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Abstract: This paper shows the efficacy of a novel urban categorization framework based on deep
learning, and a novel categorization method customized for cities in the global south. The proposed
categorization method assesses urban space broadly on two dimensions—the states of urbanization
and the architectural form of the units observed. This paper shows how the sixteen sub-categories can
be used by state-of-the-art deep learning modules (fully convolutional network FCN-8, U-Net, and
DeepLabv3+) to categorize formal and informal urban areas in seven urban cities in the developing
world—Dhaka, Nairobi, Jakarta, Guangzhou, Mumbai, Cairo, and Lima. Firstly, an expert visually
annotated and categorized 50 × 50 km Google Earth images of the cities. Each urban space was
divided into four socioeconomic categories: (1) highly informal area; (2) moderately informal area;
(3) moderately formal area, and (4) highly formal area. Then, three models mentioned above were
used to categorize urban spaces. Image encompassing 70% of the urban space was used to train the
models, and the remaining 30% was used for testing and validation of each city. The DeepLabv3+
model can segment the test part with an average accuracy of 90.0% for Dhaka, 91.5% for Nairobi,
94.75% for Jakarta, 82.0% for Guangzhou city, 94.25% for Mumbai, 91.75% for Cairo, and 96.75% for
Lima. These results are the best for the DeepLabv3+ model among all. Thus, DeepLabv3+ shows
an overall high accuracy level for most of the measuring parameters for all cities, making it highly
scalable, readily usable to understand the cities’ current conditions, forecast land use growth, and
other computational modeling tasks. Therefore, the proposed categorization method is also suited
for real-time socioeconomic comparative analysis among cities, making it an essential tool for the
policymakers to plan future sustainable urban spaces.

Keywords: urban; categorization; building; planning; structures; sustainable

1. Introduction

Due to rapid globalization, many people have flown into urban spaces, accelerating
the development of cities. According to UN DESA 2018 [1], more than 50% of the world’s
population lives in urban areas. The growth rate is higher in developing countries in the
global south. In order to keep the urban environment sustainable, policymakers need to
plan based on extensive analysis of the urban environment. Automating categorization
of formal and informal areas of living is vital for city planners and policymakers [2–6].
Categorization of urban building structures offers a number of benefits on health [7],
education [8], and the environment [9]. The sustainable development goals of the United
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Nations emphasize the need for information about the physical environments of cities [10]
as well as traffic conditions [11].

However, traditional tools, coupled with building categorization methods and models,
are not oriented for developing countries where the surrounding environments are crucial
for categorization. Moreover, these categorizations propose small-scale classifications,
which give limited information [12], have poor scalability [13], are expensive due to the
dependence on survey [14], and are also slow to compute in real-time [15]. With the advent
of computational power, advanced image processing, and the availability of high-resolution
satellite data, advanced machine learning, such as deep learning, is showing promise to
solve the scalability problem.

Most recent studies on urban categorization are based on simple structural criteria,
such as the types and conditions of individual buildings [16,17], building density, building
height, and building scale as typical indicators (for example, [18,19]). However, the spatial
structure and pattern of the urban environment are diverse and complex [13]. Specifically,
automatic categorization of urban buildings in developing cities remains challenging due
to various factors, such as building materials, surrounding environment, shabby structures,
roofs made of cheap material, limited road access, high density, and varying building
heights [20]. Unlike developed countries, these cities do not have dedicated residential
areas, industrial areas, and pre-planned marketplaces. Hence, satellite images should
ideally be segmented with certain structures, where the urban buildings are categorized
meaningfully with their surrounding environment.

Manual categorization of a small area is neither economically viable nor scalable for
large metropolitan cities, such as Dhaka, Mumbai, Lima, Jakarta, Guangzhou, Cairo, and
Nairobi. The categorization scheme should facilitate automatic segmentation using state-
of-the-art computational methods to ensure scalability at the lowest cost. Our extensive
search failed to find research conducted on automatic urban categorization dedicated to
developing cities. The traditional processes become costly and time-intensive to cover a
wide range of cities. Moreover, due to the requirement of direct human intervention, we
may not be very objective. To address these limitations, authors in [2] proposed a novel
categorization method that shows promise in being readily usable by specialized deep
learning models. This paper extends the work by applying the proposed categorization
method at a large-scale over seven cities from developing countries. By extensive experi-
ments, this paper shows that employing machine learning can help process larger data and
index sets, ensure scalability, and reduce human-centric bias.

The categorization technique discussed in [2] helps to ascertain between informal and
formal in urban environments. The categorization has advantages: we set the urbanization
process and architectural form as two different axes instead of a single index. Then the
physical environment of the city is divided into 16 categories. Through this classification
method, all kinds of urban environmental forms can be summarized. Through manual
operation, a large number of high-precision urban classification data involve studies where
the scale is large: 50 × 50 km for each of the seven cities. Previous traditional studies were
limited to small-scale classification, poor scalability, and were unable to provide a large
amount of information.

The method of visual recognition based on [2] is used to detect and classify the physical
environments of many cities and draw a map for the ground truth. The categorization
technique includes buildings as well as their surrounding environments. Therefore, the
texture and shape differences among various proposed categories are duly marked in
the processed images. Therefore, this paper aims to extend the idea of the work [2] with
a couple of contributions. We have applied three state of the art models (FCN-8 [21],
U-Net [22], and DeepLabv3+ [12]) from different backbones. The textures and shapes are
learned by corresponding models using the annotated training data set. Then each model
was trained and tested over seven urban cities—Dhaka, Nairobi, Jakarta, Guangzhou,
Mumbai, Cairo, and Lima. The training set encompasses 70% area of each of the cities,
and the test set covers the rest 30%. In particular, in the experiments, we trained the deep
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models to semantically segment the satellite image of each city into four different urban
areas, based on the buildings and their environments. Specifically, we segmented the cities
automatically into (1) highly informal area; (2) moderately informal area; (3) moderately
formal area; and (4) highly formal area. The experimental results suggest that each of the
models can successfully capture the texture and shape differences and can segment the
satellite images, according to the proposed categories, and DeepLabv3+ achieves the best
performance. Hence, this paper provides the following contributions:

1. We show the efficacy of the categorization method proposed in [2], in seven cities
from the developing world.

2. We show that three models from different backbones are successful in socioeconomic
segmentation.

3. We present comparative results for three different models for all of the cities men-
tioned above.

4. We discuss the implication of the categorization method, along with deep learning
techniques on policymaking in developing countries.

The proposed categorization method can be used as the basis of urban geography
and demographic research, on a large scale. It can also be used as an indicator to compare
among cities, after combining with data of topography, area, population density, income,
education, etc., as the basis of research. The proposed categorization method for four
socioeconomic areas helps DeepLabv3+ achieve the best performance among the three
models. DeepLabv3+ obtains 90.0%, 91.5%, 94.75%, 82.0%, 94.25%, 91.75%, and 96.75%
accuracy for Dhaka, Nairobi, Jakarta, Guangzhou, Mumbai, Cairo, and Lima, respectively.

The rest of the paper is organized as follows. In the next section, we discuss the
theoretical background of urban building categorization and deep learning-based automatic
methods. Then we describe our novel categorization model with sufficient examples. In the
fourth and fifth sections, we discuss the deep learning method to semantically categorize
the building categories automatically from satellite images. Then in the sixth section,
we present our results and discuss the impact of the proposed methodology over policy
outcome, followed by the conclusion.

2. Research Background

In this section, we discuss the theoretical definition of the urban environment. We
provide detailed information on how urban environments are different in developing
worlds. Then, we discuss different theoretical research studies and their applications, upon
which we have built our model.

2.1. Urban Environment

Due to global economic, social, and political circumstances, the distinctive characteris-
tics between urban and rural areas are blurring. This makes it very difficult to define urban
and rural areas in a distinguishable way. A number of authors have defined an urban area
on the basis of demography, the concentration of administrative bodies, infrastructure, and
a diverse set of livelihood and income generation activities. Additionally, urban areas have
been characterized by high population density with mixed-income scales when compared
to other areas [23]. Some cities might be delineated by municipal boundaries. However,
many urban areas are usually outlined by the presence of administrative structures, such
as government offices, courts, and a relatively higher concentration of services, such as hos-
pitals and financial institutions (e.g., banks). In an urban setting, the forms of sustenance
and income generation activities are diverse and, unlike rural areas, not bound mainly to
agricultural production and mining raw materials [24]. The “urban environment of the
developing world: urbanization” generally refers to an increasing shift from agrarian to
industrial services and distributive occupations. A significant rural-to-urban demographic
shift taking place throughout the world is fueling this urban growth. One observation, as
a result from rapid urban growth worldwide due to the influx of populations into urban
areas, is that it has created immense pressure on the infrastructure and essential services of
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cities. This phenomenon is more pronounced in the developing world, and it has increased
economic disparity in cities, which is manifested in the proliferation and expansion of
slums in cities.

For example, between 2003 and 2010, the city of Hyderabad in India experienced a
70% increase in slum areas [25]. Unfortunately, the situation is not unique to India or the
global south. UN estimations show that the global slum population is around one billion at
present and may rise to two billion by 2030 (UN-Habitat Report 2016 [26]). Among urban
dwellers, many of them come to the city for jobs and start living in informal areas. Medium–
high-wage job holders build their houses in better environments. However, they do not
maintain the urban regulation and city corporation laws. Their areas might include shabby
structures, as well as brick structures without any formal structures or surroundings. In
this way, a moderately informal area is built. Figure 1 provides an example image of the
urban environment in Dhaka.

Figure 1. The morphological appearance of the urban environment in Dhaka.

The significant challenges for these developing cities include infrastructural services,
basic amenities, environmental goods, environmental degradation, traffic jam and acci-
dents, violence, and socioeconomic insecurity. Generally, these challenges are prevalent
in highly informal and moderately informal areas. Understanding the socioeconomic
conditions of different city–regions can be assisted by identifying different formal and
informal settlements.

2.2. Traditional Machine Learning Techniques for Understanding Satellite Images

There are hundreds of earth observation satellites, providing data at different spectral,
spatial, and temporal resolutions. ERS 1 and 2, Sentinel 1, 2, and 3 satellites launched by
the European Space Agency (ESA), and Landsat 1–8 satellites, maintained now by the US
National Oceanic and Atmospheric Administration (NOAA), have been providing satellite
data (free of cost) for research. Commercial satellites, such as IKONOS, RapidEye, and
WorldView 1–4 also provide much higher spatial (5 m) and temporal resolution satellite
imagery, compared to that of Landsat and Sentinel (tens to hundreds of meters). As
satellite images have visual channels (RGB), researchers apply spatial filters to analyze the
textures and shapes of the satellite images to identify forests, water, buildings, farmlands,
and meadows. In [27], the authors proposed a novel feature-extraction block extract
spatial context of each pixel according to a complete hierarchical multilevel representation
of the scene. Then they classified the features with a support vector machine(SVM).
Cheng et al. [28] discussed traditional features, such as the histogram of ordered gradients
(HOG), scale-invariant feature transform (SIFT), color histograms (CH), and local binary
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patterns (LBP), etc. Researchers use these features to segment the satellite images for
different land covers by exploiting an SVM. Later, Sateesh et al. [29] developed a discrete
wavelet-based image segmentation technique. The paper [30] developed a variational
region-level criterion for supervised and unsupervised texture-based image segmentation.
However, due to the high volume, and heterogeneity of satellite data, deep learning
methods have been preferred over traditional manual or statistical methods to explore
these datasets [31,32]. Deep learning methods show excellent performance in classification,
image segmentation, as well as semantic segmentation.

2.3. Semantic Segmentation for Urban Environment Development

Technically, semantic segmentation involves classifying each pixel in an image from a
predefined set of classes. It involves partitioning images (or video frames) into multiple
segments or objects. Segmentation plays a central role in many applications, including med-
ical image analysis (e.g., tumor boundary extraction and measurement of tissue volumes),
autonomous vehicles (e.g., navigable surface and pedestrian detection), video surveillance,
and augmented reality, to count a few.

Earth observation satellites capture a whole range of data, from radio to visible, in-
frared, multispectral, and hyperspectral imagery. Since texture and shapes can be captured
by deep-learning-based semantic segmentation, remote sensing researchers try to segment-
specific areas based on different categorization tasks using one or more types of these data.
The categorization tasks might range from land use land class (Figure 2) to slum detection,
from tracking urban expansion to tracking forest degradation.

Figure 2. (a) Satellite image; (b) Land use land cover segmented image.

More recently, machine learning-based automated analysis of satellite imagery has
been used to understand human socioeconomic conditions at a local (city, village, or coun-
try level) and global level. Both deep learning methods (e.g., convolutional neural networks
(CNNs)) and shallow learning methods (e.g., support vector machines and random forests)
are extensively used in predicting socioeconomic indicators, using daytime optical satellite
imagery, radar data, and nighttime light (NTL) emissions captured by satellite sensors.
However, to train such models, one needs both large quantities of satellite images, as well
as non-satellite data from different sources, such as census, household and agricultural sur-
veys, administrative data, and other environmental and meteorological data [33]. Machine
learning methods have been used to estimate crop yields [34], land cover and land cover
changes [32], slum detection [35], urban growth predicting and mapping poverty [36–39]
population estimation [7], estimation of GDP [40], etc. Authors in [33] provide a com-
prehensive review of the potential use of earth observation data (both satellite and aerial
imagery) to estimate socioeconomic indicators set by the UN’s sustainable development
goals and the ’proxy’ indicators. Oshri et al. [41] used Afrobarometer [42] survey data
along with satellite images from Sentinel 1 and Landsat 8 to assess infrastructure qual-
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ity in Africa. They propose multi-channel inputs that utilize all available channels from
respective satellites instead of only the RGB bands. Pre-trained ImageNet [43] weights
have been used for the RGB channel, and the novel channels are initialized with Xavier
Initialization [44]. A ResNet [45] based architecture was used with some minor modifica-
tions in their work, which achieves better AUROC results than nightlight-based works [38],
OSM, and other baseline methods. Urban–rural split and country hold-out methods have
been used to observe the model’s generalizing capabilities. The urban atlas [46] dataset,
containing 20 land use classes across 300 European cities, has been used as ground truth,
and is freely available, Google Maps image at zoom level 13, which translates to around
1.20 m/px spatial resolution, as input images to identify patterns in urban environments
by Albert et al. [47]. They contrasted two state-of-the-art networks, VGG-16 [48], and
ResNet [45], and observed that ResNet-50 yields a slightly better result. Pre-training on
ImageNet and DeepSat [49] in different settings was conducted to initialize the weights,
then further fine-tuning was conducted on the prepared dataset. Urban environments
across cities have been observed, since different classes can share similar features, and the
same class can have different features across different sociocultural and economic zones.
While predicting poverty from satellite images as a socioeconomic indicator of city areas,
images from the DigitalGlobe [46] platform and Google Maps have been used as input
imagery, where the spatial resolution used was 50 cm and 2.5 m, respectively [50].

3. Urban Environment Categorization

In this section, first, we briefly discuss the traditional urban environment categoriza-
tion methods and their limitations in applications for developing countries. Then, we
provide a summary of the novel categorization approach proposed in [2], which is suitable
for deep learning applications.

3.1. Traditional Urban Environment Categorization

In the urban environment, different areas have distinct categories [2]. They are com-
posed of different physical appearances, such as green spaces, artificially constructed,
and naturally formed roads; regular, random, complex, dense buildings; tin-shed roofs,
dilapidated structures; and high rise buildings with defined shapes. The study of ur-
ban morphology classification can provide an essential reference for the evolution and
boundary division of historical regional morphology and provide in-depth understanding
and training for practical application fields closely related to urban development, plan-
ning, architecture, urban management, and public policy. Barke et al. [51] pointed out
that understanding urban morphology and its complexity is vital for urban development.
Kärrholm et al. [52], and many other authors, point out the importance of understanding
urban form as a critical element of urban sustainable development urbanization [3,4,53–57].
In the research methods of urban morphology taxonomy, Taubenbóck et al. [14] attempted
to categorize according to historical/geographical methods and the physical density of
buildings. Dovey et al. [15] considered the surrounding environment as well to study the
urban morphology.

The body of studies devoted to analyzing cities in the developing world from the
spatial scale is quite large. Huang et al. [12] used satellite images and cluster analysis
to compare urban morphology. Combining high-resolution satellite data and auxiliary
data sources [13] generates three-dimensional building models to obtain consistent and
comparable urban data sets. However, the above-mentioned categorization methods were
not custom-built to be used for modern machine learning techniques.

Several studies use deep learning better to understand urban areas from satellite
images [41,42,58]. Oshri et al. [41] proposed to evaluate the environmental quality of Africa
using [42] survey data and satellite images. They also use OpenStreetMap to identify the
existence of different infrastructures. Neal et al. [58] used convolution neural networks
(CNNs) to analyze the nighttime brightness of satellite images to estimate the economic
activities in different regions. Albert et al. [47] proposed an in-depth learning method
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to identify patterns in an urban environment. Piaggesi et al. [50] used baseline VGG-16
(CNN model with 16 layers proposed by Visual Geometry Group) and ResNet-50 (Residual
Network with 50 layers, proposed by Microsoft), pre-trained with ImageNet [43], and
adjusted the luminous intensity label to predict the income of each family.

The complexity of the urban environment and the building structure is often closely re-
lated to its surrounding building environment, formation process, and geographical condi-
tions. In urban research, a small area has been classified artificially. H. kamalipour et al. [59]
used Google Earth data to divide the informal and formal areas of the urban environment.
The method is practical and near accurate for small-scale projects. However, these classifi-
cations may not be enough to represent the inherent characteristics of cities in developing
countries, nor can they better observe the changing trend between them. In addition,
although these visual recognition methods are based on remote sensing images and have
high recognition accuracy (in a small range), in many cases, they require a significant
amount of time and necessary expertise.

3.2. Summary of the Urban Environment Categorization Method

Here, we provide the summary of the proposed categorization technique discussed
in [2]. The categorization is based broadly on two dimensions—the state of urbaniza-
tion and the architectural form of urban environment. Cheng et al. [2] categorizes an
urban city into four semantic classes: (1) highly informal area; (2) moderately informal
area; (3) moderately formal area; and (4) highly formal area using satellite images of the
developing world.

It is generally believed that urban structures and buildings are the basic types of
urban morphology. Researchers in [60], point out that the structure and form of traditional
cities develop slowly, and there is no formal planning and design. Marshall and others
also believe that the physical characteristics of streets, plots, and buildings are different.
According to the above concepts, this study divides the urban natural environment into
two indicators: vertical axis and horizontal axis Figure 3. The access network is reflected
in urban planning, and architectural diversity is reflected in architecture. Authors in [2]
divide the buildings into four categories: (1) category “none”; (2) category “limited”; (3)
category “unwritten”; (4) category “coded”.

The indicator of the surrounding environment is also divided into four categories
according to the regularity (natural generation or planned) of the access network inside
and outside the building. The authors define the roads on the inside and outside as natural
as “natural generation” marked as (A). Then, according to the regularity of the access
network, the type of road network is defined as “planned outside + natural generation
inside”, marked with letter (B). The type of road network with natural generation on the
outside and the planned road network on the inside is defined as “natural generation
outside + planned inside”, which is marked with the letter (C). Finally, we define the street
network, which is planned both inside and outside as “planned” and mark it with a letter
(D). Then, the four indicators of “building diversity” (marked with numbers 1, 2, 3, 4 from
the bottom of the vertical axis) and the four indicators of “access network” (marked by the
combination of letters A, B, C, and D on the left side of the horizontal axis). The obtained
matrix is used as a standard criterion for categorizing every urban area with a scale of
400 m × 400 m as shown in Figure 3, where the combination of the two indicators forms
16 types. For Cairo, the 1/D type is not found (see Figure 3). That means public and tiny
buildings are not present at the side planned street mode.

Now, by using the sixteen categories, the authors propose to segment metropolitan
cities into four socioeconomic regions that semantically represent the socioeconomic con-
ditions of those regions. The objective is to leverage the socioeconomic segmentation
task to deep learning methods for large-scale applications. Please refer to the Table 1
for the complete list that defines the four socioeconomic areas, in terms of the sixteen
basic categories.
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Figure 3. Urban Environment Topology for Cairo, this figure is adapted from [2].

Table 1. Selection of colors for urban environment typology for Cairo.

Urban Environment
Topology

Category Color

Red
(1/A, 2/A, 2/B) Highly informal

Yellow
(1/B, 1/C, 1/D,
2/C, 2/D, 3/A)

Moderately informal

Cyan
(3/B, 3/C, 3/D,
4/A, 4/B, 4/C)

Moderately formal

Blue
(4/D) Highly formal
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4. Study Area and Methodology

In this section, we describe the geographic description of the seven cities used for
experiments in this paper. Then we discuss the architectural differences among FCN-8,
U-net, and DeepLabv3++.

4.1. Geographic Details of Seven Cities

In this study, we selected a city from each developing region of the “Global South”
and classified the urban environments of these cities. The seven cities selected by regions
are Nairobi (Sub-Saharan Africa), Mumbai (South Asia), Dhaka (South Asia), Jakarta
(Southeast Asia), Guangzhou (East Asia), Cairo (North Africa), and Lima (Latin America).
The cities were randomly chosen from different continents. The only criteria of the selection
were that the cities had to be in the emerging economies of the global south. We used
Google’s 50 km× 50 km satellite image to draw a four-color map of the urban environment
classification of the seven cities. The uninhabited area is marked with black. Each city has
similarities and distinctive features. We included a short demographic description of the
cities relevant to this research in Appendix A for the readers’ interest.

4.2. Deep Learning Algorithms for Automatic Building Categorization

This section briefly discusses different deep learning-based semantic segmentation
algorithms and their applicability using satellite images. To automate the categorization
method of [2], we examined three state-of-the-art algorithms that are widely used in satellite
image data: FCN-8 [21], U-Net [22], and DeepLabv3+ [12]. We chose these particular
models from three different families. FCN-8 was chosen from the VGG-16 family, where
the encoder part was unchanged, but the decoder’s fully connected layers were replaced.
Instead of upsampling the dense information directly, the output of the encoder (dense
information) was merged with the other two encoder layer outputs and then upsampled.
On the other hand, the decoder of U-Net takes the outputs of all encoder layer outputs and
upsamples sequentially. DeepLabv3+ introduces atrous convolutions.

4.2.1. Fully Convolutional Network (FCN-8)

FCN-based methods [21] have been used for classical segmentation tasks in the past
couple of years. Several works use FCN–8 variants, which have higher precision in
segmenting multisensory remote sensing images by using the features extracted from
multiple spectral bands instead of FCN-16 and FCN-32; remote sensing images con-
tain coarse, large objects, and small essential details. The algorithm uses the VGG-16
(Simonyan and Zisser man et al. [48]) as the backbone and replaces the fully connected
layers with fully convolutional layers. This architecture shown in Figure 4a is the first
deep segmentation model and has been widely used for object segmentation. Due to the
use of many upsampling filters, this model has many parameters to be learned. How-
ever, this produces segmentation with coarse boundary due to loss of information in the
downsampling process that induces unacceptable errors in satellite image segmentation.
These images are patches of a larger image and, thus, will need to be stitched back together
after testing where these errors accumulate. Additionally, overlapping outputs of the
transpose convolution operation can cause undesirable checkerboard-like patterns in the
segmentation map.

4.2.2. U-Net

The U-Net segmentation model is developed by [22], based on the idea of FCN. Its
architecture is similar to VGG-16, but with encoder–decoder architecture. It has divided into
three parts. As shown in Figure 4b, the model skips connections between upsampling and
downsampling paths, in order to provide local and global information during upsampling.
Finally, at output 1 × 1, the convolutional layer provides the segmented output, where the
number of feature maps is similar to the number of desired segments. This architecture
has an improved boundary delineation and fewer parameters to work with. However, as



Sensors 2021, 21, 7469 10 of 22

the decoder cannot use dense information from different layers of encoders, the urban
area segmentation from satellite images suffers from significant errors for some classes as
opposed to doing well in others. This issue is further discussed in Section 6.

Figure 4. Architectures of (a) FCN-8, (b) U-Net, and (c) DeepLabv3+. The left downward flow of each model indicates the
encoder part where the input is the three-channel color image. The right upward flow refers to the decoder part that outputs
the final segmentation. Blue parallelograms indicate convolution operations; horizontal arrows from left to right show the
channel additions from the encoder layers to the decoder layers; 0.5× boxes with the down-arrows refer to the max pool
operations; 2×/4×/8× boxes with the up-arrows indicate the upsampling operation by 2, 4, and 8 factors, respectively.
This figure is modified from [61].

4.2.3. DeepLabv3+

FCN-8 and U-Net are widely used for object segmentation, where objects are captured
from a close distance. Examples of such scenarios are object segmentations for automatic
driving cars, scene segmentation, etc. However, segmenting urban areas requires multi-
scale feature extraction that captures the urban building shapes, sizes, and textures, from
different points of view. Successively, the extracted features and information help better
urban segmentation. DeepLabv3+ [12] uses ImageNet’s pre-trained ResNet-101 with atrous
convolutions as its main feature extractor. In the modified ResNet model, the last ResNet
block uses atrous convolutions with different dilation rates. Moreover, it uses the Atrous
Spatial Pyramid Pooling (ASPP) and bilinear upsampling for the decoder module on top
of the modified ResNet block. The overall architecture has two main modules: encoder
and decoder. The encoder is based on an output stride (ratio of the original image size to
the size of the final encoded features) of 16. In the encoder, the ResNet-101 convolution
layers are used. Moreover, the ASPP is exploited in the encoder to fuse features in different
scales. In the decoder, instead of using bilinear upsampling with a factor of 16, the en-
coded features are first upsampled with a factor of 4 and concatenated with corresponding
low-level features from the encoder module having the same spatial dimensions. Before
concatenating, 1 × 1 convolutions in the decoder are applied on the low-level features to
reduce the number of channels. After concatenation, a few 3 × 3 convolutions are applied,
and the features are upsampled by a factor of 4. This gives the output of the same size as
that of the input image.
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Urban buildings with different shapes and textures define the urban environment.
In order to categorize them effectively, the deep learning models should see the satellite
images from different distances that allow the model to extract useful features. For example,
analyzing the buildings from categories 2B and 3A from a fixed distance might not allow us
to see the differences. However, examining them with different scales would help extract
essential features useful to categorize them correctly. However, FCN-8 and U-Net do not
have the capability to extract features with different scales. DeepLabv3+ model shown in
Figure 4c has some unique modules that would help efficient and correct segmentation
of satellite images. Atrous convolution with different dilation rates enable the model to
extract image features in different scales. Specifically, the ASPP helps the model see satellite
images from a different point of view. Analyzing the satellite images from a different view
is crucial for good segmentation. ASPP helps the DeepLabV3+ model extract features from
different levels, ranging from low-level pixel data to high-level contextual information.
Figure 4 shows the architecture differences between these three algorithms and the efficacy
of DeepLabv3+. Additionally, as the satellite images are captured from the top of the Earth,
DeepLabV3 would show superior performance in segmenting the top view of the urban
buildings and environment [61].

5. Automatic Building-Categorization
5.1. Data Collection, Annotation and Preprocessing

We use the freely available Bing satellite imagery for our building categorization task.
Satellite images of the seven metropolitan areas were downloaded at a zoom level of 17,
which has a spatial resolution of 2.26 meter/pixel. Even though the city administrative
boundaries are not of a perfect rectangular shape, we produce an estimated rectangular
shapefile of the seven cities by using its respective administrative shapefile for the sake of
simplified grid prepossessing. Images are downloaded with geolocation metadata so that
further analysis by georeferencing them can be done later. ArcMap GIS software was used
to superimpose the shapefile of rectangular boundary and crop the region of interest (ROI)
from the downloaded images. Downloaded data is annotated with ArcMap at various map
scales to correctly identify each urban category within the context of a given city. Each city
has a slightly different set of definitive features for urban classification. For example, the
fully informal region from Dhaka is not quite similar to that of Cairo; since Dhaka has some
vegetation between slums and Cairo is mostly a desert area. These customized definitions
were considered during the annotation process. GeoTIFF images were converted to PNG in
the data preprocessing stage, and patches of 513 × 513 were generated from the full-sized
PNG image. This procedure is explained in detail in the following subsection. As for the
annotations, the vector polygon layers are converted to raster images where the class labels
are one-hot encoded to the pixel values as 0, 1, 2, 3, 4; where 0 is unclassified, and 1 to
4 represent classes ranging from fully informal to fully formal, respectively.

5.2. Producing Training Data with 70% Overlap

The convolution layers of the DeepLabv3+ are pre-trained with ImageNet. However,
the Imagenet is the dataset of objects. In order to use the model for satellite image segmen-
tation, we need to fine-tune the model weights by applying a sufficient training set. For
each city, we trained a separate model with 70% of the corresponding city.

We split the input image and the corresponding ground truth into two parts—one part
for the training and the other for the testing. The training part consists of the 70% of each
city image. For example, the 70% portion of the Cairo outside of the middle red rectangle
shown in Figure 5 has been used for training, and the middle 30% area is used for testing.
Figure 6 shows the ground truth image for Cairo. Figure 7 shows the satellite images and
ground truths for the other six cities. The red rectangles define the test area, whereas the
area outside the rectangles is used to train each deep model for the corresponding city.

Before feeding the image into the network, some required pre-processing of the data
was needed. In the first step, both the input image and its target image needed to be in
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a grid of 513 × 513, as it was the required width and height to feed into a segmentation
model. However, this grid was built using a 70% overlap of the previous image. This 70%
overlap grid was made both vertically and horizontally. Overlapping increases the training
data drastically. At the next step, the ground truth was converted into an index image.

Index images are single-channel images where the class value is one-hot encoded to
the corresponding pixels. Again, this is done because it is required to feed into a model.
Afterward, mapping of the input image was done using the ground truth image data. We
projected the uninhabited part on the input image to prevent misclassification. After all the
pre-processing was done, the images were fed into the particular model.

Figure 5. Input Satellite image for Cairo—Source: BING.

Figure 6. Ground truth for building categorization in Cairo. Red: highly informal area (arrival
city); green: moderate informal area; cyan: moderate formal area; blue: formal area; black: uninhab-
ited area.
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Figure 7. Input images and ground truths for other six cities. Red: highly informal area (arrival city); yellow: moderately
informal area; cyan: moderately formal area; blue: highly formal area; black: uninhabited area.
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5.3. Training Procedure
5.3.1. Training

Training was done separately for each of the cities with three different models. When
the training data were ready, we fed the data into each of the three models. Each model
was initialized with pre-trained ImageNet weights to reduce training time by quite a lot. A
total of 7 × 3 = 21 (7 cities with three deep models) experiments were done for this paper.

5.3.2. Hyperparameters

Then, we calculated weights over the total number of classes for balancing the class
weights. We used stochastic gradient descent (SGD) as our optimizer. The dataset had
5 classes, including the unlabeled/unrecognized area. A learning rate of 0.007 was used
over 26 epochs.

5.4. Testing Procedure

For the test data, we used 30% of the total city area. The red rectangles of the
Figures 5 and 7 refer to the test parts for each corresponding city. The same pre-processing
method was done, but during the grid and stitch, no image overlapping was done since it
would only be used for testing.

5.5. Performance Evaluation

After the testing was done, a particular model generated output images. Those output
images were later converted into RGB images for both performance calculation and visual
representation. All images were then stitched to their original dimensions.

We compared the output images with the original ground truth images to calculate
accuracy, F1score. Accuracy is calculated by summing the number of correctly classified
pixel values and dividing by the total number of pixel values. Accuracy helps us to
understand what percentage of the segment is correctly ascertained. The F1 score is
the harmonic mean of recall and precision where recall is measured to ascertain what
percentage of positive pixels are predicted. Precision is the measure that helps to ascertain
what percentage of relevant pixels are predicted. The F1 score allows us to quantify the
performance of the segmentation for imbalanced samples.

6. Experimental Results and Performance Comparison

In this section, we discuss the results of our experiments. First, we show the best
performance from DeepLabv3+ over the test part of Cairo city. We explain the performance
variations with accuracy and the F1-score. Then, we discuss the detailed performance
comparison over seven cities with DeepLabv3+, U-Net, and FCN-8. We conclude this
section by providing the performance summary.

The Figure 8 depicts the performance of the segmentation for Cairo city over the
test area using DeepLabv3+. The left sub-image is the test image that was used as the
input to the trained model. The right-most sub-image is the output from the segmentation
model. The middle one is the ground truth image, where different colors represent different
building categories.

We notice that the model can segment the highly informal area with 93.11% accuracy.
The moderately informal area is a little bit difficult and error-prone compared to other
classes. Various building material usage, irregular shapes and sizes, and no fixed building
codes are the main factors that cause the model to categorize the informal area with a
comparatively lower accuracy and F1-score. For example, this area consists of buildings
with roofs with corrugated tin, concrete, bamboo, or even hardboards. Due to having
very similar surface morphology, the moderately informal and highly informal areas are
misclassified as each other. However, the moderately informal area has been segmented
with reasonably high accuracy: 86.94%. On the other hand, moderately formal areas
can be segmented effectively with 90.03% accuracy, with an F1-score of 0.75. Finally, the
DeepLabv3+ could segment the highly formal area with an accuracy of 97.33% and an F1
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score of 0.41. An important characteristic of the highly formal area that contributed to a
comparatively lower F1 score across the models is the highly formal area being intertwined
with other classes. Mosques, parks, shopping centers, and highly formal housing projects
often sprung up in the middle of a largely informal or moderately informal urban setting.
A very insignificant percentage area—below 10% for Cairo city, Figure 8 in the train-set,
made this issue worse. However, the deep learning model can categorize urban areas with
an average of 91.85%.

Figure 8. Test image, ground truth, and the test output—testing with 30% vertically middle part of Cairo.

For the other six cities, the red rectangles in Figure 7 represent the test areas for
corresponding cities. We selected the test rectangle so that all class representative pixels
are present in the test area. Table 2 lists the detailed performance comparison for the
segmentation on seven cities with all three models (DeepLabv3+, U-Net, and FCN-8).
The table shows that DeepLabv3+ performed better than U-Net, and significantly better
than FCN-8, in terms of accuracy and F1 score in all seven cities for segmenting the four
socioeconomic areas. The only exceptions are: highly informal and moderately informal
areas in Guangzhou—U-Net performs a little bit better than DeepLabv3+ in terms of
accuracy and F1 score. In Nairobi, highly informal and highly formal areas are segmented
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by U-Net with marginally better accuracy compared to DeepLabv3+. However, the F1
scores for U-Net for these areas are significantly lower than those of DeepLabv3+.

Careful observation reveals that each city has a very small portion of the highly
formal area and has been segmented with the highest accuracy, despite having the lower
F1-score. These phenomena are contributed by the couplings between nearby class areas
and the imbalance present throughout the test-set for each city where the highly formal
area is below 3%, even though the percentage area is a bit higher in the train set (up to
10%). For Mumbai, Lima, Jakarta, Guangzhou, and Nairobi, we can observe this issue
clearly if we look at the area percentage in Table 2, as well as Figure 7, where regions
marked in blue represent the highly formal areas. DeepLabv3+ did better than others,
as we can see from its F1 scores, where U-Net and FCN-8 failed miserably (F1 scores
shown in italic) in segmenting highly formal areas. On a moderately skewed satellite
imagery dataset where classes are very similar at different map scales, models such as
FCN-8 yield catastrophic results for less represented classes. On the other hand, Cairo and
Guangzhou have comparatively higher percentage areas in the test-set as highly formal.
These two cities are more dynamic and have seen rapid development in recent years. Cairo
specifically has distinctive shapes in its highly formal structures, similar to that of the
neighboring developed Arab nations. Mostly informal to moderately formal urban settings
were developed on the bank of the river Nile throughout the ages of its very long history.
Highly formal areas were developed more recently on the outskirt of the city in the desert
area. These formal regions are more recognizable through human eyes than the other parts
of the region.

Table 2. Detailed performance of segmentation over six cities.

DeepLabv3+ U-Net FCN-8

City
Socioeconomic

Semantic Region
Area
(%)

Accuracy
(%) F1-Score Accuracy

(%) F1-Score Accuracy
(%) F1-Score

Dhaka

Highly Informal 20.86 86.47 0.66 85.72 0.65 80.52 0.59
Moderately Informal 17.95 83.24 0.56 81.74 0.55 79.11 0.34
Moderately Formal 12.28 94.33 0.77 93.95 0.78 89.01 0.59

Highly Formal 0.95 99.10 0.18 98.98 0.05 98.20 0.11
Highly Informal 7.13 98.10 0.86 97.27 0.77 95.12 0.67

Moderately Informal 8.29 91.16 0.45 88.94 0.36 89.53 0.26
Moderately Formal 16.56 90.25 0.71 89.34 0.69 88.09 0.66Mumbai

Highly Formal 2.08 98.0 0.10 97.75 0.02 97.74 0.01

Lima

Highly Informal 4.81 98.05 0.81 97.32 0.79 96.43 0.56
Moderately Informal 8.51 95.14 0.73 89.42 0.54 89.54 0.49
Moderately Formal 33.20 95.03 0.93 90.48 0.86 89.32 0.85

Highly Formal 0.72 99.01 0.17 99.18 0.01 99.20 0.00
Highly Informal 9.78 95.20 0.73 92.31 0.50 86.52 0.38

Moderately Informal 19.25 91.02 0.79 84.81 0.63 78.69 0.43
Moderately Formal 28.13 94.01 0.89 89.04 0.81 82.59 0.69Jakarta

Highly Formal 0.64 99.05 0.22 99.21 0.03 99.04 0.01

Cairo

Highly Informal 9.21 93.11 0.63 90.89 0.42 89.08 0.40
Moderately Informal 17.35 86.94 0.63 84.07 0.58 83.58 0.54
Moderately Formal 20.35 90.03 0.75 88.79 0.73 87.93 0.70

Highly Formal 2.32 97.33 0.41 96.74 0.24 96.32 0.33
Highly Informal 11.88 90.31 0.32 90.70 0.40 88.80 0.13

Moderately Informal 13.19 71.11 0.36 73.03 0.36 76.30 0.28
Moderately Formal 21.08 77.05 0.43 74.20 0.42 70.29 0.47Guangzhou

Highly Formal 10.82 90.18 0.25 89.40 0.06 89.05 0.05

Nairobi

Highly Informal 3.6 94.04 0.41 96.34 0.16 96.11 0.16
Moderately Informal 13.28 87.12 0.58 85.62 0.59 81.14 0.46
Moderately Formal 32.55 87.08 0.77 86.41 0.77 81.50 0.69

Highly Formal 1.91 98.00 0.19 98.14 0.00 98.12 0.00

Additionally, we can see that in Guangzhou, the accuracy of moderately informal and
moderately formal regions is the lowest by DeepLabv3+, U-Net, and FCN-8. Guangzhou
has many rivers and waterways supporting the dynamic and sprawling urban nature of
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the port city situated on the northwest of Hong Kong. Here, frequently, two sides of a river
have two polar opposite urban settings. It can be seen from the map that many slums in
Guangzhou are mixed in dense and complex terrain where slums are spread over the entire
map and evenly distributed in industries and areas adjacent to industries. The diverse
and sporadic regions are complex and are found difficult for the segmentation model to
learn. Looking deeper into the issue, we observe that the most used roofing material is tin,
and in highly informal areas, they are very rusty, more often than not. These may trick an
insincere observer into believing that there is some gap between the slums; thus, adding
further complexity to our categorization task.

In summary, the average accuracy and average F1 scores across all cities and all classes
for DeepLabv3+ are 91.78% and 0.55. On the other hand, the average accuracy and average
F1 score for U-Net and FCN-8 are 90.35%, 0.46, 88.46%, 0.39, respectively. Hence, it is easy
to notice that DeepLabv3+ performs better for socioeconomic segmentation tasks.

Table 3 compiles the summary of the performance of the models on the corresponding
socioeconomic area across all cities. We calculated the average F1 score and standard
deviations of the F1 scores across all cities for each model and placed them here. It can
be easily observed that DeepLabv3+ has the best F1 scores for four areas. Furthermore,
FCN-8 has the least F1 scores. The results suggest that moderately formal areas seem to be
segmented more accurately than the other classes with all three models. The second-best
performance was achieved for highly informal areas. Similar performance were observed
for the moderately informal area. As discussed in the data imbalance issue for the highly
formal area in earlier paragraphs, all three models achieve the least average F1 scores to
segment this area. Large standard deviations of F1 scores indicate that the different kinds
of urban environments and building materials cause the deviation of model performances
across different cities. For example, different building materials, cultures, traditions, and
geographic locations make the highly informal urban area versatile while analyzed from a
satellite image. The observations are supported by similar standard deviations (0.20, 0.23,
and 0.21) for the highly informal areas across the three models: DeepLabv3+, U-Net, and
FCN-8, respectively. This means the models can capture the diversities across cities equally.
Similar kinds of patterns are observed for other areas too.

Table 3. Performance summary for DeepLabv3+, U-Net, and FCN-8.

DeepLabv3+
Average F1

DeepLabv3+
Stdev (F1)

U-Net
Average F1

U-Net
Stdev (F1)

FCN-8
Average F1

FCN-8
Stdev (F1)

Highly Informal 0.63 0.20 0.53 0.23 0.41 0.21

Moderately Informal 0.59 0.15 0.52 0.11 0.40 0.11

Moderately Formal 0.75 0.16 0.72 0.14 0.66 0.12

Highly Formal 0.30 0.23 0.16 0.28 0.14 0.23

7. Policy Implication and Conclusions

This research has demonstrated how a novel categorization method for urban clas-
sification can be automated using a deep learning model. The framework proposed was
compared among seven different cities of the global south. Satellite data have become a
popular means of policy analysis due to the advent of computational power and image
processing techniques using deep learning. Our proposed method is proven to be accurate,
readily usable, and scalable, especially for complex urban areas of the developing world.
Compared with other globally available statistics, the framework is physically comparable
and can be conducted in greater frequency, enabling the capacity to monitor the urban
environment at run time.

This study expands our understanding of the morphological characteristics of various
urban environments around the world.

We used a novel categorization method proposed in [2], which is readily applicable
for deep learning mechanisms for urban data classification. Based on the definitions of
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formal and informal areas in the developing world’s urban setting provided by the authors,
we categorized urban satellite images of seven different cities of the developing world. We
divided the urban environment into 16 categories through the two axes of architectural
form and the urbanization process, and mapped an extensive range (50 × 50 km) of urban
environments based on satellite images and visual recognition methods. The carefully
picked (70%) image data for each city was used for training and the rest for test purposes.

DeepLabv3+ segments the four socioeconomic areas with accuracies of 90.0% for
Dhaka, 91.5% for Nairobi, 94.75% for Jakarta, 82.0% for Guangzhou city, 94.25% for Mumbai,
91.75% for Cairo, and 96.75% for Lima. However, the performance varies across different
cities due to architectural and texture differences among them. In Cairo, both the formal
and informal areas include brick buildings. On the other hand, in Nairobi, most of the
building materials in the informal areas are made of iron sheets and hardboards with tin
roofs on top, whereas the formal area has concrete roofs.

Mode, quantity, and form as the basis of urban geography and urban poverty research:
this categorization method allows us to match spatial knowledge with urban location
information of possible locations, combine topography, area, population density, income,
and education data, and adopt a more systematic and consistent method to locate the
urban population globally. It can even complete a morphological catalog of the global
urban environment.
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Appendix A

Appendix A.1. Dhaka

The urban population of Bangladesh has increased from 7.6% in 1970 to 37.4% in
2019. The increasing urban–rural migration in Dhaka makes urban governance and proper
resource allocation more difficult. Our 50 × 50 km map includes Dhaka city and its
surrounding areas, such as Tongi, Keraniganj, Zazira, Matuail, and Rupganj. The informal
settlements in Dhaka city are mainly distributed around the basin of the Buriganga River
and the Shitalakshya River. The main building materials are sheet iron, wood, brick, paper,
etc. Formal areas are distributed near the airport.

Appendix A.2. Cairo

The average population density of the Greater Cairo metropolitan area is 6667 per
square kilometer. It covers an area of about 17, 267.6 square kilometers. Greater Cairo is
divided into Cairo, New Cairo, Giza, Shubrā al-Khaymah, the 6 October (city), Helwan,
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and El-Obour As a result, our 50 × 50 km map includes the above areas and some suburbs.
As desert areas surround Cairo, high-density residential areas are distributed in the Nile
River Basin. Informal areas are mainly distributed on both sides of the Nile River Basin, as
well as the farmland around the north, west, and south. The formal area is located in the
core area of Cairo’s new town and Giza. The buildings in Cairo’s informal areas are mainly
made of bricks.

Appendix A.3. Nairobi

The 50 × 50 km map, centered on Nairobi, Kenya, contains surrounding cities, such as
RuiRu, Kiambu, Ruaka, Ndenderu, Nyathuna, Gitaru, Kikuyu, Muguga, Ngong, Kiserian,
Ongata Rongai, Tuala, Mlolongo, Pridelands, Ngelani city, and Githunguri. The population
of this area is about 4, 897, 073. Due to rapid population growth and urban poverty, most
urban settlements are informal. Unofficial areas in Nairobi are mainly distributed along the
Nairobi River, and Gong River in the city center, near factories along the railway; several
large unofficial areas are scattered in some green spaces and undeveloped areas. It can be
seen that in the vicinity of the large development zone in the southwest, informal areas
have solidified. There are few informal areas on the outskirts of Nairobi. Most of the
building materials in these informal areas are made of iron sheets and formwork. At the
same time, there are official areas in the center of Nairobi.

Appendix A.4. Lima

Lima is the capital and the largest city of Peru. The main urban area is located in the
basin of the Cheyne, Rímac, and Luen rivers, which extend from the central coastal plain
to the Pacific Ocean. With the complex geographical features of oceans, mountains, and
deserts, the current capital Lima includes the central area with formal structure and the
"cone", the peripheral area with the informal area. Our 50 × 50 km maps cover the Lima
District, San Martin de Porres, Los Olivos, Ventanilla, Comas, Puente Piedra, Carabayllo,
San Juan de Lurigancho, Ate, La Molina, Santiago de Surco, Chorrillos, Villa El Salvador,
and Villa Maria Del Triunfo. Moreover, 72% of households in Lima live in the expansion of
informal areas, without adequate housing and proper sanitation. Most of these informal
areas are located in green and undeveloped areas. These informal areas are close to the
slope and extend northward and eastward from the city center. They radiate through the
whole city and are distributed in three cones. Most of the houses in these informal areas
are made of bricks and iron sheets.

Appendix A.5. Jakarta

Jakarta is on the coast of Java. It has a population of more than 30 million and a total
area of 4384 square kilometers. Rapid economic growth leads to large-scale urbanization.
The population growth of the Jakarta metropolis is the main reason for the rise of informal
settlements. Our 50 × 50 km map mainly contains five major cities of Jakarta Metropolis:
central Jakarta (Jakarta Pusat), Western Jakarta (Jakarta Bharat), southern Jakarta (Jakarta
Selatan), Eastern Jakarta (Jakarta Timur), and Northern Jakarta (Jakarta Utara). In Jakarta,
people often see informal areas spread around the old city; informal areas are concentrated
in industrial areas and industrial areas near the northern coast. These informal settlements
are located in the northern part of Jakarta, near the Ciliwung Estuary, in the areas of Pasar
Baru, Jakarta, and Mangga Dua. The most common building materials are wood, bamboo,
cardboard, and plastic.

Appendix A.6. Mumbai

Mumbai is the capital of Maharashtra. It covers an area of 6355 square kilometers and
has a population of more than 26 million. Our 50 × 50 km map includes Fort, Mumbai,
Bhandup West, Andheri West, Thane, Gorai 2, and Mira-Bhayandar. The city center of
Mumbai is located near the top of the peninsula. Many dense informal settlements in
Mumbai are mainly distributed along the traffic lines and in vulnerable areas—for example,
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near rivers, natural parks, wetlands, green space, and undeveloped land. The building
materials of these informal settlements are generally iron plates and wood. In addition,
the official areas of Mumbai are distributed in the urban centers of Colaba, Fort, Dadar,
Andheri East, and others.

Appendix A.7. Guangzhou

Guangzhou covers an area of about 7434 km2. In the past 20 years, large-scale popula-
tion migration has taken place in the urban area of Guangzhou. The resident population
increased from 5.9 million (1990) to 15.3 million (2019). The increase in population leads to
the expansion of urban areas. Our 50 km × 50 km map includes Guangzhou and Foshan. It
can be seen from the map that many informal areas in Guangzhou are mixed in dense and
complex terrain. In Guangzhou, informal areas are all over the map, evenly distributed in
the industrial and adjacent areas. Moreover, there are many informal areas in the south of
the city center, large development zones, and the north of the city center. Slums can also be
found in the northern suburbs of cities and in rural areas. The building materials of these
informal settlements are mainly brick and concrete.
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