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Ulcerative colitis (UC) is a complex inflammatory bowel disease (IBD) associated with mitochondrial function. Atractylenolide III
(AT III) is a natural product with anti-inflammatory effects. The aim of this work is to investigate the protective effect of AT III on
UC and its underlying mechanisms. Herein, dextran sulfate sodium- (DSS-) induced mice and lipopolysaccharide- (LPS-)
stimulated intestinal epithelial cells (IEC-6) were employed to mimic UC pathologies in vivo and in vitro. The results showed
that in DSS-induced mice, AT III significantly reversed the body weight loss, colon length reduction, disease activity index
(DAI) increase, and histological damage. The production of proinflammatory factors and reduction of antioxidants in colitis
were suppressed by AT III. In addition, we demonstrated that AT III attenuated the intestinal epithelial barrier destruction and
mitochondrial dysfunction induced by DSS, which was similar to the in vitro results in LPS-treated IEC-6 cells. The protein
levels of p-AMPK, SIRT1, and PGC-1α along with acetylated PGC-1α were also upregulated by AT III in vivo and in vitro. In
conclusion, these findings support that AT III may protect against mitochondrial dysfunction by the activation of the AMPK/
SIRT1/PGC-1α signaling pathway during UC development.

1. Introduction

Ulcerative colitis (UC) is a chronic relapsing inflammatory
bowel disease (IBD) caused by multiple factors, such as envi-
ronment, gene, and immunoregulator [1, 2]. It is character-
ized that epithelial damage, neutrophil infiltration, microbial
translocation, and inflammatory condition are important
features of UC [3]. However, the pathogenesis of UC still
needs to be further explored.

It is demonstrated that mitochondrial changes are criti-
cal hubs of cellular physiology during UC development [4].
For example, mitochondrial ultrastructural disruption and
replication reduction are revealed in the lesions of UC [5,
6]. Mitochondrial electron transport chain complex activi-
ties are also altered in UC patients or mouse model [7, 8].
In addition, accumulating evidence suggests that epithelial
barrier dysfunction might be attributed to mitochondrial
abnormalities in colitis [9]. Ho et al. demonstrate that loss
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of MDR1 results in mitochondrial impairment along with
increased mROS production driving epithelial barrier dys-
function in colitis [10]. It is well known that proliferator-
activated receptor-γ coactivator 1-α (PGC-1α) is a key regu-
lator of mitochondrial biogenesis and function [11].
Decreased PGC-1α in the intestinal epithelium of UC caused
significant mitochondrial impairment, epithelial barrier
damage, and inflammation [12]. Thus, it is necessary to
illustrate the role of mitochondrial function in colitis
development.

Atractylenolide III (AT III) is one of the main bioactive
compounds from the root extracts of Atractylodes macroce-
phala Koidz, which has anti-inflammatory, neuroprotective,
and gastroprotective properties [13–15]. Several studies
show that AT III suppresses the production of TNF-α, iNOS,
and IL-6 [16, 17]. Song et al. demonstrate that AT III main-
tains energy metabolism of skeletal muscle cells to protect
against obesity and T2DM [18]. In addition, AT III is also
reported to inhibit microglial mitochondrial fission in ische-
mic injury [19]. However, whether AT III protects against
UC progression is unclear.

Dextran sodium sulfate- (DSS-) induced mouse is con-
sidered an ideal model due to its similarity to human UC
in terms of physiology, anatomy, and immune system [20].
Lipopolysaccharide (LPS) is a known inducer of intestinal
epithelial barrier dysfunction [21, 22]. Therefore, this pres-
ent study was designed to explore the potential effects of
AT III on experimental colitis and underlying mechanisms
using DSS-induced mice in vivo and LPS-stimulated IEC-6
cells in vitro.

2. Materials and Methods

2.1. Animals. All animals were cared in compliance with the
Guide for the Care and Use of Laboratory Animals. Ethical

approval was obtained from the Animal Experimental Ethics
Committee of the First Affiliated Hospital, Heilongjiang
University of Chinese Medicine.

Eight-week-old C57BL/6J male mice (20-23 g) were pur-
chased from Beijing HFK Bioscience Co., Ltd. (Beijing,
China) and maintained in standard laboratory conditions
with a 12 h light/dark cycle at 22 ± 1°C with 45-55% humid-
ity. All mice had free access to obtain standard murine chow
diet and sterile water. At the initiation of experiments, five
mice in each cage were housed and adaptively fed for a week.

2.2. Induction of the UC Animal Model.Mice were randomly
separated into five groups: control group, DSS group,
DSS+SASP group, DSS+AT III (L) group, and DSS+AT III
(H) group. In brief, mice received 3% DSS (160110, MP Bio-
chemicals, Santa Ana, CA, USA) in drinking water for 7 con-
secutive days to establish UC models. For drug
administration, DSS mice were injected with 5mg/kg or
10mg/kg AT III (A2987, Sigma-Aldrich, St. Louis, MO,
USA) through the tail vein once a day for 7 days. Further-
more, mice in the DSS+SASP group were administrated with
200mg/kg/day sulfasalazine (SASP; S129986, Aladdin,
Shanghai, China) orally for 7 consecutive days. SASP was
used as a positive control drug. Control mice received the
same amount of water without DSS.

During the experiments, the bedding materials of all
cages were changed simultaneously to minimize the effect
of environmental factors. All animals were weighed and
monitored for health signs daily. Also, stool consistency
and rectal bleeding were recorded to evaluate the disease
activity index (DAI) scores as described previously [23].
Finally, mice (n = 12 per group) were sacrificed by using
150mg/kg pentobarbital sodium intraperitoneally, and
colons were harvested for further investigations.

Table 1: Primer sequences of targeted genes.

Name Sequences Product length (bp)

MUS TNF-α F CAGGCGGTGCCTATGTCTCA
182

MUS TNF-α R GCTCCTCCACTTGGTGGTTT

MUS IL-6 F ATGGCAATTCTGATTGTATG
212

MUS IL-6 R GACTCTGGCTTTGTCTTTCT

MUS COX-2 F AAAACCTCGTCCAGATGCTA
100

MUS COX-2R TTGAGGAGAACAGATGGGAT

MUS iNOS F
MUS iNOS R

TTGGAGCGAGTTGTGGATTG
GTGAGGGCTTGGCTGAGTGA

125

MUS β-actin F CTGTGCCCATCTACGAGGGCTAT
155

MUS β-actin R TTTGATGTCACGCACGATTTCC

MUS mtDNA F
MUS mtDNA R

GCCCATGACCAACATAACTG
CCTTGACGGCTATGTTGATG

81

MUS β-globin F AGGCAGAGGCAGGCAGAT
105

MUS β-globin R GGCGGGAGGTTTGAGACA

RAT mtDNA F
RAT mtDNA R

ACACCAAGGTTAATGTAGC
TTGAATCCATCTAAGCATT

62

RAT β-globin F CAGTACTTTAAGTTGGAAACG
81

RAT β-globin R ATCAACATAATTGCAGAGC
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2.3. Hematoxylin-Eosin (H&E) Staining. Colons from mice
were fixed in 4% paraformaldehyde, embedded in paraffin,
and then cut into 5μm thick sections. The sections were
stained with hematoxylin (H8070, Solarbio, Beijing, China)
for 5min and eosin (A600190, Sangon, Shanghai, China)
for 3min. Images were observed under a microscope
(BX53, Olympus, Tokyo, Japan) at 100x magnification. The
histological scores were assessed blindly to evaluate the level
of colitis as described by Banerjee et al. [24].

2.4. Immunohistochemistry. An immunohistochemistry
assay was carried out with paraffin sections as mentioned
above. The deparaffinized sections were rehydrated in etha-
nol and heated in citrate buffer for 10min for antigen
retrieval. After blocking in goat serum (SL038, Solarbio)
for 15min at room temperature, the sections were probed
with the primary antibody against myeloperoxidase (MPO;
1 : 50, A1374, ABclonal, Wuhan, China) at 4°C overnight,

followed by the secondary antibody (1 : 500, #31460, Thermo
Fisher, Pittsburgh, PA, USA) incubation for 60min at 37°C.
Slices were cultured in DAB reagent and counterstained with
hematoxylin. Finally, tissue sections were viewed on a
microscope at 400x magnification.

2.5. Determination of MDA and GSH Content and SOD
Activity. Proteins from homogenized colonic tissues were
quantified using a BCA protein assay kit (P0009, Beyotime,
Shanghai, China) and prepared to determine the concentra-
tion of malondialdehyde (MDA; A003-1, Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) and glutathione
(GSH; A006-2, Nanjing Jiancheng Bioengineering Institute),
as well as the activity of superoxide dismutase (SOD; A001-
1, Nanjing Jiancheng Bioengineering Institute).

2.6. Cell Culture and Treatment. Rat intestinal epithelial cell
line IEC-6 cells (Zhong Qiao Xin Zhou Biotechnology Co.,
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Figure 1: AT III protects against the symptoms of DSS-induced UC. (a) DAI scores. (b) Body weight. (c, d) Colon length. Scale bar: 1 cm.
$p < 0:05, compared to control; &p < 0:05, compared to DSS.

3Mediators of Inflammation



Control DSS DSS+SASP DSS+AT III (L) DSS+AT III (H)

200μm

(a)

15

10

5

0

Contro
l

DSS

DSS+
SA

SP

DSS+
AT III

 (L
)

DSS+
AT III

 (H
)

H
ist

ol
og

ic
al

 sc
or

es

$

&
&

(b)

Control DSS DSS+SASP DSS+AT III (L) DSS+AT III (H)

50μm

(c)

Contro
l

DSS

DSS+
SA

SP

DSS+
AT III

 (L
)

DSS+
AT III

 (H
)

8

6

4

2

0

TN
F-
𝛼

 m
RN

A
 (o

f c
on

tr
ol

) $

& &

&

(d)

8

6

4

2

0

Contro
l

DSS

DSS+
SA

SP

DSS+
AT III

 (L
)

DSS+
AT III

 (H
)

IL
-6

 m
RN

A
 (o

f c
on

tr
ol

)

$

&

&

&

(e)

Figure 2: Continued.
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Figure 2: AT III ameliorates DSS-induced inflammation and oxidative stress. (a, b) H&E staining of colon tissues and quantification of
histological scores. Scale bar: 200 μm. (c) Immunohistochemical detection of MPO in colons. Scale bar: 50μm. (d–g) qPCR results of
TNF-α, IL-6, COX-2, and iNOS mRNA in colons. (h–j) ELISA measurements of MDA and GSH content, as well as SOD activity.
$p < 0:05, compared to control; &p < 0:05, compared to DSS.
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Figure 3: AT III inhibits DSS-induced intestinal barrier impairment. (a, b) Western blots for occludin and ZO-1 proteins and quantification
results. (c, d) Representative immunofluorescent images for occludin and quantification results. (e, f) Representative immunofluorescent
images for ZO-1 and quantification results. Scale bar: 50μm.
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Figure 4: Continued.
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Ltd., Shanghai, China) were cultured in Dulbecco’s modified
Eagle medium (DMEM; SH30027, HyClone, Logan, UT,
USA) containing 10μg/ml insulin and 10% fetal bovine
serum (FBS; 04-011-1A, BI, Kibbutz Beit-Haemek, Israel)
in an incubator with 5% CO2 at 37

°C. Cells were treated with
50μg/ml LPS (L2630, Sigma-Aldrich) for 12 h to mimic the
intestinal epithelial cell damage in UC. In addition, IEC-6
cells were treated with AT III (80μM) alone for 24 h or AT
III (40 or 80μM) for 12 h prior to LPS treatment.

2.7. Intestinal Permeability Assay. For the in vitro permeabil-
ity assay, cells were seeded in the upper chamber at the den-
sity of 5 × 105 per well. After treatment, IEC-6 cell
monolayers were cultured in 1mg/ml FITC-dextran 20
(FD20, TdB Labs, Uppsala, Sweden). The solution (100μl)
was collected from the basal chamber at 60, 120, 180, or
240min, respectively, and the fluorescent intensity was
measured.

2.8. JC-1 Assay. The mitochondrial membrane potential
(MMP) of IEC-6 cells was determined using the JC-1 (5,5′
,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbo-
cyanine iodide) assay. In brief, IEC-6 cells were incubated
with 0.5ml JC-1 staining working solution (C2006, Beyo-
time) at 37°C for 20min. After washing in JC-1 buffer
(1×), cells were collected to measure MMP using a flow cyt-
ometer (NoyoCyte, Aceabio, San Diego, CA, USA).

2.9. Determination of Complex I and Complex IV Activity.
The colon tissues or IEC-6 cells were used to assess the activ-
ities of complex I and complex IV. Protein samples were
extracted for quantification and then prepared to evaluate
the activity of mitochondrial electron transport enzymes
using the complex I activity assay kit (BC0510, Solarbio)
and complex IV activity assay kit (BC0940, Solarbio).

2.10. Immunofluorescence. For the immunofluorescence
assay, tissue sections were prepared as mentioned above,

and cell slides were blocked in goat serum. Subsequently,
colon sections or cell slides were incubated with primary
antibodies against occludin (1 : 100; A2601, ABclonal), ZO-
1 (1 : 100; AF5145, Affinity, Changzhou, China), or Tom20
(1 : 50; A18047, ABclonal) at 4°C overnight. Then, an
FITC-labeled goat anti-rabbit IgG antibody (1 : 200; A0562,
Beyotime) or Cy3-labeled goat anti-rabbit IgG antibody
(1 : 200; A0516, Beyotime) was used to label tissue sections
or cell slides at room temperature. After staining with DAPI
(D106471, Aladdin), tissue sections or cell slides were
observed using the microscope.

2.11. Quantitative Real-Time PCR. Total RNAs in cells or
colonic tissues were isolated using the RNA simple total
RNA kit (RP1201, BioTeke, Beijing, China) and quantified
with Nano 2000 (Thermo Fisher). Then, the Super M-
MLV Reverse Transcriptase (2641A, Takara, Beijing, China)
was prepared to transcribe RNAs reversely into cDNAs. The
quantitative real-time PCR (qPCR) analysis was carried out
on an Exicycler™ 96 instrument (BIONEER, Daejeon,
Korea) using the SYBR Green reagent (EP1602, BioTeke).
Relative expression of mRNA was calculated using the
2−ΔΔCT method and measured by the ratio of mRNA to β-
actin. Primer sequences are listed in Table 1.

2.12. mtDNA quantification. Mitochondrial DNA (mtDNA)
from colon tissues or IEC-6 cells was extracted with a mito-
chondrial DNA isolation kit (K280-50, BioVision, Milpitas,
CA, USA). The specific primers are listed in Table 1. Relative
quantification of mtDNA was measured by the ratio of
mtDNA to β-globin using qPCR analysis.

2.13. Western Blot. Whole cell lysates were extracted using
the RIPA lysate (P0013B, Beyotime) and quantified with a
BCA protein assay kit. Equal amounts of protein samples
were separated by SDS-PAGE and transferred onto the
PVDF membrane. After blocking in 5% BSA, membranes
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Figure 4: AT III attenuates DSS-induced mitochondrial dysfunction via AMPK/SIRT1-mediated deacetylation of PGC-1α. (a) The levels of
mtDNA were determined using qPCR. (b, c) The activities of complex I and complex IV were measured using commercial kits. (d, e)
Representative images of Tom20 expression using immunofluorescent staining and quantification results. Scale bar: 50 μm. (f, g) The
expression levels of PGC-1α, NRF-1, NRF-2, and Tfam were examined and quantified by Western blot. (h, i) The expression levels of p-
AMPK, AMPK, and SIRT1 were measured and quantified by Western blot. (j, k) The acetylated levels of PGC-1α and quantification
results were measured. $p < 0:05, compared to control; &p < 0:05, compared to DSS.
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Figure 5: Continued.
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were incubated with primary antibodies overnight at 4°C.
Subsequently, immunoblots were incubated with secondary
antibodies for 40min at 37°C and visualized using Western
ECL Substrate (E003, 7 Sea Biotech, Shanghai, China).

All antibodies were as follows: Occludin (1 : 1000; A2601,
ABclonal), ZO-1 (1 : 1000; A0659, ABclonal), PGC-1α
(1 : 1000; A17089, ABclonal), NRF-1 (1 : 1000; A5547,
ABclonal), NRF-2 (1 : 1000; A0674, ABclonal), Tfam
(1 : 1000; A13552, ABclonal), AMPK (1 : 1000; AF6423,
Affinity), p-AMPK (1 : 1000; AF3423, Affinity), SIRT1
(1 : 1000; A11267, ABclonal), β-actin (1 : 2000; 60008-1-Ig,
Proteintech, Wuhan, China), goat anti-mouse IgG antibody
(1 : 10000; SA00001-1, Proteintech), and goat anti-rabbit
IgG antibody (1 : 10000; SA00001-2, Proteintech).

2.14. Immunoprecipitation Assay. The extracted proteins
were incubated with 1μg PGC-1α antibody (sc-518025,
Santa Cruz, USA) overnight at 4°C and then incubated with
Protein A Agarose beads at 4°C for 2 h. After that, the immu-

noprecipitates were collected and subjected to SDS-PAGE
for further Western blot analysis with specific antibodies:
acetyl lysine antibody (1 : 1000; DF7729, Affinity) and
PGC-1α antibody (1 : 1000; A17089, ABclonal).

2.15. Statistical Analysis. Data were expressed as mean ±
standard deviation (SD) and analyzed by using GraphPad
Prism 8.0. One-way or two-way repeated analysis of variance
(ANOVA) followed by Bonferroni’s multiple comparison
test was used to assess the statistical significance among mul-
tiple groups. The difference among the groups for the histo-
logical score was determined using the Kruskal-Wallis test
following Dunn’s multiple comparison test. p < 0:05 was
considered statistically significant.

3. Results

3.1. AT III Protects against DSS-Induced UC in Mice. DSS-
induced mice were established to explore the effect of AT
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Figure 5: AT III abrogates LPS-induced epithelial barrier impairment in IEC-6 cells. (a) Paracellular permeability was measured using
FITC-dextran. (b, c) Western blots for occludin and ZO-1 proteins and quantification results. (d, e) Representative images of occludin
were determined and quantified by immunofluorescence. (f, g) Representative images of ZO-1 were measured and quantified by
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Figure 6: AT III attenuates LPS-induced mitochondrial dysfunction in IEC-6 cells via AMPK/SIRT1-mediated deacetylation of PGC-1α. (a)
The levels of mtDNA were examined by qPCR. (b) The MMP changes were measured and quantified by the flow cytometry assay using JC-1
probes. (c, d) The complex I and complex IV activities were measured. (e, f) The protein expression levels of PGC-1α, NRF-1, NRF-2, and
Tfam were detected and quantified by Western blot. (g, h) The protein expression levels of p-AMPK, AMPK, and SIRT1 were examined and
quantified by Western blot. (i, j) The acetylated levels of PGC-1α and quantification results were determined. $p < 0:05, compared to control;
&p < 0:05, compared to LPS.
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III on UC. As shown in Figure 1(a), mice challenged with
DSS exhibited significant increase in DAI scores from the
3rd day, which was recovered by AT III or SASP treatment.
Administration of AT III or SASP also reversed the reduc-
tion of body weight and colon length caused by DSS
(Figures 1(b)–1(d)). The mitigated rectal bleeding was
observed in UC mice treated with AT III or SASP from the
macroscopical images of colons (Figure 1(c)). These results
indicate the beneficial effect of AT III on UC progression.

3.2. AT III Ameliorates DSS-Induced Inflammation and
Oxidative Stress. Inflammation and oxidative stress are
major pathological changes in UC. Histological results dem-
onstrated that AT III or SASP treatment significantly allevi-
ated the crypt damage, inflammatory cell infiltration, and
goblet cell loss in colons of DSS-treated mice (Figures 2(a)
and 2(b)). The MPO levels in colon tissues of UC mice were
also reduced by AT III or SASP, which are shown in
Figure 2(c). In addition, we noticed that the AT III or SASP
treatment significantly inhibited the upregulation of proin-
flammatory factors in colons of UC mice, including TNF-
α, IL-6, COX-2, and iNOS (Figures 2(d)–2(g)). The increase
in MDA levels, reduction of GSH concentration, and inacti-
vation of SOD activity in colons of DSS-treated mice were
also significantly reversed by AT III or SASP
(Figures 2(h)–2(j)). Thus, the data suggest that AT III might
attenuate the inflammation and oxidative stress in UC
development.

3.3. AT III Inhibits DSS-Induced Intestinal Barrier
Impairment. Considering that epithelial barrier damage is
an essential event during UC development, we focused on
investigating the effects of AT III on the intestinal epithe-

lium. Western blot results showed that the decreased protein
levels of occludin and ZO-1 in colons of UC mice were
reversed by AT III or SASP (Figures 3(a) and 3(b)). Similar
changes for occludin and ZO-1 in colons were also demon-
strated by the immunofluorescence staining assay
(Figures 3(c)–3(f)). It indicates the protective effect of AT
III on intestinal barrier destruction in UC.

3.4. AT III Attenuates DSS-Induced Mitochondrial
Dysfunction via AMPK/SIRT1-Mediated Deacetylation of
PGC-1α. Mitochondrial dysfunction is a critical contributor
to inflammation, oxidative stress, and barrier destruction.
Thus, the effect of AT III on mitochondrial dysfunction in
UC is focused in this study. The results showed that AT III
treatment significantly upregulated the number of mtDNA
copies and the activities of complex I and complex IV in
colons of UC mice (Figures 4(a)–4(c)). The mitochondrial
outer membrane protein Tom20 was also increased by AT
III (Figures 4(d) and 4(e)). In addition, we observed that
AT III significantly reversed the decreased expressions of
mitochondrial-related proteins in colons of UC mice,
including PGC-1α, NRF-1, NRF-2, and Tfam (Figures 4(f)
and 4(g)).

The AMPK/SIRT1 signaling pathway is found to be the
upstream of PGC-1α, and SIRT1 activates PGC-1α through
NAD+-dependent deacetylation. However, whether the
AMPK/SIRT1 signaling pathway mediates the effect of AT
III on mitochondrial function is unclear. We demonstrated
that the reduction in p-AMPK and SIRT1 protein levels in
colons of DSS-treated mice was reversed by AT III
(Figures 4(h) and 4(i)). In addition, AT III inhibited DSS-
induced acetylation of PGC-1α in colons (Figures 4(j) and
4(k)). These results indicate that AT III attenuates
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Figure 7: The mechanism of AT III in the amelioration of UC.
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mitochondrial dysfunction by activating AMPK/SIRT1-
mediated deacetylation of PGC-1α to protect against UC.

3.5. AT III Abrogates LPS-Induced Intestinal Barrier
Impairment in IEC-6 Cells. To further explore the effect of
AT III on epithelial barrier function, LPS-treated IEC-6 cells
were employed as an in vitro model. As shown in
Figure 5(a), AT III effectively recovered the high cell perme-
ability in LPS-stimulated IEC-6 cells. The levels of occludin
and ZO-1 proteins in LPS-treated cells were increased by
AT III treatment, as evidenced by both Western blot analysis
(Figures 5(b) and 5(c)) and immunofluorescence staining
results (Figures 5(d)–5(g)). These in vitro experiments con-
firm that AT III mitigates intestinal epithelial barrier damage
induced by LPS.

3.6. AT III Attenuates LPS-Induced Mitochondrial
Dysfunction in IEC-6 Cells via AMPK/SIRT1-Mediated
Deacetylation of PGC-1α. To assess the underlying mecha-
nisms of AT III in the regulation of epithelial barrier func-
tion, mitochondrial function was further investigated
in vitro. Similar to the alterations in vivo, decreased
mtDNA copy number in LPS-treated cells was reversed
by AT III (Figure 6(a)). The JC-1 staining assay showed
that AT III reversed LPS-induced decrease in MMP in
IEC-6 cells (Figure 6(b)). The reduction of electron trans-
port chain complex activities and decreased expression of
mitochondrial proteins in LPS-treated IEC-6 cells were
also upregulated by AT III (Figures 6(c)–6(f)). In addition,
we suggested that AT III significantly activated p-AMPK
and SIRT1 protein levels and deacetylated PGC-1α in
LPS-treated cells (Figures 6(g)–6(j)). Thus, these data
imply that AT III might activate AMPK/SIRT1-mediated
deacetylation of PGC-1α to attenuate mitochondrial dys-
function of intestinal epithelial cells, which has been sum-
marized in Figure 7.

4. Discussion

Although a number of therapeutics are available for the
treatment of IBD in a clinical setting, the significant side
effects are heavy burden on the quality of life. Thus, this
study was aimed at exploring a potential drug for the treat-
ment of UC. Our results showed that AT III mitigated colitis
symptoms, inhibited inflammation and oxidative stress, and
restored epithelial barrier destruction in colons of UC mice.
Experiments in vivo and in vitro suggested that AT III pro-
tected against mitochondrial dysfunction of the intestinal
epithelium through the activation of AMPK/SIRT1/PGC-1α.

Inflammatory responses and oxidative stress are known
to be important features of UC pathogenesis [25, 26]. The
proinflammatory cytokines (such as TNF-α, IL-1β, and IL-
6) and proteins (such as iNOS and COX-2) are important
mediators of the inflammatory process in UC [27, 28].
MPO production is a key biomarker of activated neutrophils
in IBD and is associated with oxidative stress [29]. Several
reports showed that AT III suppressed the expression levels
of proinflammatory factors (TNF-α, IL-6, and IL-1β) and
oxidative stress factors (SOD and MDA) in vivo and

in vitro [19, 30]. Consistent with these findings, our results
demonstrated that AT III suppressed the inflammation and
oxidative stress in colons of UC, suggesting a protective
effect of AT III on experimental colitis.

Impaired structural and functional integrity of the epi-
thelial barrier is discovered to exacerbate the intestinal
inflammatory response and is correlated with the expression
of tight junction proteins (including ZO-1 and occludin)
[31–33]. In DSS-induced colitis mice, the significant intesti-
nal barrier disruption and mucosal hyperpermeability were
observed [34, 35]. Bein et al. also reported that LPS was a
commonly used stimulator to cause hyperpermeability and
barrier destruction in intestinal inflammatory disorders
[36]. In this study, we found that AT III increased low levels
of tight junction proteins and reduced hyperpermeability
in vivo and in vitro. Thus, it indicates that the protective
effect of AT III in colitis might be attributed to maintaining
the barrier function of the intestinal epithelium.

Mitochondria are intracellular double-membrane-bound
organelles that play a key role in inflammatory diseases such
as rheumatoid arthritis and UC [37, 38]. The maintenance of
mitochondrial function might counteract the inflammation,
oxidative stress, and epithelial barrier damage in colitis [39,
40]. The in vitro experiments showed that LPS might lead
to the significant intestinal injury and mitochondrial dys-
function [22]. However, whether mitochondrial function is
regulated by AT III in the protection of the intestinal epithe-
lial barrier remains unclear. Our results suggested that AT
III attenuated mitochondrial dysfunction in colons of DSS-
induced mice, which was similar to the results in LPS-
treated IEC-6 cells. This finding was consistent with the
finding that AT III suppressed mitochondrial dysfunction
in microglia reported by Zhou et al. [19]. Interestingly, Boy-
apati et al. revealed an increased level of mtDNA in the
plasma of UC patients [41], which was contrary to our
results in vivo and in vitro. One possible explanation might
be that during the severe tissue or cell injury, massive
amounts of mtDNAs were released into the circulating
plasma and exacerbated the inflammatory diseases.
Although AT III has been shown to attenuate epithelial bar-
rier disruption through maintaining mitochondrial function,
its potential pathway still requires more investigations.

PGC-1α, an important regulator of mitochondrial bio-
genesis and function, has been shown to interact with
nuclear respiration factors (NRF-1 and NRF-2) to activate
Tfam in mtDNA replication/transcription [42, 43]. In addi-
tion, PGC-1α might be activated by AMPK and SIRT1 and
deacetylated by SIRT1 in a NAD+-dependent manner [44,
45]. In experimental colitis, the enhanced PGC-1α
deacetylation was shown to repair damaged mitochondria
and maintain intestinal barrier function [12]. Our in vivo
and in vitro results suggested that AT III increased PGC-
1α expression and promoted its deacetylation through the
activation of AMPK/SIRT1, which was in accord with the
reports in skeletal muscle cells by Song et al. [18]. Alto-
gether, it indicates that AMPK/SIRT1/PGC-1α may be a
potential pathway mediating the protective effect of AT III
on mitochondrial dysfunction in the intestinal epithelium
of experimental colitis.
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To explore the action mechanism of drugs or natural
products for UC prevention or treatment, many chemicals
are widely accepted to induce UC models, such as DSS,
2,4,6-trinitrobenzenesulfonic acid (TNBS), and oxazolone
(OXA) [46]. In particular, DSS is the most common chemi-
cal for UC induction due to its availability, practicality, and
reproducibility, and it is most similar to human UC in terms
of clinical, histological, and immunophysiological aspects
[47]. Due to the complex etiologies of UC, one of the limita-
tions of this study is that DSS-induced experimental colitis
does not fully cover the pathology of human UC. More
experimental models will be used in the future to investigate
the effect of AT III in UC and its mechanisms.

In conclusion, this present work suggests that AT III
protects against mitochondrial dysfunction and ameliorates
colitis development by the activation of the AMPK/SIRT1/
PGC-1α signaling pathway, which is summarized in
Figure 7. It highlights an important role of AT III for the
treatment of UC.
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