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Automatic detection and alarm of abnormal electrocardiogram (ECG) events

play an important role in an ECG monitor system; however, popular

classification models based on supervised learning fail to detect abnormal

ECG effectively. Thus, we propose an ECG anomaly detection framework

(ECG-AAE) based on an adversarial autoencoder and temporal convolutional

network (TCN) which consists of three modules (autoencoder, discriminator,

and outlier detector). The ECG-AAE framework is trained only with normal ECG

data. Normal ECG signals could be mapped into latent feature space and then

reconstructed as the original ECG signal back in our model, while abnormal

ECG signals could not. Here, the TCN is employed to extract features of normal

ECG data. Then, our model is evaluated on an MIT-BIH arrhythmia dataset and

CMUHdataset, with an accuracy, precision, recall, F1-score, and AUCof 0.9673,

0.9854, 0.9486, 0.9666, and 0.9672 and of 0.9358, 0.9816, 0.8882, 0.9325, and

0.9358, respectively. The result indicates that the ECG-AAE can detect

abnormal ECG efficiently, with its performance better than other popular

outlier detection methods.
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1 Introduction

Cardiovascular diseases (CVDs) are leading causes of human death (R.L. Sacco et al.,

2016), and ECG is an important method of diagnosing CVDs. Earlier detection of

abnormal ECG is the key step in prevention, identification, and diagnosis of CVDs.

Portable ECG could detect sudden abnormal ECG events in the early stage (Dong and

Zhu, 2004) and activate warning; it is expected to reduce the mortality rate. Therefore,

automatic identification of abnormal ECG events is the first important part of an ECG

monitoring system.

Currently, popular artificial intelligence (AI) ECG diagnosis methods, including

machine learning (feature extraction and classifiers) and deep networks, always detect

abnormal ECG events using classification models. In machine learning, self-

organizing map (SOM) (M.R. Risk et al., 1997), C-means clustering (Özbay et al.,

OPEN ACCESS

EDITED BY

Lisheng Xu,
Northeastern University, China

REVIEWED BY

Chunsheng Li,
Shenyang University of Technology,
China
Yang Yao,
Northeastern University, China
Cai Chen,
Shandong Institute of Advanced
Technology (CAS), China

*CORRESPONDENCE

Shijie Chang,
sjchang@cmu.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to
Computational Physiology and
Medicine,
a section of the journal
Frontiers in Physiology

RECEIVED 05 June 2022
ACCEPTED 02 August 2022
PUBLISHED 02 September 2022

CITATION

Shan L, Li Y, Jiang H, Zhou P, Niu J, Liu R,
Wei Y, Peng J, Yu H, Sha X and Chang S
(2022), Abnormal ECG detection based
on an adversarial autoencoder.
Front. Physiol. 13:961724.
doi: 10.3389/fphys.2022.961724

COPYRIGHT

© 2022 Shan, Li, Jiang, Zhou, Niu, Liu,
Wei, Peng, Yu, Sha and Chang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 02 September 2022
DOI 10.3389/fphys.2022.961724

https://www.frontiersin.org/articles/10.3389/fphys.2022.961724/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.961724/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.961724&domain=pdf&date_stamp=2022-09-02
mailto:sjchang@cmu.edu.cn
https://doi.org/10.3389/fphys.2022.961724
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.961724


2011), etc. are some of the successful machine learning

methods for ECG classification. They extract features, such

as wavelet coefficients (P. De Chazal et al., 2000) and

autoregressive coefficients (N. Srinivasan et al., 2002), as

ECG presentation. Other research studies focus on deep

learning for ECG analysis, including convolutional neural

networks (CNNs) (U.R. Acharya et al., 2017) and recurrent

neural networks (RNNs) (H.M. Lynn et al., 2019). Xia used a

deep convolutional neural network (DCNN) (Xia et al., 2018)

for atrial fibrillation detection from short ECG signals (<5s)
without any designed feature extraction procedure. Martin

used long a short-term memory network (LSTM) (H. Martin

et al., 2021) to detect myocardial infarction from a single lead

ECG signal. Onan, 2020 proposed a CNN-LSTM framework

for sentiment analysis of product review on Twitter. Onan and

Tocoglu (2021) proposed a three-layer stacked bidirectional

LSTM architecture to identify sarcastic text documents. Deep

ECG (C. Li et al., 2021) takes ECG images as inputs and

performs arrhythmia classification using the DCNN and

transfer learning. Furthermore, a new method combining a

recurrence plot (RP) and deep learning in two stages (B.M.

Mathunjwa et al., 2021) is proposed to detect arrhythmias.

These aforementioned supervised learning ECG

interpreting methods have achieved sound performance in

previous studies. But these classification frameworks require

the dataset to include all types of heart disease data with

accurate manual annotation by professional doctors. The

clinical ECG data are always imbalanced with fewer

abnormal ECG samples, which makes it difficult to

establish an effective classification model. Moreover, it is

difficult to establish a large dataset including all types of

abnormal ECG for clinical purposes in practice. Therefore,

the sensitivity and specificity of abnormal ECG detection

cannot meet clinical requirements (O. Faust et al., 2018).

An outlier detection method (G. Pang et al., 2021) is more

suitable for abnormal ECG in an early warning system, only

based on normal data in clinical applications.

The outlier detection methods are unsupervised machine

learning methods including clustering and semi-supervision

including deep learning. In unsupervised methods, statistical

methods usually focus on modeling the distribution of

normal categories by learning the parameters of the

probability model, to identify abnormal categories as

outliers with low probability. The distance-based outlier

detection methods assume that the normal categories are

close to each other, while the abnormal samples are far away

from the normal ones. Thus, outliers could be identified by

calculating the distance between the abnormal and normal

samples. Bin Yao and Hutchison (2014) proposed a density-

based local outlier detection method (LOF) for uncertain

data. H. Shibuya and Maeda (2016) developed an anomaly

detection method based on multidimensional time-series

sensor data and using normal state models. Principal

component analysis (Li and Wen, 2014) could be used for

linear models; and the Gaussian mixture model (GMM) (Dai

and Gao, 2013), isolation forest (F.T. Liu et al., 2008), and

one-class support vector machine (OC-SVM) (B. Schölkopf

et al., 2000) are used in actual outlier detection applications.

But these machine learning algorithms often require the

manual design of effective features.

Performance of an outlier detection method based on deep

learning has been proved well, including Auto-Encoder (Zhou

and Paffenroth, 2017), LSTM (P. Malhotra et al., 2015), and

VAE (Wang et al., 2020), and widely used in AI-aided

diagnosis (T. Fernando et al., 2021) such as X-ray film,

MRI, CT, and other medical images, and in the detection

of EEG, ECG, and other timing signals as well. Y. Xia et al.

(2015) eliminated abnormal data from noisy data by reducing

reconstruction errors of the autoencoder, and applying

gradients of the autoencoder to make reconstruction errors

discriminatory to positive samples. By using deep neural

networks (autoencoders) as feature extractors, a deep

hybrid model (DHM) has been applied for outlier detection

to input extracted features into traditional outlier detection

algorithms, such as OC-SVM (Mo, 2016). L. Ruff et al. (2018)

used deep one-class classification for end-to-end outlier

detection, effectively customizing trainable targets for

outlier detection to extract features. K. Li et al. (2012)

proposed a transfer learning framework for detecting

abnormal ECG; however, this method requires manual

coding of features and relies on labeled data for all

different types of abnormalities. Due to diversity of diseases

and different waveforms collected from different abnormal

diseases, such data are not easy to obtain. Time series outlier

detection technology is also used in ECG signal processing;

Lemos and Tierra-Criollo, 2008; Chauhan and Vig, 2015

proposed an outlier detection method based on LSTM. An

abnormal condition is considered when the difference

between the predicted value of LSTM and normal value

exceeds a given threshold. Latif et al. (2018) used a

recurrent neural network (RNN) to detect abnormal

heartbeats in the PCG signal detection of the heart sound,

which needs a large amount of calculation. K. Wang et al.

(2016) used an autoencoder to reconstruct normal ECG data,

determine the threshold according to the reconstruction error,

and finally, to detect the test set.

Recently, a GAN-based framework has been applied to

outlier detection (T. Schlegl et al., 2017). The model generates

new data according to the input; if the input was similar to the

training data (as normal data), the output would be similar to

the input, otherwise, the input would be an outlier. T. Schlegl

et al. (2017) used a GAN-based model (AnoGan) to identify

anomalies in medical images. However, the aforementioned

methods have the problems of overfitting (C. Esteban et al.,

2017) or instability (D. Li et al., 2019) when they deal with

abnormal ECG detection problems.
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An autoencoder is another method of simply “memorizing”

the training data and reproducing them. The parameters of the

intermediate hidden layer would completely fit the training set,

and the content of its memory will be completely output at the

time of the output, resulting in identity mapping of the neural

network and data overfitting. Problems such as instability and

poor controllability occur with the latent model based on the

GAN method.

In this study, we proposed a novel method named ECG-AAE

for detecting abnormal ECG events, based on an adversarial

autoencoder and TCN (L. Sun et al., 2015). It consists of three

parts: 1) an autoencoder, 2) a discriminator, and 3) an outlier

detector. Our method was evaluated on the MIT-BIH and our

CMUH datasets and compared with several other popular outlier

detection methods.

2 Materials

2.1 Electrocardiogram datasets

1) Massachusetts Institute of Technology Arrhythmia

Dataset (MIT-BIH). The dataset consists of 48 double-lead

ECG recordings from 47 subjects; each set lasts 30 min at a

FIGURE 1
Typical sketch of normal and abnormal heartbeats.
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sample rate of 360 Hz, with approximately 110,000 beats. A set

of beat labels is equipped at the peak of R.

2) A CMUH dataset supported by the First Affiliated

Hospital of China Medical University. The dataset contains

12-lead ECG records of inpatients in the First Affiliated

Hospital of China Medical University from January 2013 to

December 2017, with a sampling rate of 560 Hz.

Two or three cardiologists annotated all heartbeats for both

datasets independently. Only lead II ECG signals are used in this

study.

2.2 Data preprocessing

A total of four types of arrhythmia and normal beats are

selected from datasets: right bundle branch block (R), left bundle

branch block (L), atrial premature beat (A), ventricular

premature beat (V), and normal sinus rhythm (N). ECG

signals are split into single heartbeats which are normalized to

a range of [−1, 1] for network training. Five typical heartbeats are

shown in Figure 1.

2.3 MIT-BIH dataset

In this study, 45 lead II signal records are selected from the

MIT-BIH dataset (records 102, 104, and 114 were excluded, as

they do not include the lead II data or the type of heart disease

in our experiments). Wavelet transform is used to reduce

noise and baseline drift (Alfaouri and Daqrouq, 2008). Then,

the ECG data are split into single heartbeats using the marked

R peak location. A total of 250 points (100 points before the R

peak and 150 points after the R peak) are included in a

heartbeat.

2.4 CMUH dataset

ECG data of 44,173 people from the CMUH dataset have

been selected for this study. Data are resampled at 360 Hz to

maintain consistency withMIT-BIH data. The beat segmentation

method is the same as the one mentioned previously.

For each dataset, 10,000 normal ECG data are randomly

selected as the training set, and 5,000 normal ECG data and

5,000 abnormal ECG data are randomly selected as the test set, as

shown in Table 1.

3 Methods

3.1 ECG-AAE framework

The ECG-AAE framework consists of three parts: 1) an

autoencoder, 2) a discriminator, and 3) an outlier detector, as

shown in Figure 2. The autoencoder tries to minimize

reconstruction errors to generate ECG signals similar to input

signals. The discriminator uses reconstructed and original data as

the input, and is trained to distinguish normal data from

reconstructed data. Both the autoencoder and discriminator

update simultaneously to improve the reconstruction

performance of the autoencoder.

Finally, the combination of reconstruction errors and

discriminant scores (probability output of discriminator) is

used to evaluate normal ECG. Test data are mapped back to

TABLE 1 Number of heartbeats involved in each dataset and the division of datasets.

Dataset Type Type of
heartbeats

Number of
heartbeats

Number of
cases

Sample
size

Number
of training set

Number of
test set

MIT-BIH Normal N 74,962 40 15,000 10,000 5,000

Abnormal A 2,545 — 5,000 0 5,000

L 8,068 —

R 7,254 —

V 7,034 —

Total 99,863 47 20,000 10,000 10,000

CMUH Normal N 20,000 20,000 15,000 10,000 5,000

Abnormal A 6,811 6,811 5,000 0 5,000

L 1,247 1,247

R 8,268 8,268

V 7,847 7,847

Total 44,173 44,173 20,000 10,000 10,000
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potential space, and loss between reconstructed test samples

and actual test samples has been applied to calculate the

corresponding reconstruction loss.

A detailed network of the ECG-AAE is shown in Table 2.

The encoder is composed of three TCN blocks, three

MaxPooling1D layers, a flatten layer, and a dense layer.

The decoder is composed of a dense layer, three TCN

blocks, three UpSampling1D layers, and a Conv1D layer.

The discriminator is composed of three TCN blocks, three

MaxPooling1D layers, a flatten layer, and two dense layers.

The activation function for the last dense layer is sigmoid. A

large discriminator can make the data overflow easily, while a

shallow autoencoder cannot generate enough real data to

defeat the discriminator. A small number of hidden units is

chosen as the starting point, and the number of hidden units

has been gradually increased in each successive layer, which is

effective for the training of the model in this study. Also, three

TCN blocks are used in the encoder, decoder, and

discriminator.

In this study, stochastic gradient descent (Adam)

(Kingma and Ba, 2015) is adopted to conduct alternating

update training for each lost component, and parameters of

the network model are obtained through training and

learning.

3.2 Temporal convolutional network

Atemporal convolutional network (TCN) (L. Sun et al., 2015)

could capture long-term dependence in an ECG sequence more

effectively. A TCN block is superimposed by two causal

convolution layers with the same expansion factor, followed

by normalization, ReLU, and dropout layers, as shown in

Figure 3.

The TCN is used to extract features of ECG time series

data. The TCN module has shown competitiveness in many

sequence-related modeling tasks (W. Zhao et al., 2019). It can

capture dependencies in sequences more effectively than

recurrent neural networks (Graves et al., 2013; Z. Huang

et al., 2015; J. Chung et al., 2014). The TCN convolution

kernel is shared in the same layer, with lower requirement

memory.

The TCN is mainly composed of dilated causal convolution.

Figure 4 shows a simple structure of TCNs, where xi represents

the characteristics of the ith moment. Expanded convolution

enables input interval sampling during convolution, and the

sampling rate is controlled by d. The parameter d = 1 in the

bottom layer means that every point is sampled as input, and d =

2 in the middle layer means that every two points are sampled as

input. Generally, the higher the level, the larger will be the value

FIGURE 2
ECG-AAE framework consists of three parts: (1) an autoencoder, (2) a discriminator, and (3) an outlier detector. Here, R score is the
reconstruction error score; D score is the discrimination score; S is the anomaly scores (the sum of R score and D score). T is the threshold of outlier
data.
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of d used, with the size of the effective window of dilated

convolution increasing exponentially with the number of

levels. Convolution networks can obtain a larger receptive

field with fewer layers.

The TCN uses a residual block structure which is similar to

that in ResNet to solve problems such as a deeper network

structure causing gradient disappearance, to make the model

more generic. A residual block superimposes multiple causal

convolutional layers with the same expansion factor, followed by

normalization, ReLU, and dropout. In this study, a residual block

containing two layers of convolution and nonlinear mapping is

constructed, and normalization and dropout to each layer are

added to regularize the network, as shown in Figure 3.

3.3 Autoencoder module

An autoencoder module consists of three parts: an encoder, a

hidden layer, and a decoder. Only normal ECG data are used for

training. First, input data x are compressed and encoded into the

hidden layer data, and then hidden layer data are decoded to obtain

reconstructed ECG data X′ . The loss function during training is the
reconstruction error between input data x and output data X’:

Loss(X,X′) � ����X − X′
����
2

(1)

The encoder and decoder are optimized to minimize

reconstruction errors of normal ECG using training data X.

TABLE 2 Detailed overview of the proposed ECG-AAE model.

Modules Layers Types Activation function Output shapes Kernel size No. of
filters

Encoder 0 Input — 250 × 1 — —

1 TCN block ReLU 250 × 32 9 32

2 MaxPooling1D — 50 × 32 — —

3 TCN block ReLU 50 × 16 9 16

4 MaxPooling1D — 10 × 16 — —

5 TCN block ReLU 10 × 8 9 8

6 MaxPooling1D — 2 × 8 — —

7 Flatten — 16 — —

8 Dense ReLU - 8 — —

Decoder 0 Input — 8 — —

1 Dense ReLU 16 — —

2 Reshape — 2 × 8 — —

3 UpSampling1D — 10 × 8 — —

4 TCN block ReLU 10 × 8 9 8

5 UpSampling1D — 50 × 16 — —

6 TCN block ReLU 50 × 16 9 16

7 UpSampling1D — 250 × 16 — —

8 TCN block ReLU 250 × 32 9 32

9 Conv1D ReLU 250 × 1 9 1

Discriminator 0 Input — 250 × 1 — —

1 TCN block ReLU 250 × 32 9 32

2 MaxPooling1D — 50 × 32 — —

3 TCN block ReLU 50 × 16 9 16

4 MaxPooling1D — 10 × 16 — —

5 TCN block ReLU 10 × 8 9 8

6 MaxPooling1D — 2 × 8 — —

7 Flatten — 16 — —

8 Dense ReLU 8 — —

9 Dense sigmoid 1
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The activation functions of the encoder and decoded neural

networks are shown as follows:

Z � δ(WX + b) (2)
X′ � δ′(W′Z + b′) (3)

where, δ and δ’ are non-linear exciting functions, and W, b, W’,

and b’ are weights and offsets of linear transformations.

Minimizing the loss function to optimize the parameters in

the encoder and decoder is equivalent to a nonlinear

optimization problem:

minδ,w,bLoss(X,X′) �
�����X − δ′(δ(WX + b)) + b′

�����
2

(4)

3.4 Discriminator module

The discriminator (D) is to distinguish reconstructed ECG

data X′ generated by the autoencoder (AE) from real data X

during the training process, and to make reconstructed data

similar to the input data. Thus, the autoencoder tries to

minimize the reconstruction error, while the discriminator

tries to maximize it. During training, the two modules

optimize themselves and improve refactoring and

discrimination. The autoencoder is trained to minimize the

difference between reconstructed and input samples, and the

discriminator is trained to maximize confidence in

discriminating the difference between reconstructed and

real samples. After training, the discriminator assigns

correct labels to real and fake ECG data as sensitively as

possible, while the autoencoder generates real ECG data as

much as possible to deceive the discriminator, and the two

reach a balance (D. Li et al., 2019). The conditional

autoencoder and discriminator are trained following a two-

player minimax game:

minmax
AED V(D,AE) � εx~Pdata(X)[logD(x)] + εx~Pz(Z)[log(1−D(AE))] (5)

3.5 Outlier detection module

The combination of reconstruction errors and discriminant

scores is used to define the abnormal score. Reconstruction loss

R(x) makes a higher score on abnormal ECG data and a lower

score on normal ECG data. The discrimination score D(x)

produces lower scores on abnormal ECG data and higher

scores on normal ECG data.

Therefore, the anomaly score a(x) formula is expressed as

a(x) � (1 − λ)R(x) + λ 1
D(x) (6)

FIGURE 3
Residual block.

FIGURE 4
Stacked convolutional layers in the TCN.
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λ = 0, according to our experience. The threshold is decided

following one standard deviation above the mean. ECG data with

a(x) greater than the threshold are abnormal.

4 Results

4.1 Evaluation indexes

Accuracy (ACC), precision (Pre), recall (Rec), F1-score (F1),

and AUC value (area under the ROC curve) are used to evaluate

the performance of our ECG-AAE and compare it with other

methods. In the confusion matrix, abnormal ECG is defined as

positive, normal ECG is defined as negative, and true positive

(TP), true negative (TN), false positive (FP), and false negative

(FN) are calculated.

ACC � TP + TN
TP + TN + FP + FN

Pre � TP
TP + FP

Rec � TP
TP + FN

F1 � 2 ×
Pre × Rec
Pre + Rec

FIGURE 5
Distribution of anomaly scores of the MIT-BIH training set (T = 0.025).

FIGURE 6
Distribution of anomaly scores of the CMUH training set (T = 0.01).
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In clinical practice, the precision rate represents the

proportion of patients with true ECG abnormalities, while

recall rate represents the proportion of patients with true ECG

abnormalities. The high-precision detection model could

prevent misdiagnosis, while the detection model with a

high recall rate could avoid missed diagnosis. The F1-score

is a weighted harmonic average of the recall rate and accuracy

rate; the F1-score and AUC value are used as the main

indicators to measure the performance of outlier detection

in this study.

The experiment was implemented on a workstation (Dell

T7600, Xeron 2,650 × 2, 256 GB RAM, 1080Ti×2), with Linux

18.04, Python 3.6, Keras 2.3.1, and TensorFlow 2.0.

4.1.1 Experiment 1
Both MIT-BIH and CMUH datasets have been used to

verify the performance of our framework. The threshold value

is selected as one standard deviation above the mean

according to the abnormal score in the training set. T

values of MIT-BIH and CMUH datasets can be obtained as

0.025 and 0.01, respectively. When the training set includes

normal data only, its abnormal scores are within the range of

the threshold T (Figures 5A, 6A), while, in the test dataset

including both normal and abnormal ECG data, the abnormal

scores are less than the threshold T for normal ECG data, but

are greater than the threshold T (Figures 5B, 6B) for abnormal

ECG data.

FIGURE 7
Reconstruction of ECG data: (A) normal and (B) abnormal.

FIGURE 8
Confusion matrix of (A) MIT-BIH dataset and (B) CMUH dataset (1 = normal 0 = abnormal).
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An example of normal and abnormal ECG data

reconstructed by our model is shown in Figure 7. For normal

ECG data, reconstructed data are continuous, and the shape of

the reconstructed waveform is basically the same as the input

one, with an error range of 0.0063 ± 0.0098. For abnormal ECG

data, the shape of the reconstructed waveform differs greatly

from that of the input waveform. Although the reconstructed

data are continuous, the error range reaches 0.0289 ± 0.0264.

The confusion matrixes of detection results are shown in

Figure 8. In the MIT-BIH dataset, 4,930 abnormal ECGs were

detected, and 257 normal ECGs were predicted as abnormal. In

our CMUHdataset, 4,917 abnormal ECG data were detected, and

559 normal ECGs were predicted as abnormal. The accuracy,

recall, F1 score, and AUC of our model are 0.9673, 0.9854,

0.9486, 0.9666, and 0.9672, and 0.9358, 0.9816, 0.8882, 0.9325,

and 0.9358, respectively.

4.1.2 Experiment 2
Our method was compared with 13 popular outlier detection

methods usingMIT datasets, as shown in Table 3. Among the five

TABLE 3 Average classification performance for different methods on the MIT-BIH dataset.

Methods Acc ±SD Pre ±SD Rec ±SD F1-score ± SD AUC ±SD

OURS 0.9673 ± 0.0005 0.9854 ± 0.0003 0.9486 ± 0.0001 0.9666 ± 0.0014 0.9672 ± 0.0015

AnoGAN (Schlegl et al.) 0.9257 ± 0.0101 0.8829 ± 0.0167 0.9876 ± 0.0027 0.9323 ± 0.0085 0.9283 ± 0.0101

AE (K.Wang et al.) 0.9282 ± 0.0180 0.8733 ± 0.2042 0.9902 ± 0.0233 0.9281 ± 0.1490 0.9233 ± 0.0049

VAE (X.Wang et al.) 0.8048 ± 0.0028 0.7196 ± 0.0029 0.9874 ± 0.0002 0.8325 ± 0.0157 0.8013 ± 0.0028

Stack LSTM (Chauhan et al.) 0.8875 ± 0.0017 0.8313 ± 0.0021 0.9740 ± 0.0007 0.8970 ± 0.0019 0.8882 ± 0.0052

GRU (Cowton et al.) 0.8764 ± 0.0040 0.8128 ± 0.0064 0.9746 ± 0.0017 0.8864 ± 0.0031 0.8751 ± 0.0040

RNN (Latif et al.) 0.8568 ± 0.0031 0.7826 ± 0.0040 0.9798 ± 0.0003 0.8702 ± 0.0024 0.8538 ± 0.0031

DEEP-SVDD (Ruff et al.) 0.8039 ± 0.0035 0.7221 ± 0.0037 0.8342 ± 0.0002 0.8342 ± 0.0025 0.8037 ± 0.0033

AE + OCSVM (Mo et al.) 0.8624 ± 0.0036 0.7965 ± 0.0046 0.9788 ± 0.0003 0.8783 ± 0.0029 0.8644 ± 0.0050

DAGMM (Song et al.) 0.7646 ± 0.0007 0.9992 ± 0.0008 0.5304 ± 0.0004 0.6930 ± 0.0019 0.7650 ± 0.0019

GMM (Dai et al.) 0.6462 ± 0.0463 0.9986 ± 0.1603 0.2924 ± 0.0068 0.4524 ± 0.0274 0.6460 ± 0.0042

OCSVM (Schölkopf et al.) 0.8376 ± 0.0009 0.9982 ± 0.0006 0.6760 ± 0.0005 0.8061 ± 0.0018 0.8374 ± 0.0019

iForest (Liu et al.) 0.6521 ± 0.0106 0.9987 ± 0.2119 0.3046 ± 0.3468 0.4668 ± 0.1334 0.6521 ± 0.0106

LOF (Bin Yao et al.) 0.5050 ± 0.0006 0.5027 ± 0.0007 0.9170 ± 0.0025 0.6494 ± 0.0018 0.5050 ± 0.0020

SD, standard deviation.

The bold values mean maximum.

TABLE 4 Average classification performance for different methods on the CMUH dataset.

Methods Acc ± SD Pre ± SD Rec ± SD F1-score ± SD AUC ± SD

OURS 0.9358 ± 0.0004 0.9816 ± 0.0002 0.8882 ± 0.0010 0.9325 ± 0.0008 0.9358 ± 0.00010

AnoGAN (Schlegl et al.) 0.8985 ± 0.0092 0.8396 ± 0.0128 0.9852 ± 0.0018 0.9066 ± 0.0078 0.8985 ± 0.0092

AE (K.Wang et al.) 0.9103 ± 0.0181 0.8504 ± 0.0253 0.9946 ± 0.0012 0.9169 ± 0.0148 0.9098 ± 0.0181

VAE (X.Wang et al.) 0.7744 ± 0.0040 0.6885 ± 0.0039 0.9910 ± 0.0015 0.8125 ± 0.0027 0.7713 ± 0.0041

Stack LSTM (Chauhan et al.) 0.8754 ± 0.0033 0.8097 ± 0.0051 0.9772 ± 0.0019 0.8856 ± 0.0025 0.8738 ± 0.0033

GRU (Cowton et al.) 0.8779 ± 0.0038 0.8156 ± 0.0052 0.9748 ± 0.0019 0.8881 ± 0.0030 0.8772 ± 0.0038

RNN (Latif et al.) 0.8221 ± 0.0037 0.7414 ± 0.0041 0.9860 ± 0.0021 0.8464 ± 0.0026 0.8210 ± 0.0037

DEEP-SVDD (Ruff et al.) 0.7649 ± 0.0050 0.6794 ± 0.0047 0.9908 ± 0.0017 0.8061 ± 0.0032 0.7616 ± 0.0050

AE + OCSVM (Mo et al.) 0.8245 ± 0.0030 0.7436 ± 0.0034 0.9864 ± 0.0022 0.8479 ± 0.0021 0.8231 ± 0.0030

DAGMM (Song et al.) 0.7260 ± 0.0012 0.9991 ± 0.0004 0.4520 ± 0.0024 0.6224 ± 0.0023 0.7258 ± 0.0012

GMM (Dai et al.) 0.6057 ± 0.0037 1.0000 ± 0.0005 0.2148 ± 0.0074 0.3536 ± 0.0101 0.6074 ± 0.0037

OCSVM (Schölkopf et al.) 0.7600 ± 0.0024 0.9985 ± 0.0010 0.5208 ± 0.0048 0.6845 ± 0.0041 0.7600 ± 0.0024

iForest (Liu et al.) 0.6303 ± 0.0043 1.0000 ± 0.0009 0.2606 ± 0.0086 0.4135 ± 0.0107 0.6303 ± 0.0043

LOF (Bin Yao et al.) 0.5767 ± 0.0059 1.0000 ± 0.0010 0.1700 ± 0.0117 0.2906 ± 0.0174 0.5850 ± 0.0059

SD, standard deviation.

The bold values mean maximum.
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evaluation indicators, our model achieves the highest score of

0.9673 in accuracy. DAGMM achieves the highest score of

0.9992 in precision, but its recall is 0.5304. This shows that

DAGMM tries to predict the sample as a positive sample when it

is “more certain,” but misses many unsure positive samples due

to its excessive conservativeness. The AE achieves the highest

recall score of 0.9902, but the precision is 0.8829, indicating that

the AE produces more false positives. The ECG-AAE model

achieves the highest scores of 0.9673, 0.9666, and 0.9672 in

accuracy, F1-score, and AUC value, respectively, better than

other models.

4.1.3 Experiment 3
We further verify the robustness and generalization of the

model with our CMUH dataset, as shown in Table 4.

Our model achieves the highest scores of 0.9358, 0.9325, and

0.9358 in accuracy, F1-score, and AUC, respectively. GMM,

iForest, and LOF models achieve the highest score of 1.000 in

precision, but the recall was lower. The AE achieves the highest

recall of 0.9946, but the F1-score and AUC value are lower.

5 Discussion

To solve problems that the classification model cannot

effectively detect in abnormal ECGs, we propose the ECG-

AAE, a framework for detecting abnormal ECG signals. Its

performance is verified and compared with the AE, AnoGAN,

and other 11 popular outlier detection methods on the MIT-BIH

arrhythmia dataset and our CMUH dataset.

The four kinds of machine learning outlier detection

algorithms with low performance scores were GMM (Dai and

Gao, 2013), OCSVM (B. Schölkopf et al., 2000), iForest (F.T. Liu

et al., 2008), and LOF (S.H. Bin Yao and Hutchison, 2014).

Among them, GMM enjoys the best performance, whose AUC

values are 0.6460 and 0.6074 on the MIT-BIH and CMUH

FIGURE 9
Analysis of the predication error (A,B) noise interference ECG, (C,D) baseline drift ECG.
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datasets respectively; LOF, the worst model, shows AUC values

are 0.5050 and 0.5850, respectively. It suggests that the machine

learning methods might not be the best choice for abnormal ECG

detection; they may not extract abnormal ECG effectively.

Moreover, the subsequent classifiers could not fit the

boundary functions in high-dimension feature space, while,

the deep learning models could make ECG feature extraction

more elastic to fit the nonlinear feature distribution, and finally

improve the detection rate of abnormal ECG while ensuring

accuracy.

Among deep learning models, generative models based on

AE or GAN are better than hybrid models of machine learning

and deep learning (e.g., AE + OCSVM (Mo, 2016) deep-SVDD

(L. Ruff et al., 2018), DAGMM (Q. Song et al., 2018), RNN and its

variants, LSTM, GRU, and other recurrent neural network

models). The autoencoder Cowton et al., (K. Wang et al.,

2016) encodes one-dimensional signal data into a lower

dimension to learn the general distribution of data and then

decodes to a higher dimension to reconstruct data. In this

experiment, the AE performs well on both the MIT-BIH and

CMUH datasets.

The ECG-AAE combines the autoencoder and discriminator,

and it uses the autoencoder to realize reconstruction of the ECG and

the discriminator to improve the generation ability of the

autoencoder. The TCN could obtain ECG features at different

scales with different receptive fields, which helps accurately

reconstruct the normal ECG. In addition, the TCN avoids

problems of gradient disappearance or gradient explosion. We

use the combination of reconstruction errors and discriminant

scores as the anomaly score, which effectively reduces the impact

of the AE overfitting and instability of the GAN model. Compared

with methods dealing with two leads or more, Liu F (2020) provided

an accuracy of 97.3% in ECG anomaly detection; Thill et al. (2021

designed a temporal convolutional network autoencoder (TCN-AE)

based on dilated convolutions for time series data.

Experiments 2 and 3 suggest that the CMUH dataset is about

0.3% lower than the MIT-BIH dataset on each model. The reason is

that all the heartbeats in the MIT-BIH dataset are only from

48 people. These independent heartbeats are obtained through

heartbeat segmentation, with very similar characteristics which are

not enough for generalization, while each heartbeat in our CMUH

dataset comes from a signal person, which ismore in line with reality.

False positive data are largely affected by noise interference,

as shown in Figures 9A,B. At the same time, false negative data in

the experiment have also been analyzed with the finding that a

baseline exists in most cases, as shown in Figures 9C,D. The

ECG-AAE model can tolerate noise and baseline drift of

conventional static ECG, but the form of input data in these

error cases is quite different from that of normal ECG data. This

situation might occur when patients move in a large range.

Although noise filtering and baseline drift are carried out in

the data preprocessing stage, an ideal effect is not achieved on the

ECG data with large variation, which leads to a false positive and

negative output of the model. In clinical practice, false positives

and negatives can be avoided by analyzing several continuous

heartbeats, and when the several continuous heartbeats are

judged to be abnormal ECGs, abnormal ECGs can be diagnosed.

6 Conclusion

Detection and early warning of sudden abnormal ECG is an

important procedure in an ECG monitoring and alarm system.

The ECG-AAE framework proposed in this study could

efficiently detect abnormal ECG signals, and provide better

performance on several indicators in our tests. It also suggests

that outlier detection performs better than the classical

classification framework in clinical practices. As far as we

know, this is the first study to combine the adjournment

network of abnormal ECG detection, which solves all types of

abnormal ECG data and data balance problems and effectively

improves the detection rate of abnormal ECG in the open set

condition while ensuring accuracy.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding author.

Author contributions

LS and YL contributed equally to design of the study,

performed the statistical analysis, and wrote the first draft of

the manuscript. HJ organized the dataset and interpreted our

ECG data. PZ contributed to debug the program. JN, RL, YW, JP,

and HY organized the dataset. SC contributed to the concept and

revised the manuscript. All authors contributed to approve the

submitted version.

Funding

This work was supported by Liaoning Natural Science Funds

for Medicine and Engineering Interdisciplines 2021

(1600779161987) and Big Data Research for Health Science of

China Medical University (Key Project No. 6).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Frontiers in Physiology frontiersin.org12

Shan et al. 10.3389/fphys.2022.961724

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.961724


Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adam, M.
(2017). Application of deep convolutional neural network for automated detection
of myocardial infarction using ECG signals. Inf. Sci. (N. Y). 415-416, 190–198.
doi:10.1016/j.ins.2017.06.027

Alfaouri, M., and Daqrouq, K. (2008). ECG signal denoising by wavelet transform
thresholding. Am. J. Appl. Sci. 5 (3), 276–281. doi:10.3844/ajassp.2008.276.281

Bin Yao, S. H., and Hutchison, D. (2014). Density-based local outlier detection on
uncertain data. doi:10.11896/j.issn.1002-137X.2015.5.046

Chauhan, S., and Vig, L. (2015). Anomaly detection in ECG time signals via deep
long short-term memory networks. Proc. 2015 IEEE Int. Conf. Data Sci. Adv. Anal.
DSAA 2016. doi:10.1109/DSAA.2015.7344872

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of
gated recurrent neural networks on sequence modeling. Available at: http://arxiv.org/
abs/1412.3555.

Cowton, J., Kyriazakis, I., Plötz, T., and Bacardit, J. (2018). A combined deep
learning GRU-autoencoder for the early detection of respiratory disease in pigs
using multiple environmental sensors. Sensors Switz., E2521. doi:10.3390/
s18082521

Dai, X., and Gao, Z. (2013). From model, signal to knowledge: A data-driven
perspective of fault detection and diagnosis. IEEE Trans. Ind. Inf. 9, 2226–2238.
doi:10.1109/TII.2013.2243743

De Chazal, P., Celler, B. G., and Reilly, R. B. (2000). Using wavelet coefficients for
the classification of the electrocardiogram. Annu. Int. Conf. IEEE Eng. Med. Biol. -
Proc. 1, 64–67. doi:10.1109/IEMBS.2000.900669

Dong, J., and Zhu, H. H. (2004). Mobile ECG detector through GPRS/Internet.
Proc. IEEE Symp. Comput. Med. Syst. 17, 485–489. doi:10.1109/cbms.2004.1311761

Esteban, C., Hyland, S. L., and Rätsch, G. (2017). Real-valued (medical) time series
generation with recurrent conditional GANs. Available at: http://arxiv.org/abs/1706.
02633.

Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., and Acharya, U. R. (2018).
Deep learning for healthcare applications based on physiological signals: A
review. Comput. Methods Programs Biomed. 161, 1–13. doi:10.1016/j.cmpb.
2018.04.005

Fernando, T., Gammulle, H., Denman, S., Sridharan, S., and Fookes, C. (2021).
Deep learning for medical anomaly detection – a survey. ACM Comput. Surv. 54,
1–37. doi:10.1145/3464423

Graves, A., Mohamed, A., and Hinton, G. (2013). Speech recognition with deep
recurrent neural networks, 3. Department of Computer Science, University of
Toronto, 45–49. Dep. Comput. Sci. Univ. Toronto. Available at: https://
ieeexplore.ieee.org/document/6638947.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-CRF models for
sequence tagging. Available at: http://arxiv.org/abs/1508.01991.

Kingma, D. P., and Ba, J. L. (2015). Adam: A method for stochastic optimization,
3rd. Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., 1–15.

Latif, S., Usman, M., Rana, R., and Qadir, J. (2018). Phonocardiographic sensing
using deep learning for abnormal heartbeat detection. IEEE Sens. J. 18, 9393–9400.
doi:10.1109/JSEN.2018.2870759

Lemos, C. W. M., and Tierra-Criollo, C. J. (2008). ECG anomalies identification
using a time series novelty. Detect. Tech. 18, 766–769. doi:10.1007/978-3-540-
74471-9

Li, C., Zhao, H., Lu, W., Leng, X., and Xiang, J. (2021). DeepECG: Image-based
electrocardiogram interpretation with deep convolutional neural networks. Biomed.
Signal Process. Control 69, 102824. doi:10.1016/j.bspc.2021.102824

Li, D., Chen, D., Jin, B., Shi, L., Goh, J., and Ng, S. K. (2019). MAD-GAN:
Multivariate anomaly detection for time series data with generative adversarial
networks. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinforma. 11730 LNCS, 703–716. doi:10.1007/978-3-030-30490-4_56

Li, K., Du, N., and Zhang, A. (2012). Detecting ECG abnormalities via
transductive transfer learning. ACM Conf. Bioinforma. Comput. Biol. Biomed.
BCB 2012, 210–217. doi:10.1145/2382936.2382963

Li, S., and Wen, J. (2014). A model-based fault detection and diagnostic
methodology based on PCA method and wavelet transform. Energy Build. 68,
63–71. doi:10.1016/j.enbuild.2013.08.044

Liu, F. T., Ting, K. M., and Zhou, Z. H. (2008). Isolation forest. Proc. - IEEE Int.
Conf. Data Min. ICDM., 413–422. doi:10.1109/ICDM.2008.17

Lynn, H. M., Pan, S. B., and Kim, P. (2019). A deep bidirectional GRU network
model for biometric electrocardiogram classification based on recurrent neural
networks. IEEE Access 7, 145395–145405. doi:10.1109/ACCESS.2019.2939947

Malhotra, P., Vig, L., Shroff, G., and Agarwal, P. (2015). Long short term memory
networks for anomaly detection in time series, 23rd eur. Symp. Artif. Neural
networks. Comput. Intell. Mach. Learn. ESANN 2015 - Proc., 89–94.

Martin, H., Izquierdo, W., Cabrerizo, M., Cabrera, A., and Adjouadi, M. (2021).
Near real-time single-beat myocardial infarction detection from single-lead
electrocardiogram using Long Short-Term Memory Neural Network. Biomed.
Signal Process. Control 68, 102683. doi:10.1016/j.bspc.2021.102683

Mathunjwa, B.M., Lin, Y. T., Lin, C. H., Abbod, M. F., and Shieh, J. S. (2021). ECG
arrhythmia classification by using a recurrence plot and convolutional neural
network. Biomed. Signal Process. Control 64, 102262. doi:10.1016/j.bspc.2020.
102262

Mo, J. (2016). Detecting anomalous data using auto-encoders. doi:10.18178/ijmlc.
2016.6.1.565

Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with
adversarial training. Available at: http://arxiv.org/abs/1611.09904.

Onan, A. (2020). Sentiment analysis on product reviews based on weighted word
embeddings and deep neural networks. Concurr. Comput. Pract. Exper. 33, 1–12.
doi:10.1002/cpe.5909

Onan, A., and Tocoglu, M. A. (2021). A term weighted neural languagemodel and
stacked bidirectional LSTM based framework for sarcasm identification. IEEE
Access 9, 7701–7722. doi:10.1109/ACCESS.2021.3049734

Özbay, Y., Ceylan, R., and Karlik, B. (2011). Integration of type-2 fuzzy clustering
and wavelet transform in a neural network based ECG classifier. Expert Syst. Appl.
38, 1004–1010. doi:10.1016/j.eswa.2010.07.118

Pang, G., Shen, C., Cao, L., and Van Den Hengel, A. (2021). Deep learning for
anomaly detection: A review. ACM Comput. Surv. 54, 1–38. doi:10.1145/3439950

Risk, M. R., Sobh, J. F., and Saul, J. P. (1997). Beat detection and classification of
ECG using self organizing maps. Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc. 1,
89–91. doi:10.1109/iembs.1997.754471

Ruff, L., Vandermeulen, R. A., Binder, A., Emmanuel, M., and Kloft, M. (2018).
Deep one-class classification deep one-class classification.

Sacco, R. L., Roth, G. A., Reddy, K. S., Arnett, D. K., Bonita, R., Gaziano, T. A.,
et al. (2016). The heart of 25 by 25: Achieving the goal of reducing global and
regional premature deaths from cardiovascular diseases and stroke: A modeling
study from the American heart association and world heart federation. Glob. Heart
11, 251–264. doi:10.1016/j.gheart.2016.04.002

Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., and Langs, G.
(2017). Unsupervised anomaly detection with generative adversarial networks to
guide marker discovery. Lect. Notes Comput. Sci. Incl. Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinforma. 10265 LNCS, 146–157. doi:10.1007/978-3-319-
59050-9_12

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Piatt, J. (2000).
Support vector method for novelty detection. Adv. Neural Inf. Process. Syst.,
582–588.

Shibuya, H., and Maeda, S. (2016). Anomaly detection method based on fast local
subspace classifier. Electron. Comm. Jpn. 99, 32–41. doi:10.1002/ecj.11770

Song, Q., Zong, B., Wu, Y., Tang, L. A., Zhang, H., Jiang, G., et al. (2018). TGNet:
Learning to rank nodes in temporal graphs. Int. Conf. Inf. Knowl. Manag. Proc.,
97–106. doi:10.1145/3269206.3271698

Srinivasan, N., Ge, D. F., and Krishnan, S. M. (2002). Autoregressive modeling
and classification of cardiac arrhythmias. Annu. Int. Conf. IEEE Eng. Med. Biol. -
Proc. 2, 1405–1406. doi:10.1109/IEMBS.2002.1106452

Frontiers in Physiology frontiersin.org13

Shan et al. 10.3389/fphys.2022.961724

https://doi.org/10.1016/j.ins.2017.06.027
https://doi.org/10.3844/ajassp.2008.276.281
https://doi.org/10.11896/j.issn.1002-137X.2015.5.046
https://doi.org/10.1109/DSAA.2015.7344872
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.3390/s18082521
https://doi.org/10.3390/s18082521
https://doi.org/10.1109/TII.2013.2243743
https://doi.org/10.1109/IEMBS.2000.900669
https://doi.org/10.1109/cbms.2004.1311761
http://arxiv.org/abs/1706.02633
http://arxiv.org/abs/1706.02633
https://doi.org/10.1016/j.cmpb.2018.04.005
https://doi.org/10.1016/j.cmpb.2018.04.005
https://doi.org/10.1145/3464423
https://ieeexplore.ieee.org/document/6638947
https://ieeexplore.ieee.org/document/6638947
http://arxiv.org/abs/1508.01991
https://doi.org/10.1109/JSEN.2018.2870759
https://doi.org/10.1007/978-3-540-74471-9
https://doi.org/10.1007/978-3-540-74471-9
https://doi.org/10.1016/j.bspc.2021.102824
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1145/2382936.2382963
https://doi.org/10.1016/j.enbuild.2013.08.044
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ACCESS.2019.2939947
https://doi.org/10.1016/j.bspc.2021.102683
https://doi.org/10.1016/j.bspc.2020.102262
https://doi.org/10.1016/j.bspc.2020.102262
https://doi.org/10.18178/ijmlc.2016.6.1.565
https://doi.org/10.18178/ijmlc.2016.6.1.565
http://arxiv.org/abs/1611.09904
https://doi.org/10.1002/cpe.5909
https://doi.org/10.1109/ACCESS.2021.3049734
https://doi.org/10.1016/j.eswa.2010.07.118
https://doi.org/10.1145/3439950
https://doi.org/10.1109/iembs.1997.754471
https://doi.org/10.1016/j.gheart.2016.04.002
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1007/978-3-319-59050-9_12
https://doi.org/10.1002/ecj.11770
https://doi.org/10.1145/3269206.3271698
https://doi.org/10.1109/IEMBS.2002.1106452
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.961724


Sun, L., Jia, K., Yeung, D. Y., and Shi, B. E. (2015). “Human action recognition
using factorized spatio-temporal convolutional networks,” in Proc. IEEE Int. Conf.
Comput. Vis. 2015 Inter, 4597–4605. doi:10.1109/ICCV.2015.522

Thill, M., Konen, W., Wang, H., and Back, T. (2021). Temporal convolutional
autoencoder for unsupervised anomaly detection in time series. Appl. Soft Comput.
2021 (3), 107751. doi:10.1016/j.asoc.2021.107751

Wang, K., Zhao, Y., Xiong, Q., Fan, M., Sun, G., Ma, L., et al. (2016). Research on
healthy anomaly detection model based on deep learning from multiple time-series
physiological signals. Sci. Program. 2016, 1–9. doi:10.1155/2016/5642856

Wang, X., Du, Y., Lin, S., Cui, P., Shen, Y., and Yang, Y. (2020). adVAE: A self-
adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly
detection. Knowl. Based. Syst. 190, 105187. doi:10.1016/j.knosys.2019.105187

Xia, Y., Cao, X., Wen, F., Hua, G., and Sun, J. (2015). “Learning discriminative
reconstructions for unsupervised outlier removal,” in Proc. IEEE Int. Conf.
Comput. Vis. 2015 Inter, 1511–1519. doi:10.1109/ICCV.2015.177

Xia, Y., Wulan, N.,Wang, K., and Zhang, H. (2018). Detecting atrial fibrillation by
deep convolutional neural networks. Comput. Biol. Med. 93, 84–92. doi:10.1016/j.
compbiomed.2017.12.007

Zhao, W., Gao, Y., Ji, T., Wan, X., Ye, F., and Bai, G. (2019). Deep temporal
convolutional networks for short-term traffic flow forecasting. IEEE Access 7,
114496–114507. doi:10.1109/ACCESS.2019.2935504

Zhou, C., and Paffenroth, R. C. (2017). Anomaly detection with robust deep
autoencoders. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. Part F1296,
665–674. doi:10.1145/3097983.3098052

Frontiers in Physiology frontiersin.org14

Shan et al. 10.3389/fphys.2022.961724

https://doi.org/10.1109/ICCV.2015.522
https://doi.org/10.1016/j.asoc.2021.107751
https://doi.org/10.1155/2016/5642856
https://doi.org/10.1016/j.knosys.2019.105187
https://doi.org/10.1109/ICCV.2015.177
https://doi.org/10.1016/j.compbiomed.2017.12.007
https://doi.org/10.1016/j.compbiomed.2017.12.007
https://doi.org/10.1109/ACCESS.2019.2935504
https://doi.org/10.1145/3097983.3098052
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.961724

	Abnormal ECG detection based on an adversarial autoencoder
	1 Introduction
	2 Materials
	2.1 Electrocardiogram datasets
	2.2 Data preprocessing
	2.3 MIT-BIH dataset
	2.4 CMUH dataset

	3 Methods
	3.1 ECG-AAE framework
	3.2 Temporal convolutional network
	3.3 Autoencoder module
	3.4 Discriminator module
	3.5 Outlier detection module

	4 Results
	4.1 Evaluation indexes
	4.1.1 Experiment 1
	4.1.2 Experiment 2
	4.1.3 Experiment 3


	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


