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Abstract

Fritillariae cirrhosae bulbus is a famous type of traditional Chinese medicine used for cough

relief and eliminating phlegm. The medicine originates from dried bulbs of five species and

one variety of Fritillaria. Recently, immature bulbs from other congeneric species, such as

F. ussuriensis, have been sold as adulterants of Fritillariae cirrhosae bulbus in medicine

markets owing to the high price and limited availability of the genuine medicine. However, it

is difficult to accurately identify the bulbs from different original species of Fritillariae cirrho-

sae bulbus and its adulterants based on traditional methods, although such medicines have

different prices and treatment efficacies. The present study adopted DNA barcoding to iden-

tify these different species and compared the discriminatory power of super, universal, and

specific barcodes in Fritillaria. The results revealed that the super-barcode had strong dis-

criminatory power (87.5%). Among universal barcodes, matK provided the best species res-

olution (87.5%), followed by ITS (62.5%), rbcL (62.5%), and trnH-psbA (25%). The

combination of these four universal barcodes provided the highest discriminatory power

(87.5%), which was equivalent to that of the super-barcode. Two plastid genes, ycf1 and

psbM-psbD, had much better discriminatory power (both 87.5%) than did other plastid bar-

codes, and were suggested as potential specific barcodes for identifying Fritillaria species.

Phylogenetic analyses indicated that F. cirrhosa was not a “good” species that was com-

posed of multiple lineages, which might have affected the evaluation of the discriminatory

ability. This study revealed that the complete plastid genome, as super barcode, was an effi-

cient and reliable tool for identifying the original species of Fritillariae cirrhosae bulbus and

its adulterants.
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Introduction

Fritillaria L. is one of the most important genera in the family Liliaceae, and it includes

approximately 140 species of perennial herbaceous plants worldwide [1,2]. Almost all known

species in this genus grow in temperate regions of the Northern Hemisphere [3]. There are 24

species in China, most of which have medicinal value and are used for cough relief and elimi-

nating phlegm, such as F. cirrhosaD. Don, F. ussuriensisMaxim., F. walujewii Regel, F. thun-
bergiiMiq., and so on [4–6]. According to the Chinese Pharmacopoeia (2015), there are five

traditional Chinese medicines that originate from the dried bulbs of Fritillaria species. Among

them, Fritillariae cirrhosae bulbus (also known as “Chuanbeimu” in traditional Chinese medi-

cine) has been regarded the best throughout Chinese history. The original species used to

make this type of medicine include five species and one variety, namely F. cirrhosa, F. przewals-
kiiMaxim., F. unibracteataHsiao et K.C. Hsia, F. delavayi Franch., F. taipaiensis P.Y. Li, and

F. unibracteata var. wabuensis (S.Y. Tang et S.C. Yue) Z.D. Liu., S. Wang et S.C. Chen [7].

Recently, the market price of Fritillariae cirrhosae bulbus has been increasing sharply due to

its limited output from wild habitats, and thus immature bulbs of other Fritillaria species (e.g.,

F. ussuriensis, F. thunbergii, F. pallidiflora Schrenk, etc.) have been sold in medicinal markets

imitating the original Fritillariae cirrhosae bulbus. Genuine Fritillariae cirrhosae bulbus origi-

nating from bulbs with different botanical origins are difficult to identify based on the mor-

phological characteristics and traditional methods. The bulbs from each original species

obviously differ in price and might also differ in their medicinal treatment efficacy, which

could seriously affect their health benefits to consumers [8–11]. Thus, it is extremely important

to be able to accurately discriminate between Fritillariae cirrhosae bulbus and its adulterants,

as well as among the different original species used to make these medicines.

DNA barcoding is a technology used for species identification that employs a short and

standardized DNA region [12–15]. It has been proven to be an effective tool for rapid and

accurate species discrimination [16–19]. Based on a large number of studies, three plastid loci

(trnH-psbA,matK, and rbcL) and one ribosomal DNA spacer region (the internal transcribed

spacer or ITS), or their combinations, were proposed as universal barcodes for plants that

could discriminate most plant species [20–22]. However, for taxonomically complicated

groups, such as Fritillaria, the use of these universal barcodes and their combinations has

achieved lower success rates in species discrimination, exceptmatK (this barcode had low suc-

cess rate of PCR and Sanger sequencing in Fritillaria), due to insufficient sequence variation

[23, 24].

The complete plastid genome was suggested as a super-barcode for identification of plant

species, especially for taxonomically difficult taxa such as the genera Citrus, Oncidium, and

Gossypium [25–27]. This genome has been also used successfully to explore phylogenetic rela-

tionships among plant taxa [28–30]. Typically, the plastid genome in angiosperms is circular,

ranges in size from 72 to 217 kb, and has a quadripartite structure composed of a large single

copy region (LSC), small single copy region (SSC), and a pair of inverted repeats (IRs) [31–34].

In contrast with the nuclear and mitochondrial genomes, the plastid genome is largely con-

served among taxa in terms of its gene content, organization, and structure. Moreover, plastid

genomes are maternally inherited and therefore appropriate for use in genetic engineering due

to lack of cross-recombination [35,36]. These characteristics of the plastid genome render it

suitable for species discrimination within complex plant taxa [37,38]. The results of recent

studies also supported the strong discriminatory power of this super-barcode when used in

species identification [39,40]. For the genus Fritillaria, complete plastid genomes were previ-

ously employed to evaluate phylogenetic relationships among some species and produced

results that were supported by high bootstrap values [41–43]. However, those previous studies
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generally sequenced only one individual per species, and thus they could not effectively com-

pare the intra- and inter-specific genetic distances in Fritillaria species. This leads to the ques-

tion of whether species of Fritillaria, especially the original plants used to make Fritillariae

cirrhosae bulbus and its adulterants, could be correctly identified at the species level by analy-

ses of the complete plastid genome.

In the present study, we used the complete plastid genome sequence as a super-barcode to:

identify the botanical origins of Fritillariae cirrhosae bulbus and its adulterants; compare the

discriminatory power of the super-barcode with that of universal DNA barcodes and their com-

binations; and scan the highly variable gene regions as potential specific barcodes for species

identification of Fritillariae cirrhosae bulbus. The present study provided abundant information

for further development of super-barcodes and broadened the horizon over which other rapid

and accurate molecular techniques for species identification in Fritillaria can be explored.

Materials and methods

Material sampling

A total of 32 individuals of Fritillaria representing the five original species of Fritillariae cirrhosae

bulbus and three species of its adulterants, as well as an individual of F. anhuiensis S.C. Chen &

S.F. Yin as an outgroup, were used in tree-building analysis in this study (Fig 1, S1 Table).

Among these species, individuals of the five original species that produce the genuine medicine

were collected from wild habitats in Southwest China, while those of the adulterants were col-

lected from cultivated populations in provinces of Zhejiang, Jilin, and Xinjiang, China. None of

the species from the genus Fritillaria are listed as the national protected plants in China (Infor-

mation System of Chinese Rare and Endangered Plants, http://www.iplant.cn/rep/) and therefore

their collection is allowed for scientific research. Fresh leaves were sampled from healthy, mature

individuals in the field or cultivation bases and then dried by using silica gel. Meanwhile, 3–5

individuals with flowers were dug up and preserved as voucher specimens. Subsequently, geo-

graphic information (latitude, longitude, altitude, etc.) for the sampling locations was obtained

by a Global Positioning System receiver (GPS; Garmin, Olathe, KS, USA). All voucher specimens

of Fritillariawere identified and then deposited at the Herbarium of Medicinal Plants and Crude

Drugs of the College of Pharmacy and Chemistry, Dali University, Dali, China (S1 Table).

DNA extraction, sequencing, and assembly. Total genomic DNA was extracted from

about 100 mg of dried leaf material using a modified CTAB method [44,45]. The DNA content

was checked by electrophoresis on 1.2% agarose gels, and its concentration was determined

using a SmartSpecTM Plus Spectrophotometer (Bio-Rad, Hercules, CA, USA). DNA extracts

were then fragmented for the construction of 300 bp short-insert paired-end (PE) libraries and

sequenced on an Illumina HiSeq 2000/2500 sequencer at the Beijing Genomics Institute (BGI,

Shenzhen, China).

The raw data were filtered using Trimmomatic v.0.32 [46] with default settings. Paired-end

reads in the clean data were then filtered and assembled into contigs using GetOrganelle.py

[47] with Fritillaria cirrhosa (accession number: KF769143) as reference [48], calling the bow-

tie2 v., Blastn v., and SPAdes v.3.10 [49]. The de novo assembly graphs were visualized and

edited using Bandage Linux dynamic v.8.0 [50], and then a whole or nearly whole circular plas-

tid genome (plastome) was generated.

Annotation and sequence submission

The plastomes were annotated by aligning them to the complete plastid genome sequence

available in NCBI using MAFFT [48,51] with default parameters, which was coupled with

manual adjustment using Geneious v.11.1.4 [52]. Circular genome visualization was generated
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with OGDRAW v.1.2 [53]. Furthermore, the ITS sequences were sequenced using Illumina

sequencing technology and extracted from the raw data. The annotated plastid genomes of the

nine Fritillaria species and their ITS sequences were submitted to the NCBI under the acces-

sion numbers MH588404-MH588436 for ITS sequences and those listed in Table 1 for the

complete plastid genomes.

Variable site analysis

After using MAFFT v.7.129 to align the plastid genome sequences, BioEdit software was used

to adjust the alignment manually [51,54]. A sliding window analysis was conducted to deter-

mine the nucleotide variability (Pi) in the whole plastid genome using DnaSP v.6.11 [55]. The

step size was set to 200 bp, with a 600 bp window length. Moreover, the DnaSP software was

used to identify and quantify the insertions/deletions (indels), mutations, and nucleotide vari-

ability (Pi) in all aligned datasets. The p-distances, GC content, variable sites, and parsimony

informative sites in the genomes were identified and analyzed by the software MEGA v.7.0.26

[56].

Fig 1. Distribution of the five original species of Fritillariae cirrhosae bulbus and three species of its adulterants. The distributional range of each species is drawn

based on the records by Luo et al. [8,9] and herbarium specimens (http://www.cvh.ac.cn/). The a-f refer to these species and their distribution. Photos of the eight

Fritillaria species studied are also added: a. F. cirrhosa; b. F. przewalskii; c. F. taipaiensis; d. F. unibracteata; e. F. delavayi; f. F. thunbergii; g. F. pallidiflora; h. F.

ussuriensis.

https://doi.org/10.1371/journal.pone.0229181.g001
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Species discrimination of universal, super, and specific barcodes

To evaluate the success rates of species discrimination with each barcode, we used a tree-build-

ing method to analyze 14 datasets for each of the single regions examined and their combina-

tions. All single regions, including universal DNA barcodes and highly variable loci, were

extracted from the complete plastid genome sequences, except the ITS/ITS2 region. These

datasets were aligned with MAFFT [51] and used to build neighbor-joining trees (NJ) based

on p-distances in the software MEGA [56]. The plastome of F. anhuiensis (accession number:

MH593363) was used as the outgroup in these tree-building analyses. Species were regarded as

being successfully discriminated if all the individuals of a given species formed a monophyletic

group [57].

Table 1. Summary of complete plastid genomes obtained for the five original species of Fritillariae cirrhosae bulbus and three species of its adulterants, as well as

the outgroup (F. anhuiensis).

Species Code Total length

(bp)

Large single copy (LSC,

bp)

Small single copy (SSC,

bp)

Inverted repeat (IR,

bp)

GC% Number of

genes

Accession

number

F. cirrhosa BM 1–1 151,546 81,402 17,542 26,301 37.0% 115 MH593342

BM 1–2 151,546 81,402 17,542 26,301 37.0% 115 MH593343

BM 2–1 151,998 81,755 17,545 26,349 37.0% 115 MH244906

BM 2–2 151,605 81,467 17,534 26,302 37.0% 115 MH593344

BM 3–1 152,035 81,794 17,541 26,350 36.9% 115 MH593345

BM 3–2 152,035 81,794 17,541 26,350 36.9% 115 MH593346

F. przewalskii BM 6–1 151,983 81,744 17,539 26,350 36.9% 115 MH244908

BM 6–2 152,054 81,816 17,538 26,350 36.9% 115 MH593347

BM 7–1 151,955 81,715 17,540 26,350 37.0% 115 MH593348

BM 7–2 151,960 81,722 17,538 26,350 37.0% 115 MH593349

F. unibracteata BM 8–1 151,058 81,339 17,539 26,090 37.0% 115 MH244909

BM 8–2 151,057 81,338 17,539 26,090 37.0% 115 MH593350

BM 9–1 151,012 81,295 17,537 26,090 37.0% 115 MH593351

BM 9–2 151,078 81,398 17,538 26,071 37.0% 115 MH593352

F. delavayi BM 10–1 151,853 81,602 17,513 26,369 37.0% 115 MH593353

BM 10–2 151,854 81,603 17,513 26,369 37.0% 115 MH593354

BM 10–3 151,854 81,603 17,513 26,369 37.0% 115 MH593355

F. taipaiensis BM 11–1 151,707 81,451 17,552 26,352 37.0% 115 MH244910

BM 11–2 151,518 81,268 17,546 26,352 37.0% 115 MH593356

BM 12–1 151,741 81,478 17,561 26,351 37.0% 115 MH593357

BM 12–2 151,741 81,478 17,561 26,351 37.0% 115 MH593358

BM 12–3 151,741 81,478 17,561 26,351 37.0% 115 MH593359

F. thunbergii BM 16–1 152,160 81,895 17,565 26,350 37.0% 115 MH244914

BM 16–2 152,160 81,895 17,565 26,350 37.0% 115 MH593360

BM 17–1 152,160 81,895 17,565 26,350 37.0% 115 MH593361

BM 17–2 152,160 81,895 17,565 26,350 37.0% 115 MH593362

F. pallidiflora BM 23–1 152,073 81,779 17,514 26,390 37.0% 115 MH593364

BM 23–2 152,067 81,763 17,528 26,388 37.0% 115 MH593365

BM 23–3 152,073 81,780 17,513 26,390 37.0% 115 MH593366

F. ussuriensis BM 26–1 151,571 81,773 17,126 26,336 36.9% 115 MH593367

BM 26–2 151,523 81,741 17,122 26,330 37.0% 115 MH593368

BM 26–3 151,552 81,764 17,124 26,332 37.0% 115 MH593369

F. anhuiensis BM 20–2 152,119 81,817 17,560 26,371 37.0% 115 MH593363

https://doi.org/10.1371/journal.pone.0229181.t001
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Results

Plastid genome organization of Fritillaria
The 32 complete plastid genomes, consisting of a circular double-stranded DNA, ranged from

151,518 bp in F. taipaiensis (accession number: MH593356) to 152,073 bp in F. pallidiflora
(accession number: MH593366). The genomes possessed a typical quadripartite structure,

which comprised a pair of IRs (26,090–26,390 bp), LSC (81,295–82,085 bp), and SSC (17,122–

17,565 bp) regions (Table 1, S1 Fig). Overall GC content of the complete plastid genomes was

36.9%-37.0% (Table 1). Moreover, a total of 115 genes were found, namely 78 protein coding

genes, 30 tRNA genes, and 4 rRNA genes, as well as 3 pseudogenes (Table 2, S1 Fig). The pro-

tein coding genes present in the plastid genome of Fritillaria included 9 genes for large ribo-

somal proteins, 12 genes for small ribosomal proteins, 5 genes for photosystem I, 15 genes for

photosystem II, and 6 genes for ATP synthase (Table 2, S1 Fig).

Highly variable regions in plastid genome

Seven highly variable regions from the plastid genomes, namely three intergenic regions (psbM-
psdD, rps4-trnL-UAA, and ndhF-trnL-UAG), three gene regions (matK, ndhD, and ycf1), and one

intron region (petB-intron), were selected as potential specific barcodes for use in species identifi-

cation in Fritillaria (Fig 2). Among these regions, ycf1was the longest, followed by psbM-psbD,

Table 2. Genes included in Fritillaria plastid genomes.

Category for gene Group of genes Name of genes

Self-replication Large subunit of ribosome rpl2a�, rpl14, rpl16�, rpl20, rpl22, rpl23a, rpl32, rpl33, rpl36
Small subunit of ribosome rps2, rps3, rps4, rps7a, rps8, rps11, rps12a�, rps14, rps15, rps16�, rps18, rps19
DNA dependent RNA

polymerase

rpoA, rpoB, rpoC1�, rpoC2

rRNA gene rrn4.5a, rrn5a, rrn16a, rrn23a

tRNA gene trnK-UUU�, trnI-GAUI�, trnA-UGCa�, trnG-GCC�, trnV-UAC�, trnL-UAA�, trnS-UGA, trnS-GCU, trnS-GGA,

trnY-GUA, trnC-GCA, trnL-CAAa, trnL-UAG, trnH-GUGa, trnD-GUC, trnfM-CAU, trnW-CCA, trnP-UGG,

trnI-CAUa, trnR-ACGa, trnI-CAUa, trnE-UUC, trnT-UGU, trnF-GAA, trnQ-UUG, trnR-UCU, trnT-GGU,

trnM-CAU, trnV-GACa, trnN-GUUa, trnN-GUUa, trnV-GACa, trnG-UCC
Gene for

photosynthesis

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ
Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ
Subunits of NADH-

dehydrogenase

ndhA�, ndhBI�, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of cytochrome b/f

complex

petA, petB�, petD�, petG, petL, petN

Subunit for ATP synthase atpA, atpB, atpE, atpF�, atpH, atpI
Large subunit of rubisco rbcL

Other genes Translational initiation

factor

infA

Maturase matK
Protease clpP�

Envelope membrane protein cemA
Subunit of Acetyl-

carboxylase

accD

C-type cytochrome synthesis

gene

ccsA

Open reading frames (ORF,

ycf)

ycf1, ycf2a, ycf3�, ycf4, ycf15a, ycf68a

The lowercase letter a in superscript after gene names indicates genes located in IR regions. Asterisks indicate intron-containing genes.

https://doi.org/10.1371/journal.pone.0229181.t002
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while petB-intron region was the shortest (Table 3). Furthermore, all highly divergent fragments

were found in the LSC and SSC regions, whereas none were present in the IR regions.

Variability of the barcodes and their combinations

Among the regions and their combinations examined, the complete plastid genome clearly

had the highest number of variable sites, parsimony-informative sites, and mutation sites

(Table 3). Among the universal DNA barcodes, the ITS2 region was the most mutation-rich

(Pi: 0.03304), followed by the ITS (0.02560), trnH-psbA (0.01288), andmatK regions (0.00537),

whereas the rbcL region (0.00295) was highly conserved (Table 3). Furthermore, among the

highly variable regions, ndhF-trnL-UAG showed the highest variability (0.00994), and it was

followed by psbM-psdD (0.00907), rps4-trnL-UAA (0.00892), ycf1 (0.00836), petB-intron
(0.00703), and ndhD (0.00502).

DNA barcoding gap assessment

The inter- and intraspecific distances were calculated for each of the 14 datasets (Table 3). In

these datasets, the ITS2 region exhibited the highest inter- and intraspecific distances (0.0326

and 0.0094, respectively), followed by the ITS (0.0235 and 0.0044), trnH-psbA (0.0147 and

0.0010) and ndhF-trnL-UAG (0.0112 and 0.0008), whereas these distances were the lowest for

the rbcL (0.0033 and 0.0005). Meanwhile, the inter- and intraspecific distances of the complete

plastid genome showed relatively low values (0.0037 and 0.0005, respectively) compared with

those calculated for other datasets. Furthermore, the barcoding gap between inter- and intra-

specific distances based on the p-distance model revealed thatmatK had the highest interspe-

cific gap (divergence), but overlap between inter- and intraspecific distances existed for almost

all single regions and their combinations, except formatK (Fig 3, S2 Fig).

Discriminatory powers of all regions and their combinations

We calculated the species discrimination ability of each region and their combinations based

on 14 datasets using tree-building methods (Fig 4). The super-barcode, comprised of complete

Fig 2. Sliding window analysis of 32 Fritillaria plastid genomes (window length: 600 bp, step size: 200 bp). X-axis: position of the midpoint of a window; Y-axis:

nucleotide diversity of each window.

https://doi.org/10.1371/journal.pone.0229181.g002
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plastid genomes, showed the highest power for species identification (87.5%), with strongest

bootstrap values (Fig 5), except for F. cirrhosa, which is probably due to its polyphyletic nature.

Among the universal DNA barcodes tested here,matK had the highest discriminatory power

(87.5%), same as that of the super-barcode (Fig 4), followed by rbcL and ITS (both 62.5%). In

contrast, trnH-psbA and ITS2, with relatively short DNA sequences (253 bp and 239 bp,

respectively) and heavy overlaps between inter- and intraspecific distances, had relatively low

success rates in distinguishing Fritillaria species (25% and 37.5%, respectively). Moreover, the

combinations of the four barcodes (HKLI) or of the three plastid DNA regions (HKL) also

showed the highest power for species discrimination (both 87.5%). Among the highly variable

loci, psbM-psbD and ycf1 had the highest species discrimination rates (both 87.5%), followed

by rps4-trnL-UAA (75%), ndhF-trnL-UAG ndhD, and petB-intron (both 50%) (Fig 4).

According to the NJ trees, each of the DNA regions psbM-psbD, ycf1, andmatK alone could

be used to efficiently identify the original plants of Fritillariae cirrhosae bulbus and its adulter-

ants. In contrast, the ITS, ndhD, ndhF-trnL-UAG, and rps4-trnL-UAA regions identified only

the adulterant species from the genuine ones in the medicine. Moreover, the ITS2 could dis-

criminate the adulterant from the genuine medicine, but could not effectively identify any of

Table 3. Analysis of the variability in different fragments and combination of fragments.

No. sites No. variable

sites

No. parsimony

information sites

No.

mutations

No.

InDels

Intraspecific

distance

Interspecific distance Nucleotide

diversity (Pi)

Range Mean (±
SE)

Range Mean (±
SE)

Genome 154,404 2,667 2,436 2,449 4,273 0–

0.0021

0.0005

±0.0001

0.0007–

0.0078

0.0037

±0.0001

0.00337

HKLI 3,890 180 132 170 44 0–

0.0052

0.0012

±0.0002

0.0008–

0.0191

0.0082

±0.0006

0.00784

HKL 3,255 76 74 71 19 0–

0.0034

0.0006

±0.0002

0.0003–

0.0117

0.0051

±0.0001

0.00466

ITS2 239 52 22 55 9 0–

0.0807

0.0094

±0.0027

0–0.1211 0.0326

±0.0013

0.03304

ITS 635 104 58 99 25 0–

0.0338

0.0044

±0.0011

0–0.0709 0.0235

±0.0008

0.02560

trnH-psbA 253 17 17 16 19 0–

0.0043

0.0010

±0.0003

0–0.0598 0.0147

±0.0009

0.01288

matK 1539 37 37 37 0 0–

0.0039

0.0007

±0.0002

0.0006–

0.0123

0.0059

±0.0001

0.00537

rbcL 1464 21 19 21 0 0–

0.0027

0.0005

±0.0001

0–0.0075 0.0033

±0.0001

0.00295

ndhF-
trnL-UAG

1,381 60 57 52 77 0–

0.0052

0.0008

±0.0002

0–0.0321 0.0112

±0.0011

0.00994

psbM-psdD 3608 163 150 130 582 0–

0.0058

0.0014

±0.0003

0.0020–

0.0202

0.0101

±0.0002

0.00907

rps4-trnL-UAA 1,323 56 53 49 138 0–

0.0061

0.0016

±0.0003

0–0.0238 0.0098

±0.0003

0.00892

ycf1 5,565 214 203 223 63 0–

0.0044

0.0010

±0.0002

0.0016–

0.0240

0.0092

±0.0003

0.00836

petB-intron 855 30 29 28 17 0–

0.0050

0.0012

±0.0002

0–0.0200 0.0078

±0.0002

0.00703

ndhD 1,509 39 36 41 6 0–

0.0020

0.0006

±0.0001

0–0.0160 0.0056

±0.0002

0.00502

HKL and HKLI represent a combination of three fragments of the plastid genome and a combination of four fragments of universal barcodes, respectively (H: trnH-
psbA; K:matK; L: rbcL; I: ITS)

https://doi.org/10.1371/journal.pone.0229181.t003
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Fig 3. Histograms of the frequencies (y-axes) of pairwise inter- and intraspecific divergences calculated based on the p-distances (x-axes) of each single regions

and their combinations. (H: trnH-psbA; K:matK; L: rbcL; I: ITS).

https://doi.org/10.1371/journal.pone.0229181.g003
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the original species of Fritillariae cirrhosae bulbus. Finally, the trnH-psbA, rbcL, and petB-
intron regions could neither discriminate the adulterant medicine from the genuine nor their

original species.

Definition of Fritillaria cirrhosa
In the NJ trees inferred from the whole plastid genomes, other DNA regions, or combinations,

the six individuals of F. cirrhosa collected from three locations were clustered into two distinct

clades: one was placed close to F. unibracteata and the other was close to F. przewalskii with

strong support values (Fig 5).

Discussion

DNA barcoding has been demonstrated to be an efficient tool for identifying traditional medi-

cines as well as their original species [23,58–60]. In the present study, this tool was used to dis-

criminate among the five original species of Fritillariae cirrhosae bulbus and three of its

adulterants.

Performance of universal DNA barcodes

In plants, the term universal DNA barcodes, which are identified based on Sanger sequencing,

generally refers to rbcL andmatK, to be supplemented with trnH-psbA and ITS/ITS2 [21,22].

Among the four universal DNA barcodes,matK had the highest species discriminatory power

and successfully distinguished all the original species of Fritillariae cirrhosae bulbus, except F.

cirrhosa. In contrast, ITS2 and trnH-psbA showed the lowest species resolution and failed to

correctly identify the original species of Fritillariae cirrhosae bulbus, although these two bar-

codes were previously suggested as core barcode for species identification in traditional Chi-

nese medicines [22,61]. ITS/ITS2 correctly discriminated the genuine medicine from the

adulterants (Fig 5, S3 Fig). This result was nearly consistent with that of our previous study

[24]. In fact, ITS/ITS2 were rich in variable sites and nucleotide diversity (Pi) compared with

the studied plastid DNA regions (Table 3), but the obvious overlap between inter- and

Fig 4. Species discrimination rate of all single fragments and their combinations based on the tree-building method. (H: trnH-psbA; K:matK; L: rbcL; I: ITS).

https://doi.org/10.1371/journal.pone.0229181.g004
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intraspecific distances in such regions among and within Fritillaria species might impact their

discriminating ability (Fig 3).

It should be noted that thematK sequences used for analysis were obtained from the com-

plete plastid genome, not by Sanger sequencing. If the obstacles to Sanger sequencing ofmatK

Fig 5. Neighbor-joining (NJ) tree of 33 specimens of Fritillaria, comprising 32 individuals of Fritillariae cirrhosae bulbus and its adulterants based on p-distances

calculated for each barcode region: a. whole plastid genome; b. ycf1; c.matK; d. ITS2.

https://doi.org/10.1371/journal.pone.0229181.g005
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are resolved,matK will become the ideal candidate barcode for identifying the original species

of Fritillariae cirrhosae bulbus, despite its lower nucleotide diversity (Pi) when compared with

that of other regions. The best performance of this barcode might be attributed to the existence

of a clear barcoding gap (Table 3, Fig 3). ThematK gene has been confirmed to perform poorly

in discriminating species of Fritillaria and other genera such as Primula [62] and Garcinia [63]

because of its low success rates in PCR amplification and Sanger sequencing [24]. However,

next-generation sequencing (NGS) technology could resolve the aforementioned deficiency of

the Sanger method, as it was revealed in the present study that this marker has satisfactory dis-

criminatory power. Therefore, we propose that NGS technology should be adopted for DNA

sequencing ofmatK to overcome the disadvantages of the Sanger sequencing method for such

fragments.

Furthermore, combined barcodes generally perform better in species discrimination than

single barcodes [23]. In the present study, combinations of the four barcodes (HKLI) or three

plastid regions (HKL) also showed strong species discrimination abilities (87.5%) (Fig 5, S3

Fig). In short, multi-locus combination could raise discrimination ability for Fritillaria species

and improve the reliability.

Super-barcode–a crucial candidate DNA barcode in Fritillaria
Because of the low power for species discrimination of universal DNA barcodes, new methods

are necessary to discriminate closely related species [23,37]. Complete plastid genomes are

extremely rich in genetic variations and have been shown to be powerful tools for resolving the

phylogenetic relationships of complex groups [30,42,43,64,65]. Their use can greatly improve

the resolution at lower taxonomic levels in plant phylogeny, phylogeography, and population

genetics; therefore, they were also proposed as a type of super DNA barcode that is likely to

resolve the defects of the universal DNA barcodes [23,66]. In this study, plastid genomes of

Fritillaria species, with lengths from 151,518 to 152,073 bp, provided abundant informative

sites for species identification. As a result, this super-barcode identified almost all of the origi-

nal species of Fritillariae cirrhosae bulbus and its adulterants with high bootstrap values, except

for F. cirrhosa because of its possible polyphyletic nature (Fig 5). Herein, the complete plastid

sequences in the present study were obtained from dried leaf materials using NGS methods.

Nevertheless, the use of this super-barcode might face extreme challenges if one needed to

extract DNA from specific materials, such as kiln-dried specimens or medicines. However,

recent procedures have been developed that can use total DNA as a template for genome skim-

ming to assemble plastid genome, which not only solves the problem of extracting plastid

DNA from dried or even degraded materials but also simplifies the whole process [23,67,68].

As sequencing technology and bioinformatics continue to improve rapidly, super DNA bar-

code will become more popular and may eventually replace Sanger-based DNA barcoding.

Thus, super DNA barcodes could be adopted as useful complements to universal DNA bar-

codes, especially in identifying closely related species.

Specific DNA barcode–a trade-off between universal and super-barcode

The present study revealed that, when adopting the NGS method, the universal DNA barcodes

were limited in their ability to discriminate species, exceptmatK region, which showed high

success rate for identifying species in Fritillaria (87.5%). Although the super-barcode exhibited

high discriminatory power and sufficient reliability in this study, its use might be limited due

to complications in data analyses and expensive sequencing costs. Therefore, it is of great

importance to search for specific barcodes from highly variable regions that can be used as a

trade-off between universal and super DNA barcodes.
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Highly variable regions in the plastome could help to effectively resolve phylogenetic rela-

tionships and identify species within complicated groups [30,69]. In the present study, six

highly variable regions were extracted from the complete plastid genomes. Among these

regions, ycf1 had the same high species discriminating ability (87.5%) as the combination of

four markers (HKLI); similarly, psdM-psbD showed the strikingly high discriminatory power

(87.5%) (Fig 4, Fig 5). In fact, ycf1 had been successfully used to reconstruct the phylogenies of

the family Orchidaceae [70] and the genus Astragalus [71], and it showed an extremely strong

power to resolve interspecific relationships.

Therefore, we conclude that ycf1 and psdM-psbD can be used as potential specific barcodes

for Fritillaria. However, the overly long DNA sequences of these regions result in some diffi-

culties during PCR amplification and DNA Sanger sequencing [72]. Therefore, designing suit-

able primers to amplify shorter sections of those regions (about 1000 bp) with more variation

might be another approach to be used in Sanger sequencing.

Delimitation of F. cirrhosa and its effect on species discrimination abilities

of DNA barcodes

In the current study, the NJ trees generated using plastid genomes, universal barcodes, specific

barcodes, and their combinations failed to resolve the samples of F. cirrhosa from different

locations into one clade (Fig 5, S3 Fig). In the tree based on genome sequences, six individuals

were divided into two different clades, one (BM1-1, BM1-2, and BM 2–2) was sister to F. uni-
bracteata, but the other (BM2-1, BM 3–1, and BM 3–2) was placed close to F. przewalskii.
These results indicated that F. cirrhosa is not a “good” species but contains multiple different

lineages, which was also supported by the previous analysis of population genetics data based

on amplified fragment length polymorphism (AFLP) markers (unpublished data). It is well

known that F. cirrhosa has extremely complex variations in its morphology, especially its floral

characteristics. According to the field survey, individuals from Lijiang (ZDQ15019) possess

yellow-green tepals, but they are dark purple in individuals from Shangri-La (ZDQ13053). The

complex morphology of this species unavoidably causes confusion in its taxonomy. Delimita-

tion, as well as phylogeny, of F. cirrhosa and its closely related species is still controversial [8]

and requires further study based on more samples and better markers. Thus, if the polyphyletic

condition of this species is not considered, we could conclude that all of the examined frag-

ments, including the whole plastid genomes,matK, ycf1, and psbM-psbD, as well as the combi-

nation HKLI, were able to discriminate all the original species of Fritillariae cirrhosae bulbus

and its adulterants with a success rate of 100%.

Conclusion

In the present study, 32 individuals from eight species, representing five species of the original

plants of Fritillariae cirrhosae bulbus and three of its adulterants, were employed to compare

the species discriminatory powers of universal, super, and specific DNA barcodes. The results

revealed that the whole plastid genome used as a super-barcode exhibited a powerful ability to

identify Fritillaria species, with high reliability. Among the universal barcodes, onlymatK
could discriminate almost all the original species when NGS methods are employed. It should

be noted that ITS2 separated genuine Fritillariae cirrhosae bulbus from its adulterants, but it

could not correctly identify the original species. Among the highly variable regions examined,

ycf1 and psbM-psbD are considered the primary potential specific barcodes for Fritillaria spe-

cies, but their successful sequencing using the Sanger method will depend on developing prim-

ers that will amplify the barcodes in sections. Moreover, NJ analysis based on complete plastid

genomes, as well as other regions, revealed that F. cirrhosa was polyphyletic and the variations
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in its morphology requires further research at the population level. As the costs of NGS con-

tinue to decrease and data analysis methods are simplified, the use of super-barcodes might

become the primary method for species discrimination in plants. Overall, the results in this

study help to recognize species discrimination ability of super, universal, and specific barcodes

in complex groups, and provide new knowledge to accurately identify the original plants of

Fritillariae cirrhosae bulbus and its adulterants.
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