brain rhythmic activity, slower evoked sensory responsive-

ness [7], and spontaneous epileptiform discharges are commonly

observed [7–9]. To date, however, the underlying mechanisms

that cause these alterations in network activity remain largely

unknown.

To facilitate in vivo investigations, mouse models of Rett

syndrome have been developed that recapitulate many of the

cardinal features seen in Rett syndrome patients [10]. Several lines

of experimental work in different MeCP2-deficient mouse models

confirm that the absence of MeCP2 alters normal synaptic activity,

although the effects are not identical between different brain

regions. For example, decreased spontaneous excitatory activity

has been observed within juvenile and adult MeCP2-deficient

cortex and hippocampus [11–15], while heightened excitatory

activity has been reported in brain stem and mid-brain loci [16–

20]. Collectively, these data argue for the presence of microcircuit-

specific changes in the MeCP2-deficient brain that can specifically

influence the phenotype of larger neural networks, and ultimately

contribute to impairments in behavioural performance, albeit in

circuit or microcircuit specific manners.

One step towards obtaining a better understanding of how

network dynamics influence Rett syndrome phenotypes is to use a

‘reduced microcircuit’ strategy to identify how synaptic alterations

in a defined structure affect its network activities. The hippocam-

pal formation is one neural structure that has commonly been the

focus of such investigations. Previously, Zhang and colleagues [21]

demonstrated the presence of robust, spontaneous, inhibitory-

based slow frequency population activities in thick slice prepara-

tions from the adult hippocampus. Using data from these

preparations, we created network models that were able to predict
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how these slow population activities could be generated [22].

These mathematical models allow us to examine potential

mechanisms responsible for network activity profiles seen in both

normal and pathological hippocampal microcircuits. Using these

same slice preparations as in [21], Zhang et al. [13] examined

their population activities in the MeCP2-null mouse model. This

study identified a seemingly paradoxical state: its intrinsic network

activity is hyper-excitable [13,23,24], but its local spontaneous

post-synaptic excitatory drive is diminished from that of wild-type

[13]. These experimental results, together with understandings

derived from our previous mathematical models, present an

opportunity for us to gain insight into critical aspects occurring in

Rett network dynamics. In this report, we exploit this to illustrate

network model outcomes with strong phenotypic similarities to the

network activity observed in the hippocampus of MeCP2-null

mice. As such, we are able to identify a potential mechanism

through which reduced excitatory fluctuations can give rise to

reduced population activities, yet still promote hyper-excitable

network responses.

Materials and Methods

Experiments
Animal subjects. All animal experimentation was conducted

in accordance with the guidelines of the Canadian Council of

Animal Care, and thoroughly reviewed and approved before

implementation by the Toronto General and Western animal care

committee (Protocols 882.6 and 1321.9). All surgeries were

performed under general anesthesia, and every effort was made

to minimize pain in the experimental subjects. MeCP2tm1:1Bird

mice [25] and wild-type mice were obtained from The Jackson

Laboratory (Bar Harbor, Maine) and maintained on a pure

C57Bl/6 background. MeCP2tm1:1Bird mice were sacrificed

between 65–85 days at age for in vitro electrophysiological assays.

None of the mutant animals displayed complete immobility or a

moribund appearance at the time of sacrifice, although each

subject did display impairments in hind limb elevation reflex

indicating the presence of Rett-like symptoms [26,27].

Brain slice preparation. Hippocampal slices (thickness

0.5 mm) were prepared as described previously [13,21,28]. In

brief, mice were anaesthetized by an intra-peritoneal injection of

sodium pentobarbital (70 mg/kg, Somnotol, WTC Pharmaceuti-

cals, Cambridge, Ontario, Canada), and transcardially perfused

with cold artificial cerebrospinal fluid (ACSF). The mice were

rapidly decapitated, and their brains extracted and immersed in

ice-cold oxygenated ACSF for 5 minutes before slicing. Hippo-

campal slices were then stabilized in an oxygenated

(95% O2{5% CO2) ACSF at 32{330C. for 1–6 hours before

electrophysiological assessments. For the recordings, individual

slices were held in a submerged chamber that was continually

perfused with the oxygenated ACSF at 32{330C [13,29]. The

ACSF used for this study consisted of (in mM): NaCl 125, KCl 3:5,
NaH2PO4 1:25, NaHCO3 25, CaCl2 2, MgSO4 1:3 and glucose

10 (pH of 7.4 when aerated with 95% O2{5% CO2).

Electrophysiological recordings. Extracellular recordings

were conducted using a dual channel amplifier (700A, Axon

Instruments, Foster City, CA, USA) as described previously [13].

All electrophysiological data were acquired, stored, and analyzed

using PCLAMP software (version 9, Axon Instruments). Extracel-

lular recording electrodes were made with glass pipettes filled with

a solution containing 200 mM NaCl and 5 mM HEPES (pH

adjusted to 7.4). The extracellular recording electrode was placed

in the CA3 subfield, largely in the somatic or cell body layer. The

hippocampal slow population activities (hippocampal SPAs)

assessed in this study were previously referred to as spontaneous

rhythmic field potentials (SRFPs) in [13] and [21], and were also

referred to as basal sharp waves (bSPWs) in [30], to distinguish

them from SPWs that had an intermittent occurrence in

association with strong excitatory activities in individual pyramidal

neurons [13,30]. Afferent stimulations were done using a bipolar

tungsten wire electrode (diameter 50 mm) and a Grass stimulator

(S88) as described [13]. High frequency stimulation (HFS) was

applied to the CA3 oriens area by repetitive stimuli at 80 Hz for

1 second (constant current pulses of 0.1 ms duration and 100–

150 mA).

Simulations
Model Description and Parameter Choices. The basic set

of differential equations governing both the model inhibitory

interneurons and pyramidal cells [31,32] is (we use the letters l,m
to denote general cell number indexing).

Vl ~Vreset (when Vl crosses Vmax from below)

C| dVl

dt
~I l

int(t)zI l
syn(t) (otherwise)

ð1Þ

where I l
int represents the intrinsic current of the neuron in

question. The specific capacitance C is assumed to be 1 mF=cm2.

I l
int has the following form.

I l
int ~a|(Vl{Vrest)|(Vl{Vth){nlzIext

nl ?k|nlzd (when Vl crosses Vpeak from below)

dnl

dt
~l|(b|(Vl{Vrest){nl) (otherwise)

ð2Þ

Equation set 2 is the most general mathematical representation

of the firing of neurons with spike frequency adaptation. In the

above equation set, the parameters Vrest and Vth represent the

reseting membrane potential value and the threshold membrane

potential value respectively (in mV). The variable n is an auxiliary

current which represents the spike frequency adaptation charac-

teristics of the neuron, while the parameters l and b control the

magnitude of this adaptation. The parameter a partially controls

the f-I characteristics of the neuron close to the threshold.

Excitatory, pyramidal cell model: We use equation set 2 and the

models are based on those determined in [32] with spike frequency

adaptation characteristics of CA3 pyramidal neurons, and using a

surface area of 25000 mm2.

Inhibitory, interneuron cell model: We use a reduced version of

equation set 2 for inhibitory interneurons since there is minimal

spike frequency adaptation and narrow spike width, and also, to be

consistent with models used in our previous work [22]. In

particular, we set Vrest~Vth, b~0 and k~0 whenever we use

equation set 2 to represent inhibitory interneurons. The reduction

is equivalent to the mathematical representation of inhibitory

interneurons used in [22] and [33] (with p~2 in their model).

Synaptic model: The synaptic current I l
syn is represented as,

I l
syn ~

P
m;m=l

Cm?l|gm?l
syn |sm|(Efe,ig{Vl)

sl ?slzsmax (when Vl crosses 0 from below)

dsl

dt
~{ sl

tfe,ig
(otherwise)

ð3Þ

where Efe,ig is the excitatory or inhibitory reversal potential value
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respectively (whether the reversal potential is excitatory or

inhibitory is dependent on the particular neuron–that is neuron

m–from which neuron l is connected). sl represents the synaptic

gating variable of neuron l. For computational efficiency and as

done before [22], we use a discontinuous model to represent the

synaptic activation (equation set 3) whenever there is a spike

(comparative simulations indicate that results are similar to those

using a continuous model). Parameters tfe,ig and smax (for sl )

denote respectively the excitatory (inhibitory) synaptic decay time

constant and the value of the maximal opening of the synaptic

gates per spike (whether the decay time constant should be

excitatory or inhibitory is dependent on whether neuron l itself is a

pyramidal cell or an inhibitory interneuron). Cm?l is the

connectivity matrix element being either 1 (connected) or 0 (not

connected) depending on whether neuron l receives synaptic input

from neuron m.

Population model representation - local field potential (LFP)

analogue: In our simulations, we represent the experimentally

observed LFP modulations due to SPAs (as seen in Figures 1A and

B) by the average value of inhibitory, synaptic gating variables. In

other words, we define our LFP analogue as

P
m;m[inh

sm

Ninh
, where Ninh

is the number of model inhibitory interneurons in the simulated

network. This definition is identical to the definition of LFP

analogue as we used before [22]. Since LFPs have been shown to

be clearly correlated with firing of inhibitory cells and less so with

excitatory cells, we only use inhibitory, synaptic gating variables in

generating our LFP analogue from (inhibitory, inhibitory-excit-

atory) model networks.

Network connectivities and external driving forces. We

use different network configurations and connectivities for various

figures to illustrate concepts and results. All these different network

configurations are built upon mathematical representations of

inhibitory and/or excitatory neurons (equation sets 1 and 2), with

the neurons being connected by synapses (equation set 3). As

assumed before [22], since the population activities seen in

experiment do not seem to preferentially involve specific inhibitory

cell types, our inhibitory models focus on fast-spiking cell types

since they constitute the majority of inhibitory cells. However, the

connectivity matrix elements Cm?l are not the same for the

different network configurations. In setting up Cm?l for each

simulation, we assign each matrix element randomly (with either 1

or 0) with the probability of getting 1 being P (see Table 1). As

well, the format of the external current Iext used to drive the

neuronal populations is different for the various simulations. We

now briefly outline the network configurations used for the

different simulations in this work.

Inhibitory Networks and Virtual Excitatory Networks: To

mimic a fluctuating background excitatory synaptic environment,

each model inhibitory interneuron is driven by Iext with the form

[34].

Iext ~ge
l(t)|(Ee{Vl)

dge
l(t)

dt
~{

ge
l(t){ge0

te

z

ffiffiffiffiffiffiffiffiffiffiffiffi
2|s2

e

te

s
|xl

e(t)
ð4Þ

where Ee is the excitatory reversal potential and te is the excitatory

time constant. The excitatory conductance ge is a stochastic

variable following the Ornstein-Uhlenbeck process (equation set 4)

with mean ge0 and SD se (excitatory fluctuations). xe is the term

which underlies the stochasticity of ge. The quantity
Ð E

0
xe(s)ds,

Ew0 can be represented as a Gaussian distribution with mean zero

and variance E. Further details on the numerical implementation

of the stochastic elements of equation set 4 can be found in [22].

In Figure 2, we use a network configuration that consists of

mathematical representations for inhibitory interneurons (equa-

tion sets 1–3) and ‘‘virtual’’ representations for the excitatory cell

population (equation set 4). Each model inhibitory interneuron is

connected with all the other inhibitory interneurons in the

network, while receiving fluctuating input from the ‘‘virtual’’

excitatory cell population. This network configuration is identical

to the one that was used in [22], except that here we use 100

model interneurons instead of 120 used there. We use all-to-all

connectivity here noting that when non all-to-all connectivity was

explored in [22], the determined mechanism being exploited here

was maintained.

Inhibitory and Excitatory Networks: The effects of the ‘‘virtual’’

excitatory cell population can be realized by explicitly including

model pyramidal cells. In Figure 3 we show the same simulations

as in Figure 2 respectively, except that the model inhibitory

interneurons are now driven by actual pyramidal cells rather than

the virtual input as in equation set 4. We synaptically connect the

model inhibitory interneurons with a population of 800 model

pyramidal cells (so that the ratio of inhibitory to excitatory cells is

approximately in line with the value in the CA3 area of the rat

hippocampus). The firings of the pyramidal cells provide the input

for inhibitory interneurons (while setting the Iext to model

inhibitory interneurons to zero). We drive each pyramidal cell

with a constant Iext. We ensure that the output from the pyramidal

cell population is fluctuating by imposing heterogeneity of the

Iext’s given to different pyramidal cells. The connectivity between

E-cell and I-cell populations is mainly based on obtaining

appropriate fluctuating outputs seen experimentally.

Excitatory Networks: In Figure 4, we use a collection of 800

pyramidal cells to examine network bursting or sharp wave-like

responses as observed experimentally. In particular, we show how

the magnitude of excitatory fluctuations can affect network

bursting. The excitatory connectivity of these 800 pyramidal cells

is loosely based on CA3 excitatory model networks [35]. We vary

the excitatory-excitatory conductance values (ge?e
syn ) between

different simulations, and we determine the threshold ge?e
syn for

which network bursting occurs. We introduce driving forces and

Figure 1. Slow population activities in experiment for wild type
and MeCP2-null mouse hippocampus. The traces are offset so that
their baselines are around 0 mV. (A) Wild type. (B) MeCP2-null.
doi:10.1371/journal.pone.0091148.g001
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basal excitatory fluctuations to these networks. In Figure 4, we

inject a constant current Iext to drive each cell. Background

excitatory fluctuations are introduced via the heterogeneity of Iext

(as in the pyramidal cells of Figures 3). In other words, each cell

receives a generally different constant Iext than other cells. The

amount of excitatory fluctuation levels can be controlled by the

magnitude of Iext heterogeneity.

Tables 1 and 2 list all the parameters we use for the simulations,

and Table 3 is a detailed summary of the parameters and network

connectivities for all the simulations. We perform most of the

simulations on the GPC supercomputer at the SciNet HPC

Consortium ([36], http://www.scinethpc.ca). We use the Euler

algorithm for numerical integration. Integration time step for each

simulation ranges from 0.01 to 0.02 ms.

Results

In the results here, we first illustrate and describe the

experimental findings of [13], as well as reviewing our previous

mechanistic findings [22]. We then directly show the implications

of our mechanistic understanding using model networks that

emulate Rett population activities observed by [13]. We use

inhibitory model networks with virtual excitatory drive, similar to

those used previously [22]. As well, we use expanded versions that

directly include excitatory cells. Given these implications, we use

additional excitatory network simulations to explain the apparent

paradox regarding hyper-excitable responses in brain slices from

MeCP2-null mice, despite reduced excitatory activities.

Mathematical model mechanism provides suggestions
for observed changes of hippocampal population
activities in slices from MeCP2-Null mice as compared to
wildtype

Spontaneous population activities produced from thick slice

preparations of hippocampus are illustrated in Figure 1. Specif-

ically, Figures 1A and B depict extracellular local field potential

(LFP) recordings of hippocampal slow population activities for the

wild type and MeCP2-null mouse hippocampus respectively.

These LFP population activities are inhibition-based (i.e. are due

to the coherent firing of inhibitory interneurons, and consequently

IPSPs on pyramidal cells), originate from the CA3 area of the

mouse hippocampus, and are dependent on a balance of

GABAergic and glutamatergic synapses [13,21,22,30]. Their

frequencies can range from 0.5 to 4 Hz. Depending on the

location of the extracellular probe, a single hippocampal

population activity episode can have a magnitude up to 0.5 mV.

Comparing Figures 1A and B, one notices that although these

population activities exist in both wild type (Figure 1A) and

MeCP2-null (Figure 1B) mouse hippocampal slices, there are clear

differences in their characteristics. Most prominently, there are

much fewer ‘‘events’’ in the MeCP2-null mouse hippocampal slice

(Figure 1B) as compared to the wild type ones (each figure depicts

a 10-second stretch of reading). As a result, the population

frequency in the MeCP2-null sample is much lower, approxi-

mately 0.5 Hz as opposed to the wild type sample of about 3.5 Hz

in this illustration (frequencies of hippocampal population

activities from wild type samples can be between 1 Hz and about

4 Hz–see Figure 1C of [13]). Also, the slow population activity

amplitudes in the MeCP2-null sample are somewhat higher than

in the wild type sample.

What mechanism(s) could cause the observed changes in these

hippocampal population activities in MeCP2-null samples? Zhang

et al. [13] compared the electrophysiological properties of the

intracellular correlates, and found no significant difference

between wild type and MeCP2-null samples. As such, it is likely

that the cause is in the synaptic component of the network, as has

been suggested by other studies [11]. Previously, [22] developed a

mathematical model which described the generation of inhibitory-

based slow population activities, which we termed SPAs.

Subsequent model analyses revealed that SPAs are the result of

network multistability, which in turn is due to the interactions

between synaptic and intrinsic properties of interneurons. Excit-

atory fluctuations were key since they play the role of driving the

network between different stable states to bring about the existence

Table 1. Synaptic parameters used for network simulations.

Parameter Description Units

Ei Inhibitory reversal potential mV

Ee Excitatory reversal potential mV

ti Inhibitory synaptic decay time constant ms

te Excitatory synaptic decay time constant ms

smax Maximal opening of inhibitory gating variable per spike dimensionless

ge0 Mean background excitatory drive to model neurons (see equation set 4) mS/cm2

se Background excitatory fluctuation level (see equation set 4) mS=cm2

gi?i
syn

Unitary conductance from an inhibitory interneuron to another interneuron mS=cm2

ge?e
syn Unitary conductance from a pyramidal cell to another pyramidal cell mS=cm2

ge?i
syn

Unitary conductance from a pyramidal cell to another interneuron mS=cm2

gi?e
syn

Unitary conductance from an interneuron to another pyramidal cell mS=cm2

Cm?n Connectivity matrix element (with values of either 1 or 0) between neuron m and n dimensionless

P(i?i) Connection probability from one interneuron to another interneuron dimensionless

P(e?e) Connection probability from one pyramidal cell to another pyramidal cell dimensionless

P(e?i) Connection probability from one pyramidal cell to another interneuron dimensionless

P(i?e) Connection probability from one interneuron to another pyramidal cell dimensionless

doi:10.1371/journal.pone.0091148.t001
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of SPAs. Given this, one of the predictions from this simulation

work is that SPA characteristics are more dependent on the

amount of excitatory fluctuations, but less so on mean excitatory

levels. In particular, our previous work predicts that a decrease in

the amount of excitatory fluctuations would lead to increased SPA

amplitudes but decreased SPA frequencies. Zhang et al. [13]

demonstrated that excitatory activities are decreased in MeCP2-

null samples (Figure 6 of their publication). Furthermore,

attenuating glutamatergic activities by NBQX or ADAC (an A1

receptor agonist) perfusion in wild type mouse hippocampal

slices reduces frequencies of SPAs occurring there (blanket

reduction in excitatory glutamatergic activity almost always leads

to smaller excitatory fluctuation levels). Taken together, it may be

Figure 2. Simulated hippocampal slow population activities for normal and Rett. Box in the middle shows Rett and normal-like LFPs.
Above and below the box are raster plots of the inhibitory cells and fluctuating excitatory input received by inhibitory cells for the particular example
shown. Also shown is a schematic of the model setup. Top left ge0~0:00483, se~0:00102. Top right ge0~0:00533, se~0:00102. Bottom left
ge0~0:00483, se~0:001145. Bottom right ge0~0:00533, se~0:001145.
doi:10.1371/journal.pone.0091148.g002
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possible to explain these experimental observations with our model

mechanisms.

Reduced excitatory fluctuations in hippocampal network
model simulations produce population activities with
characteristics similar to those in MeCP2-null mice

In this section, we show, via a simulation approach, that

decreased excitatory fluctuations are sufficient to account for all

the observations by [13] with regard to the different hippocampal

SPA characteristics in MeCP2-null mice. In the next section, we

address the apparent paradox of hyper-excitable responses from

MeCP2-null samples as compared to the wild type ones.

In Figure 2 we show how varying the amount of excitatory

fluctuations of model inhibitory interneuronal network can

simulate SPA characteristics of both wild type and MeCP2-null

samples. In the simulations of Figure 2, we artificially drive the 100

all-to-all coupled model inhibitory interneurons with fluctuating

inputs as shown in the schematic, and as done previously in [22]

(see Materials and Methods and equation set 4). All the parameters

used for these simulations are identical, except that the ge0 (mean

excitatory levels) and se (excitatory fluctuations) are changed as

shown (see figure caption and Table 3 for parameter values used).

Four LFP example plots are shown, and for three of the examples,

raster plots of firings of each of the 100 model inhibitory

interneurons during the 10-second interval and the actual

excitatory input conductance to a randomly selected model

interneuron in the network (i.e.
P

m;m=l;m[pyr Cm?l|gm?l
syn |sm,

for a particular neuron l–see equation set 3) is shown.

It is clear from the four LFP model examples (inside the box of

Figure 2) that the simulations with the lower se values (top two

LFP plots in the box) have a lower SPA frequency than the ones

with a higher se values (bottom two). The top two model LFPs also

appear to have larger magnitudes than the bottom ones. It is also

clear that there is not much difference in SPA frequencies when

only ge0 (but not se) is changed (compare the top-left versus top-

Figure 3. Simulated hippocampal slow population activities for normal and Rett when excitatory cells are explicitly included. Top
Schematic of the model setup. Bottom left ge?i

syn ~0:001. Bottom right ge?i
syn ~0:0009.

doi:10.1371/journal.pone.0091148.g003
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right LFP plots, and the bottom-left versus bottom-right LFP

plots).

The excitatory input for the top-left LFP example (in box of

Figure 2) has smaller fluctuations (i.e., a lower standard deviation)

and also has a smaller mean value, as expected from the smaller

ge0 and se values used for the simulations. The calculated values of

mean and SD (standard deviation) values of the 10-second trace

are labelled on top of this panel. As expected, these values agree

with the ge0 and se values used as inputs. Given the experimental

observations described above, we consider the top LFP network

dynamics (the top two LFP plots in the box) to be ‘‘Rett-like’’ and

the bottom ones to be ‘‘normal-like’’, and are so labelled in

Figure 2.

The simulation results shown in Figure 2 are from inhibitory

networks with virtual excitatory drive as schematized (top-right

drawing of Figure 2). Rett-like and normal-like output states are

seen to occur, as understood by our previously determined

mechanistic understanding [22]. We wondered whether these

states would continue to hold if excitatory networks were explicitly

included. To this end, we developed inhibitory-excitatory

networks (see Materials and Methods for model details). Figure 3

depicts the situation when excitatory cells are explicitly rather than

virtually included, as schematized in the figure. The model

inhibitory interneurons are driven by actual model pyramidal cells

and not by artificial inputs as in Figure 2. We used the same Iext

distribution to drive the model pyramidal cells for normal- and

Rett-like scenarios (see Table 3). To simulate the lower excitatory

fluctuations received by inhibitory interneurons for MeCP2-null

scenario, we use a lower ge?i
syn value in Figure 3 (‘Rett-like’ in right

column) than the ‘normal-like’ in the left column. The top row

shows the simulated SPAs (in LFP representation). Similar to

Figure 2, we also show inhibitory cell firings in raster plots (second

row), and excitatory input conductance to a randomly selected

model interneuron in the network (third row). However, in this

case, it is an explicit excitatory input, rather than virtual excitatory

input as in Figure 2. We calculate the mean and SD values of the

10-second trace and label the results on top of the panels. From

these numbers it is obvious that the inhibitory population of the

‘Rett-like’ state receives lower excitatory input (both in mean and

SD) as compared to the ‘normal-like’ state.

We conclude that since simulated hippocampal SPAs can still be

generated when excitatory cells are explicitly included, SPAs as a

fluctuation-driven phenomenon (as described by [22]) are robust

and the gross characteristics of SPAs are mainly dependent on the

Figure 4. Network bursting of excitatory pyramidal cells affected by excitatory fluctuations.
doi:10.1371/journal.pone.0091148.g004
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amount of fluctuations, and less dependent on the particular way

in which fluctuations are generated. We also note that in lowering

the ge?i
syn , we decrease both the mean excitatory level and the

excitatory fluctuations received by inhibitory interneurons in

Figure 3 (right column) as compared to Figure 3 (left column).

However, it is the decrease in excitatory fluctuations which is

primarily responsible for the observed changes in SPA character-

istics. This point is clearly illustrated in Figure 2 where we vary ge0

and se separately, and we see the SPA characteristics being much

more sensitive to changes in se than to changes in ge0. With the

explicit representation of excitatory cell networks, it is not easily

possible to separately change ge0 and se. We chose not to do a

more formal quantification of population frequency changes as

done in [22] since the population frequency changes were obvious

here.

Reduced excitatory fluctuations promote a hyper-
excitable response in networks of model pyramidal cells

As already observed by [13] and others (e.g. [11]), there appears

to be a decrease in excitatory activities in Rett mice. However,

[13] found that when brief trains of high frequency stimulation

(HFS), a protocol commonly used to induce long term potentiation

(LTP), were applied to MeCP2-null hippocampal slices, sharp

wave-like or excitatory network bursting activities were readily

induced, whereas this was not the case in the wildtype slices. In

other words, the MeCP2-null slices had a hyper-excitable

response. Given the insight and predictions derived from our

mathematical models, can we explain this seemingly paradoxical

result?

Building on mechanistic understandings from our previous work

[22], we showed in the previous section that reduced excitatory

fluctuations could explain the changed characteristics of hippo-

campal SPAs produced in MeCP2-null slices relative to wildtype.

In this section, we show via simulations, that this hyper-excitable

response, as expressed by the induction of excitatory network

bursting is sensitive to the amount of excitatory fluctuations. We

first make the reasonable, albeit somewhat simplistic, assumption

that the LTP induction protocol causes an increase in excitatory

synaptic strengths, so that in our network simulations we examine

the network output under these conditions. Next, as we show and

describe in detail below, decreased excitatory fluctuations (as

observed by [13] on MeCP2-null samples through decreased

EPSC activities–see the distributions of EPSC charges in Figure

6B of their publication) can facilitate excitatory network bursting.

This is achieved by allowing the transition from tonic firing to

network bursting to occur at a lower excitatory-excitatory synaptic

strength (ge?e
syn ).

Figure 4 shows an example of our simulation results. As

described in Materials and Methods and Table 3, each simulation

in Figure 4 is an 800-cell excitatory network, as schematized at the

top of Figure 4. Each pyramidal cell is driven by fluctuating input

given by a constant Iext, and fluctuations introduced via the

magnitude of absolute heterogeneity of Iext and a 5% relative

heterogeneity introduced into the intrinsic properties of the

pyramidal cells (see Table 3). Left columns are simulations in

which a higher Iext heterogeneity is used (SD of Iext is

0.091mA=cm2), while the right columns are simulations that are

under a lower Iext heterogeneity (SD of Iext is 0.07mA=cm2). The

simulations are arranged side by side with the ones having a lower

ge?e
syn value on the top (the ge?e

syn value used in the simulations are

depicted on the right side of each pair of simulations).

It is clear from these simulations that the excitatory network

transitions from a tonic-like mode (random, incoherent firing of

pyramidal cells in the network) to a bursting-like mode (synchro-

nized, coherent firing of pyramidal cells) as the excitatory-

excitatory synaptic strength values (ge?e
syn ) are increased (which

we interpret to be due to an LTP induction of brief trains of HFS).

However, comparison between the left column and the right

column reveals that, other conditions being the same, given a

lower absolute Iext heterogeneity (which represents lower input

excitatory fluctuations), the network transitions to a bursting-like

state at a lower value of ge?e
syn . One can then interpret the apparent

paradoxical HFS results of [13] in light of these simulation results

as follows: assuming everything else identical, lower excitatory

fluctuation levels in the MeCP2-null samples leads to a hyper-

excitable response as given by facilitating the induction of network

bursting via HFS, because the same increase in excitatory synaptic

strength ge?e
syn brings the MeCP2-null sample to a network bursting

regime (lower ge?e
syn threshold for transition) but not for the wild-

type sample (higher ge?e
syn threshold for transition). That is, note the

second and third rows of the raster plots in Figure 4.

Table 2. Intrinsic parameters used for network simulations.

Parameter Description Units

Vmax see equation set 1 mV

Vreset mV

Iext see equation set 2 mA=cm2

Vth mV

Vpeak mV

Vrest mV

a (mS)(mV){1=cm2

l ms{1

d mA=cm2

b mS=cm2

k dimensionless

doi:10.1371/journal.pone.0091148.t002
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Discussion

Summary of results
An essential aspect in understanding Rett syndrome is to study

how defects at the genetic level manifest at the cellular and

network levels, leading to behavioural abnormalities. Performing

experiments is one way we can explore how cellular and network

behaviours are subtly affected by genetic defects. However, owing

to the complex relationship between variables and processes at

different levels, it can be difficult to elucidate disease mechanisms

by experiments alone. Mathematical modelling and simulations

can help experimenters by pinpointing variables that are likely to

have causal relationships with experimental results. In this study,

we have used mathematical modelling and simulations to paint a

picture of how hippocampal slow population activities (SPAs) are

affected in a mouse model of Rett syndrome. Three principle

observations emerge from our work: 1) changes in mean excitatory

drive within the hippocampal network are not necessarily a critical

component of these network alterations, 2) decreased excitatory

fluctuations can be a critical factor in changes in hippocampal

network oscillations in Rett syndrome, and 3) these fluctuations in

excitatory levels can also explain hyper-excitable responses in

MeCP2-deficient hippocampal networks. For the first time, we

have brought together observations, some of them seemingly

paradoxical (decreasing basal excitation, increasing susceptibility

to hyper-excitable responses with high frequency stimulation, and

changes in characteristics of slow population activities in MeCP2-

null slices), under the unifying framework of excitatory fluctua-

Table 3. Summary of parameters and synaptic connectivities used in the simulations.

Intrinsic properties
Synaptic properties
(equation set 3) Driving force (format of Iext)

Pyramidal cells Interneurons

Figure 2 Not applicable a~1 P(i?i)~1 equation set 4:

l~0:81 gi?i
syn ~0:041 Ee~0

d~4:0 Ei~{73 te~3

Vrest~{61 smax~0:8 see figure captions for ge0 and se values

Vth~{61 ti~10

b~0

k~0

Vreset~{65

Vpeak~0

Vmax~15

Figure 3
a~f 0:0006 VvVth

0:02 otherwise

Parameters for interneuronal
population same as Figure 2.

P(i?i)~1 Constant value for each pyramidal cell,
with absolute Gaussian heterogeneity
among pyramidal cell population (mean
Iext~1:45, SD~0.3). Iext~0 for
interneurons.

l~0:005 P(i?e)~0:07

d~0:8 P(e?i)~0:4

Vrest~{65 P(e?e)~0:07

b~{0:004 gi?i
syn ~0:041

k~1 gi?e
syn ~0:0009

Vth~{18:33 ge?e
syn ~0:002

Vpeak~30 Ee~0

Vmax~30 Ei~{73

Vreset~{55 smax~0:8

te~3

ti~10

see figure captions for

ge?i
syn

Figure 4 Parameters for pyramidal
cell population same as Figure 3,
except here we also introduce a
5% relative heterogeneity to l
and d values (uniform distributed
central value +2:5%).

Not applicable P(e?e)~0:07 Constant value for each pyramidal cell,
with absolute Gaussian heterogeneity
among pyramidal cell population (see
figure caption for specific mean and SD
values).

Ee~0

te~3

smax~0:8

doi:10.1371/journal.pone.0091148.t003
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tions. We found that decreasing excitatory fluctuations is sufficient

to account for all of the observations in [13]. Our work highlights

the importance of the often overlooked role of excitatory

fluctuations in shaping biological and pathological hippocampal

population activities [37,38]. Furthermore, the results illustrate

how mathematical modelling can be used to gain insight into novel

mechanisms involved in the pathogenesis of disease states and

facilitate the targeting of novel therapeutic strategies.

Excitatory fluctuations and network hyper-excitable
responses

Our model results indicating that oscillatory activity could be

dramatically influenced by fluctuations led to the question of

whether the fluctuation component could also explain hyper-

excitable responses seen in MeCP2-deficient hippocampal net-

works. For this to be examined, we took advantage of previous

excitatory network models expressing population bursts [32], and

varied excitatory fluctuations. Intriguingly, we found that networks

with decreased excitatory fluctuations could also be hyper-

excitable, allowing excitatory, sharp wave-like bursting patterns

to emerge for smaller excitatory coupling strengths. This is

consistent with the hyper-excitable response seen in MeCP2-

deficient hippocampal networks, as population bursting events

were readily induced by an excitatory stimulus that had no effect

on wild-type hippocampal networks. As such, our mathematical

modelling results implicate the decreased excitatory fluctuation

component as the essential driving force for both reduced network

oscillatory (i.e., slower frequency population activities) and also

hyper-excitable responses.

While it might seem paradoxical that reduced excitatory

fluctuations can lead to network hyper-excitable responses

(Figure 4), our simulation results should be viewed in the context

of the overall excitation experienced by the pyramidal cell

population. To determine why reduced excitatory fluctuations

can increase the propensity of the network to burst, we ran several

additional sets of simulations in the spirit of Figure 4 but with

different magnitudes of Iext (while keeping the SDs of Iext the same

as shown in Figure 4). We discovered that our results held if Iext

was close to the firing threshold of individual model pyramidal

cells (the threshold of the model pyramidal cells is *0:24mA=cm2,

thus the Iext in Figure 4 is slightly above threshold). If Iext is too far

below the threshold, the reverse result happens, that is, the

network with larger excitatory fluctuations bursts more easily. The

transition from tonic-like to bursting occurs for smaller excitatory

connection strengths relative to the network with smaller

excitatory fluctuations. This is understandable since when Iext is

well below threshold, the entire network is mainly driven by

fluctuations [39]. Therefore, larger fluctuations are needed to

make the network excitable in the first place, allowing neurons to

cross the threshold and fire. However, in the regime where Iext is

slightly below or above threshold, the network relies less on

fluctuations to drive the cells. Instead, increasing fluctuations

disrupts the synchronization of pyramidal cells, making the

network with larger excitatory fluctuations less burst-prone.

Model Interpretations and Limitations
Ideally, one would like to have a single model network which

incorporates both excitatory and inhibitory populations, and be

able to recapitulate all the aspects of neuronal activities in MeCP2-

null slice samples. We did not pursue this approach in this work,

however. Instead, we teased apart the network into inhibitory

(Figure 2), excitatory-inhibitory (Figure 3) and excitatory (Figure 4)

components to explore different features of MeCP2-null networks.

This is somewhat justified because of our reliance on model

mechanistic understandings [22,32] in this work. Further, we note

that the number of neurons in our models is a drastic reduction of

the total number of neurons in actual hippocampal slices, and a

mismatch between the excitation needed to drive the hippocampal

population activities (Figure 3) and sharp wave-like bursts (Figure 4)

would occur. In Figure 3, we had to make the model pyramidal

cells fire at a relatively high frequency (to make up for the small

number of model excitatory cells) to provide enough drive to

obtain hippocampal population activities. However, the same

amount of injected current Iext to the model pyramidal cells in

Figure 4 would have resulted in too high a sharp wave-like

bursting frequency. One can envision that with the number of

model neurons appropriately reflecting actual biological networks,

each model pyramidal cell can be less excitable and still be able to

support hippocampal population activities as in Figure 3. One

would then in principle be able to exploit the full-sized model to

infer the possible mean excitation of the network, given the

experimental network bursting data. Our current models are not

able to pinpoint actual mean excitation levels, other than to

conclude that the mean excitation needs to be in the vicinity of the

threshold of individual pyramidal cells for our simulations

(Figure 4) to be reflective of the biological situation. Furthermore,

we note that the excitatory sharp waves seen in the experiment are

interpreted to be due to synchronized firing of excitatory cells as

shown in the raster plots of Figure 4 as network bursts. Although

we cannot directly assess whether the model mechanism under-

lying the network bursts are similar to the sharp waves observed in

experiment, it is reasonable to assume that synchronized excitatory

firings contribute to the sharp waves seen in experiment. The

difference in population frequency between model and experiment

is likely due to the smaller number of neurons in the model

compared to experiment, as mentioned above. More critically,

using only excitatory networks to explain the hyper-excitable

response neglects feedback inhibition. However, in the absence of

more realistic network sizes and configurations, we felt it

premature to directly consider this here. This will be developed

in future models.

In the network models employed, two features are represented:

excitatory drive (ge0) and excitatory fluctuations (se). In these

models, these features could be represented separately. The

excitatory drive component reflects the mean level of excitatory

conductance present in the model network. The excitatory

fluctuation is represented generically, and is defined as the

standard deviation of the excitatory conductance (see Materials

and Methods) and represents the firing of many pre-synaptic

neurons and thousands of stochastically-releasing synapses [40,41].

However, in the experimental, hippocampal slice preparation, the

mean excitatory component and excitatory fluctuation component

are not necessarily distinct. The mean excitatory drive represents a

combination of the frequency and amplitude of excitatory currents

that sets a tonic level of excitation. The excitatory fluctuation

reflects the spatial and temporal degree of basal EPSC activity,

and the range associated with individual EPSC amplitudes. There

are known morphological changes in Rett syndrome, such as in

dendritic spine densities, which could relate to excitatory

fluctuation changes [42–44], but it is unclear at present whether

this translates to other brain regions.

Concluding Remarks
In conclusion, the work presented here indicates that decreased

excitatory fluctuations, and not just the level of excitatory drive,

can be instrumental in ascribing the functional properties of a

network system. For Rett syndrome, where network hyper-
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excitable responses co-exist with attenuated spontaneous excitato-

ry drive, our network models allowed us to dissect out how such

seemingly paradoxical states could co-exist. Our results surpris-

ingly show that attenuated excitatory fluctuations can in fact lead

to a robust decrease in inhibitory population activities and

simultaneously allow for excitatory network hyper-excitable

responses to manifest. This has clear therapeutic implications for

MeCP2-deficient systems, as it suggests that an increase in

excitatory fluctuations, and not necessarily changes in tonic

excitatory levels, would restore the normal dynamics of the

network and decrease hyper-excitable responses.
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