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Osteocalcin (OCN) is a bone-derived protein that is detected within human calcified

vascular tissue. Calcification is particularly prevalent in chronic kidney disease (CKD)

patients but the role of OCN in calcification, whether active or passive, has not been

elucidated. Part 1: The relationship between OCN, CKD and vascular calcification was

assessed in CKD patients (n= 28) and age-matched controls (n= 19). Part 2: in vitro, we

analyzed whether addition of uncarboxylated osteocalcin (ucOCN) influenced the rate or

extent of vascular smooth muscle cell (VSMC) calcification. Human aortic VSMCs were

cultured in control media or mineralisation inducing media (MM) containing increased

phosphate with or without ucOCN (10 or 30 ng/mL) for up to 21 days. Markers of

osteogenic differentiation and calcification were determined [alkaline phosphatase (ALP)

activity, total intracellular OCN, Runx2 expression, α-SMA expression, alizarin red calcium

staining, and calcium quantification]. Part 1 results: In our human population, calcification

was present (mean age 76 years), but no differences were detected between CKD

patients and controls. Plasma total OCN was increased in CKD patients compared to

controls (14 vs. 9 ng/mL; p < 0.05) and correlated to estimated glomerular filtration rate

(p < 0.05), however no relationship was detected between total OCN and calcification.

Part 2 results: in vitro, ALP activity, α-SMA expression and calcium concentrations were

significantly increased in MM treated VSMCs at day 21, but no effect of ucOCN was

observed. Cells treated with control media+ucOCN for 21 days did not show increases

in ALP activity nor calcification. In summary, although plasma total OCN was increased

in CKD patients, this study did not find a relationship between OCN and calcification in

CKD and non-CKD patients, and found no in vitro evidence of an active role of ucOCN

in vascular calcification as assessed over 21 days. ucOCN appears not to be a mediator

of vascular calcification, but further investigation is warranted.
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INTRODUCTION

Vascular calcification is a known major risk factor for
mortality and morbidity, particularly within chronic kidney
disease patients, and is an independent risk factor for
cardiovascular disease (1–3). CKD-mineral bone disorder (CKD-
MBD) entails derangements in mineral metabolism, bone
remodeling abnormalities, and accelerated medial and intimal
calcification, which worsens under haemodialysis (4). In stage
5 CKD patients, calcification in particular is driven by vascular
apoptosis and osteogenic differentiation triggered by increased
phosphate levels (4). Calcification involves the progressive
deposition of calcium within vessels, reducing elasticity and
impairing cardiovascular function by promoting mechanical
failure (5). As the human population continues to age and
increase longevity, the consequences of such diseases are further
pronounced. Long believed to be a passive part of aging
“wear and tear,” vascular calcification is now considered an
active, cell-mediated complex process that is a regulated form
of extracellular matrix bio-mineralisation but is not yet fully
understood (5, 6).

In bone, bio-mineralisation occurs via endochondral
ossification or membranous ossification programmed by
chondrocytes and osteoblasts, initiated by matrix vesicles
whose function is nucleation and growth of calcium crystals.
Vascular smooth muscle cells (VSMCs) can trans-differentiate
into osteoblast-like cells displaying osteogenic fingerprints
generally characterized by a decrease in smooth muscle cell
markers (e.g., α-SMA, SM-MHC) and an increase in osteogenic
markers such as alkaline phosphatase (ALP), Runx2, SOX9,
and osteocalcin (6, 7). In a remarkably similar way to bone,
differentiated VSMCs demonstrate hydroxyapatite production
and mineralisation (6). Hydroxyapatite crystals form within
matrix vesicles secreted from the membranes of osteoblasts,
odontoblasts, and chondrocytes (8). These buds provide a
nidus for calcium, phosphate and mineral nucleation which
is then deposited in the extracellular matrix between collagen
fibrils (8). This active osteogenic process can be triggered by
oxidative stress, oxylipids, phosphate, inflammatory oxylipids,
and oxLDL (6).

Osteocalcin (OCN) is the most prominent non-collagenous
protein found in the bone extracellular matrix, predominantly
produced by osteoblasts and can be found in the circulation
following bone resorption (9, 10). Osteocalcin has three main
forms, carboxylated osteocalcin (cOCN), undercarboxylated
osteocalcin (unOCN) and uncarboxylated osteocalcin (ucOCN).
The carboxylation process is vitamin K dependent and induces
a high affinity of osteocalcin for the calcium ions present in
hydroxyapatite. OCN is additionally expressed by differentiated
osteoblast-like VSMCs (7, 11). Interestingly, it has been shown
that OCN is not required for bone mineralisation in mice (12,
13). It has been reported that OCN may delay nucleation and
growth of hydroxyapatite in pig bone, and if this is also the
case in differentiated VSMCs, OCN may be viewed as a vascular
calcification inhibitor (14). Embedded OCN in calcified vascular
regions has been positively correlated to the extent of vascular
calcification in humans, but circulating concentrations have had

conflicting reports (15). There has been very little experimental
evidence documented on the role of OCN in calcification, and
none to date in human cells nor using ucOCN. In mice, it has
been demonstrated that OCN stimulates glucose utilization and
promotes VSMC mineralisation and osteogenic differentiation,
in particular through HIF-1α activation (16).

Investigation of OCN in human VSMCs is required to
clarify its physiological importance. We measured circulating
concentrations of total OCN in chronic kidney disease patients
and in controls, and analyzed this alongside vascular calcification
data. In vitro, we hypothesized that the addition of ucOCN
at physiological and pathophysiological concentrations to
human aortic VSMCs may increase the speed or extent of
osteogenic calcification.

MATERIALS AND METHODS

Patients
Investigations were performed on baseline data from a single-
center cohort of blood pressure-controlled hypertensive CKD
patients (n= 28) and age-matched controls (n= 19) (see Table 1
for patient demographics) (17, 18). The study was originally
approved by the Local Regional Ethics Committee and all
patients gave informed consent. Plasma levels of osteocalcin
(OCN) were measured using a commercially available assay

TABLE 1 | Population characteristics.

Non-CKD controls

(mean ± SD)

CKD patients

(mean ± SD)

T-test

(p-value)

N = 19* N = 29*

Gender (F/M) 7/12 13/16

Age (years) 76 ± 4.8 76 ± 4.4 NS

BMI (kg/m²) 25.90 ± 4.00 25.40 ± 3.50 NS

Mean blood

pressure (mmHg)

103.50 ± 9.80 104.00 ± 12.30 NS

Serum creatinine

(µmol/L)

73.80 ± 21.00 143.70 ± 56.60 <0.0001

eGFR (mL/min per

1.73m2 )

93.11 ± 35.85 42.97 ± 13.73 <0.0001

Urine

protein/creatinine

ratio

0.11 ± 0.04 0.31 ± 0.42 <0.05

Hemoglobin (g/dL) 13.98 ± 1.69 12.76 ± 1.74 <0.01

Urea (mmol/L) 5.81 ± 1.79 9.67 ± 2.95 <0.0001

Corrected calcium

(mmol/L)

2.37 ± 0.09 2.33 ± 0.08 NS

Phosphate

(mmol/L)

1.07 ± 0.16 1.09 ± 0.14 NS

PWVcf (m/s) 13.63 ± 2.73 12.93 ± 2.40 NS

Calcium scorea 2.50 (0.00–29.00) 3.50 (0.00–30.75) NS

Calcification

densitya
2 (0–3) 2 (0–4) NS

BMI, body mass index; eGFR, estimated glomerular filtration rate; PWVcf, carotid-femoral

pulse wave velocity; NS, not significant. aMedian and interquartile range; *n = 16 for

non-CKD, n = 22 for CKD patients with valid calcium score data.
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FIGURE 1 | (A) Mean (± SD) osteocalcin (OCN) concentrations of stage 3 CKD patients, stage 4 CKD patients and age-matched controls. Differences were assessed

by one-way ANOVA. **** indicates p < 0.001. (B) The osteocalcin-eGFR (estimated glomerular filtration rate) relationship, assessed by Spearman’s correlation (r =

−0.32; p < 0.05). (C) Mean (± SD) calcification scores of CKD patients and age-matched controls.

(Milliplex MAP Human Bone Magnetic Bead Panel Cat
no HBNMAG-51K, MerckMillipore). Multislice computed
tomography (MSCT) was used to quantify calcification.
A standardized section of the superficial femoral artery
(SFA), 20 cm above the tibial plateau, 5 cm in length was
imaged in n = 20 2.5mm slices per person; care was taken to
ensure that none of the slices overlap. Each slice was scored
individually and a calcification score was generated. Calcification
was considered to be present if an area ≥1mm displayed
a density >130 Hounsfield units (19). Validation studies
confirmed that the scoring technique is highly reproducible.
Inter-observer reproducibility between the investigator and
a consultant radiologist was assessed in a 1-in-20 sample.
The intraclass correlation was 1 [confidence interval (CI)
1 to 1] and the CoV was 3.9%. Repeatedly scored scans
showed an intra-observer intraclass correlation of 1 (CI
1 to 1) and a CoV of 2.4%. Carotid-femoral pulse wave
velocity (PWVcf) was assessed by ECG-gated applanation
tonometry using a SphygmoCor R© (AtCor Medical Pty Ltd.,
Australia). Non-invasive continuous pulse wave analysis
was used to determine hemodynamic variables, described
previously (17).

Cell Culture
Primary human aortic smooth muscle cells (HASMCs)
were obtained from PromoCell (UK) and maintained
at 37◦C in a humidified incubator supplemented with
5% CO2 in commercially available smooth muscle cell
growth media (PromoCell, UK). Cells were used at passage
4 and 5. Human osteoblasts (HOBs) were originally
isolated from human femoral head trabecular bone and
have been characterized previously (20–22). HOBs were
cultured in osteoblast growth media (PromoCell, UK) and
maintained as above. All experiments were performed in
confluent cells. After experimental treatments, cell media
and cell lysates were collected and frozen at −80◦C prior
to analysis.

Osteocalcin
Human fully uncarboxylated osteocalcin [ucOCN; amino acids
1–49, (Glu17,21,24)] was purchased from AnaSpec Inc. CA (AS-
65307). The same batch of ucOCN has been previously shown
to be biologically active in vascular cells in our previous work
(23). Additionally, samples of ucOCN were routinely measured
by duoset ELISA (see osteocalcin quantification section below)
to monitor stability and consistent concentration throughout the
experimental period. We used ucOCN as it has previously been
deemed the “active” form of osteocalcin within the circulation
and is present in higher concentrations than cOCN. Based on
our patient data (Figure 1B), 10 and 30 ng/mL concentrations of
ucOCN were chosen.

Calcification Experiments
For inducing calcification, cells were grown in commercially
available mineralisation media (PromoCell, UK; C-27020) for
up to 21 days. Due to its proprietary nature the exact media
composition is not disclosed, however it was communicated by
personal email with PromoCell to contain elevated phosphate
concentrations similar to those used in the published literature to
induce calcification. Cells were treated with or without ucOCN
(10 or 30 ng/mL). Media and ucOCN were replaced every 3rd
day. All experiments were performed independently at least three
times, with a minimum n = 2 for each condition at each time
point, with the exception of the HOBS experiments which were
performed twice.

Osteocalcin, MMP-3 and IL-1β, and
Quantification
Total human intracellular and extracellular osteocalcin was
measured using an enzyme linked immunosorbent (ELISA)
duoset assay (R&D systems, DY1419). Whole cell lysates and
spent cell culture media were collected on days 0, 6, 12 18, and 21.
Secreted human total matrix metalloproteinase-3 (MMP-3) and
interleukin-1β (IL-1β) were measured using ELISA kits (R&D

Frontiers in Endocrinology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 369

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Millar et al. Osteocalcin Effects on in vitro Vascular Calcification

systems, DY513 and DY201). Assays were performed according
to manufacturer’s instructions.

Total Protein Quantification
A bicinchoninic acid protein (BCA) assay was performed to
quantify the total protein content in cell lysates at days 0, 6, 12, 18,
and 21 (24). The BCA working reagent was prepared by mixing
BCA solution with copper (II) sulfate pentahydrate 4% solution
(Sigma-Aldrich, UK) at a 50:1 ratio. Protein concentrations of
samples were determined by interpolation against a bovine serum
albumin standard curve.

Alizarin Red Staining and Calcium
Quantification
Alizarin Red, or 1,2-dihydroxyanthraquinone was used to
stain hydroxyapatite mineralized matrixes in cell monolayers
producing a red-orange color. Alizarin Red powder (Sigma
Aldrich) was dissolved in dH2O to make a 40mM solution,
and pH adjusted to 4.1–4.3 with 0.5% ammonium hydroxide.
Cells were fixed with 10% (v/v) formaldehyde (Sigma Aldrich) at
room temperature for 15min. The monolayers were then washed
twice with excess dH2O. Alizarin Red solution was then added
to each well and incubated at room temperature for 20min.
The unincorporated dye was then removed and the plates were
washed 4 times with excess dH2O. To extract and quantify
the incorporated dye, 10% (v/v) acetic acid was added to each
well. The cell layer mixture in acetic acid was then collected
into eppendorfs, vortexed, and overlaid with mineral oil. The
eppendorfs were heated to 85◦C for 10min and transferred to ice
to cool. The samples were centrifuged at 20,000 × g for 15min
and the supernatants removed and neutralized with ammonium
hydroxide (10% v/v). Colorimetric detection was then carried out
at 405 nm and data expressed as absorbance.

Calcium content was measured using a calcium detection
assay kit (Abcam, ab102505) according to manufacturer’s
instructions. Briefly, cells were decalcified overnight with
0.6M hydrochloric acid (HCL). The calcium contents of the
supernatants were then quantified using the 0-cresolphthalein
method in which a chromogenic complex is formed between
calcium ions and 0-cresolphthalein and then measured at
575 nm using a spectrophotometric plate reader (25). Calcium
quantification was performed on days 0 and 21.

Alkaline Phosphatase (ALP) Activity
ALP activity was measured using an ALP detection
assay kit (Abcam, ab83369) according to manufacturer’s
instruction. Briefly, p-nitrophenyl phosphate (pNPP) was
used as a phosphatase substrate which turns yellow when
dephosphorylated by ALP and absorbance was measured at
405 nm using a spectrophotometric plate reader. ALP activity
was measured on days 0, 6, 12, 18, and 21.

α-SMA, Runx2, and Sox9 Protein
Expression
Cell lysate supernatants were collected and protein samples (10
µg/lane) were resolved by electrophoresis on 10% Mini-protean
TGX precast gels (Bio-Rad Laboratories, Inc., UK). The proteins

were wet transferred to a nitrocellulose membrane. Protein
bands were visualized by staining with Ponceau S stain and
imaged to quantify total lane protein as previously described
(26).Membranes were then incubated in blocking buffer followed
by incubation with either rabbit anti-human smooth muscle
alpha actin (Abcam, ab32575, 1:2,500 dilution), goat anti-human
Runx2 (R&D systems, AF2006, 1:2,000 dilution), or goat anti-
human Sox9 (R&D systems, AF3075, 1:400 dilution) overnight
at 4◦C. The membrane was then washed and incubated for 1.5 h
at room temperature with alkaline phosphatase conjugated anti-
rabbit secondary antibody (Sigma, Catalog No. A3937, 1:25000
dilution in 3% marvel in TBST) or anti-goat secondary antibody
(Abcam, ab97097, 1:5,000 dilution in 3% marvel in TBST).
Immunoreactive bands were visualized by chemiluminescence
(Bio-Rad Immun-StarTM AP Substrate Pack #1705012). Protein
bands were visualized using the ChemiDocTM MP Imaging
system with Image LabTM software (Bio-Rad). Proteins were
normalized to total lane protein as determined by Ponceau
S staining.

Statistical Analysis
For the population data, univariate comparisons of continuous
variables between CKD patients and non-CKD controls were
performed using parametric or non-parametric (Mann-Whitney)
t-tests with or without Welch’s correction depending on
distribution and variance as appropriate. A one-way ANOVA
was used to assess differences in OCN concentrations between
controls, CKD stage 3, and CKD stage 4 patients correcting
for multiple comparisons with Dunnett’s multiple comparison
test. Spearman’s correlation tests were performed to assess the
relationships between OCN and other biological measurements
including estimated glomerular filtration rate (eGFR) and
cardiovascular parameters. Data are presented as means and
standard deviation (SD) for parametric data, and median and
interquartile range for non-parametric data are presented. For
the in vitro data, two-way ANOVAs were used to assess
differences between groups using day and treatment as factors
for ALP activity, OCN quantification, MMP-3 quantification,
IL-1β quantification and total protein quantification. One-
way ANOVAs were used to assess differences between groups
for Runx2, and α-SMA quantification, calcium quantification,
and alizarin red staining quantification. Data are presented
as means and standard error of the mean (SEM). Multiple
comparisons were adjusted for by Dunnett’s statistical hypothesis
test. All statistical analyses were performed using Prism 8 for
Windows (Version 8.01, GraphPad Software Inc.). P-values were
considered significant at p < 0.05.

RESULTS

OCN Concentration Is Increased in Stage 4
CKD Patients
The clinical characteristics of CKD patients and age-matched
non-CKD controls are summarized in Table 1. CKD patients
(stages 3 and 4, n= 29) had significantly higher serum creatinine
and urinary protein to creatinine ratio and significantly lower
eGFR and hemoglobin compared to controls (n = 19), as
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expected (Table 1). Other demographics and clinical parameters
were similar between the two groups.

Mean plasma total OCN concentration in controls was
9 ng/mL (± 4 ng/mL SD; n = 19), mean total OCN in stage
3 CKD patients was 11 ng/mL (± 5 ng/mL SD; n = 20), and
stage 4 CKD patients had a mean total OCN concentration of
22 ng/mL (± 7 ng/mL SD; n = 6). Total OCN was significantly
increased in CKD stage 4 patients compared to controls (p <

0.001; Figure 1A), and in CKD patients as a whole (mean 14
± 9 ng/mL) compared to controls (p < 0.05). Total OCN was
significantly correlated to eGFR in the total population, in that
there was a significant increase in total OCN concentrations
when eGFR decreased (n = 43; p < 0.05; Figure 1B). Vascular
calcification was detected in our sample population (mean age 76

years, Table 1) but calcium scores were not significantly different
between CKD patients as a whole and controls, or CKD patients
divided into stages compared to controls (Figure 1C). Total
OCN was not correlated with calcium score, calcium density or
pulse wave velocity within the CKD population or age-matched
controls (Supplementary Figure 1).

VSMC Morphology Is Lost in Cells Grown
in Mineralisation Media
VSMCs maintained in usual smooth muscle cell growth media
maintained classical spindle-shaped morphology of contractile
smooth muscle cells throughout the experimental time points
irrespective of treatment with or without ucOCN (Figure 2). In
contrast, cells maintained in osteoblast MM acquired a more

FIGURE 2 | Human aortic smooth muscle cells (SMCs) were cultured in usual growth media (control) with or without ucOCN (10 ng/mL), or mineralisation inducing

media (MM) with or without ucOCN (10 ng/mL). Photos (10X magnification) taken at days 0, 6, and 18 visualized by light microscopcopy. Control media treated cells

maintained a classical SMC phenotype while MM treated cells displayed a differentiated synthetic phenotype distinctly different to control cells.
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FIGURE 3 | Human aortic smooth muscle cells were grown in usual growth media (control), or mineralisation inducing media (MM) with or without ucOCN (10 ng/mL).

Total protein content (A), ALP activity (B), intracellular total osteocalcin (D), secreted MMP-3 (E), and secreted IL-1β (F) were measured at days 0, 6, 12, 18, and 21.

ALP activity was also measured in control and control + ucOCN treated cells (C). Data are represented by means with error bars representing SEM. Data were

analyzed by two-way ANOVA using mixed effects analysis and Dunnett’s test for multiple comparisons with *p < 0.05 and ****p < 0.0001 compared to control.

cobble-stone synthetic phenotype appearing by day 4 which
progressed until the end of the experiment (Figure 2) (27). There
were no visual differences between cells treated with MMwith or
without ucOCN.

No significant differences were detected in protein content
between any of the treatment groups and MM or ucOCN did not
affect total protein content (Figure 3A).

ALP Activity Is Increased in VSMCs
Cultured in Mineralisation Media
ALP regulates pyrophosphate levels and promotes calcification
by reducing pyrophosphate levels, as pyrophosphate is a potent
inhibitor of calcification through inhibition of hydroxyapatite
formation (28). Increased ALP activity is therefore used as a
classical marker of transdifferentiated smooth muscle cells and
of mineralisation and calcification. ALP activity was increased
in MM treated cells with and without ucOCN, significantly
apparent from day 6 with continued gradual increase until day
21 (Figure 3B; p < 0.001; days 6, 12, 18, and 21 compared
to control). Cells treated with MM with and without ucOCN
followed an identical trend, while cells maintained in normal
smooth muscle cell media did not increase ALP activity
throughout the experiment.

In a subset of experiments, cells were treated with normal
smooth muscle cell media and ucOCN alone (10 ng/mL) to
assess if ucOCN alone could stimulate calcification. There was
no significant increase in ALP activity levels in cells treated
with ucOCN which was undiscernible compared to control cells
without ucOCN (Figure 3C) over 21 days.

No Significant Differences Are Detected in
Intracellular Osteocalcin Concentrations
Between Treatments
Intracellular total osteocalcin appeared raised and fluctuated
slightly over time in MM treated cells particularly at days 6 and
12 but this did not reach significance and there was no effect

of ucOCN (Figure 3D). Extracellular secreted total osteocalcin,
which is a marker of vascular smooth muscle cell osteoblastic
differentiation, was not detected in any media samples after
removing background levels already present in culture media
over 21 days (data not shown).

No Differences Are Detected in Secreted
MMP-3 and IL-1β Concentration Between
Cells Treated With or Without ucOCN
MMP-3 and IL-1β are associated with vascular calcification (29,
30). MMP-3 secretion increased with time in control media
treated cells, and was increased compared to MM treated cells at
day 21 (p< 0.0001; Figure 3E).MMP-3 secretion did not increase
over time in MM treated cells, and no differences were detected
between those treated with or without ucOCN (10 ng/mL). IL-
1β secretion was also higher in control cells than those treated
withMM (p< 0.05, day 21; Figure 3F). There were no differences
between those treated with and without ucOCN (10 ng/ml).

ucOCN Does Not Affect Alizarin Red
Staining or Calcium Quantification
Alizarin red staining was used to detect calcification. In half
of the experiments performed, only mild calcification could be
detected by alizarin red staining in MM treated cells after 21
days (Figure 4A), while in the other half of experiments strong
calcification was detected (Figure 4B). A calcium quantification
assay was performed which detected an increase in calcium in
MM treated cells after 21 days, corresponding to the alizarin
red staining (p < 0.01, Figure 4C). In the experiments which
displayed strong calcification by alizarin red staining this was
confirmed by large significant increases in calcium detected using
the calcium assay (p< 0.01, Figure 4D). No calciumwas detected
in day 21 cells maintained in normal smooth muscle cell media.
There were no differences between MM treated cells with or
without ucOCN (10 or 30 ng/mL) in either the mild or strongly
calcified cell experiments (Figure 4). In a subset of experiments,
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FIGURE 4 | Human aortic smooth muscle cells (SMCs) were maintained in control media or mineralisation inducing media (MM). After 21 days, alizarin red staining

was used to visualize calcification and calcium quantification was determined using a calcium assay. In some experiments SMCs mildly or moderately calcified (A,C)

while in others they were strongly calcified (B,D). Data are presented as means with error bars representing SEM. Data were analyzed by one-way ANOVA with

**p < 0.01 and ***p < 0.001 compared to control.

cells were maintained in normal smooth muscle cell media
and treated with or without ucOCN alone (10 ng/mL). There
was no detection of calcification visually or by quantification
of alizarin red staining in these cells, and no differences were
observed between those treated with or without ucOCN (data
not shown). As a positive control, human osteoblasts (HOBs)
were maintained in normal growth media or MM media. Both
mild and moderate calcification was observed by visual alizarin
red staining, quantification of alizarin red staining, and also by
calcium quantification (Supplementary Figure 2).

ucOCN Treatment Increases α-SMA
Expression While Runx2 Is Not Affected
Runx2/Cbfa1 is a master transcriptional regulator essential for
ossification and is classically used as an osteogenic marker. α-
SMA is a classical smooth muscle cell marker and is usually
decreased in osteogenic differentiated VSMCs. Runx2 expression
was not increased in our MM treated cells and there were no
significant differences between groups (Figure 5B). However, in
our positive control experiment in HOBs, runx2 was significantly
increased in MM treated cells as expected (Figure 5A, p <

0.05 compared to control). Additionally, smooth muscle cells
treated with MM and ucOCN (10 and 30 ng/mL) displayed
an unexpected significantly increased expression of α-SMA

compared to control (Figure 5C; p < 0.05). Sox9 expression was
not detectable in our samples (data not shown).

DISCUSSION

Due to conflicting and limited epidemiological and in vitro
data on the relationship between OCN and vascular calcification
(15, 16), we aimed to investigate for the first time in human
aortic smooth muscle cells whether ucOCN affects the speed
or extent of vascular calcification, and to further assess any
relationship between plasma total OCN and CKD patients. This
study found a significant relationship between circulating total
OCN concentrations and renal function (eGFR) of CKD patients,
but found no in vitro evidence of an active role of ucOCN at
physiological and pathological concentrations during vascular
calcification as assessed over 21 days.

In our data, circulating total OCN concentrations were
significantly higher in CKD patients compared to age-matched
control patients, and were inversely correlated with eGFR. This
is consistent with previous studies in pre-dialysis CKD patients
which also found a negative relationship between OCN and GFR
(31, 32). Our circulating concentrations were similar to those
reported elsewhere for CKD haemodialysis patients (33). Levels
of OCN-positive circulating endothelial progenitor cells have
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FIGURE 5 | Human aortic smooth muscle cells (SMCs) were cultured in usual growth media (control), or mineralisation media (MM) with or without ucOCN (10 or

30 ng/mL). (A) Human osteoblasts (HOBs) were also cultured in control or MM and Runx2 expression was measured by western blotting. Expression of Runx2 (B)

and α-SMA (C) in SMCs were measured by western blotting on day 21. Data are presented as means with error bars representing SEM. Data were analyzed by

one-way ANOVAs or t-tests with *p <0.05.

been found to be increased in haemodialysis patients compared
to controls (34). Total OCN was not however correlated with
calcification scoring or carotid-femoral pulse wave velocity, a
measure of arterial stiffness, in our group as a whole. There
were no significant differences between our control group and
CKD group in cardiovascular measurements but perhaps if more
prominent calcification was present in our sample a correlation
may have been identified. There also may be a distinct difference
in the role of ucOCN vs. carboxylated OCN (cOCN), however
these different forms are not routinely measured and could
not be investigated (35). The patients assessed were stage 3
and stage 4 CKD patients, and it is possible that stage 5
CKD patients would have higher concentrations of circulating
OCN, and thus a relationship with calcification may become
apparent. In our previous meta-analysis of the relationship
between OCN and vascular calcification, no conclusion could
be drawn on the relationship due to heterogeneous data and
conflicting results (15). In the present study, the results do not
promote the viewpoint of OCN having a causal, active effect on
vascular calcification.

Our in vitro findings reject a hypothesis for a direct
involvement of ucOCN in vascular calcification. After 21 days,
cells cultured in mineralisation inducing media had calcium
depositions and increased ALP activity, alongside distinctly
altered morphology. Control cells did not have any calcium
detected, nor increases in ALP, and retained classical vascular
smooth muscle cell morphology. The addition of ucOCN at two

concentrations (based on levels measured in our CKD patients)
did not affect the endpoints examined, suggesting that ucOCN
does not have a direct role in vascular calcification but is rather
a by-product of osteogenic transdifferentiation. Furthermore,
addition of ucOCN alone to control cells did not increase
ALP activity nor induce calcification. It is important to note
that within our experiments, assessing endpoints individually
between those that displayed strong calcification, and those
that showed mild calcification, also did not reveal an effect of
ucOCN. Despite components of the osteogenic fingerprint of
transdifferentiated vascular smooth muscle cells being observed
(such as increased ALP and calcium), a couple of unexpected
results were also obtained. Differentiated VSMCs displayed an
increased expression of α-SMA when treated with ucOCN,
which is usually decreased in osteogenic differentiated cells,
and no changes in Runx2 expression were observed, which is
usually increased (6). It is noteworthy that cells treated with
mineralisation media alone did not significantly increase α-SMA
expression, only with the addition of ucOCN did the increase
in expression become significant. Combined with the lack of
change in Runx2 expression, it could be speculated that ucOCN
is possibly inhibiting differentiation (as α-SMA is a classical
VSMC marker). Although these findings were unexpected it is
widely appreciated that VSMCs possess remarkable phenotypic
flexibility and it may simply transpire that the cells in these
experiments represent an earlier phenotype before complete
differentiation and widespread calcification. The mechanisms
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of vascular calcification and endochondral transitioning is a
complex research area that is not fully understood. The increase
in α-SMA however is interesting and it has been reported
elsewhere that a higher expression has been observed in
mineralised nodules in aortic VSMCs (36). Of note, in calcific
aortic stenosis, the smooth muscle cell phenotype remains,
and in myofibroblast differentiation and calcification, Runx2
and α-SMA are dually increased in the osteogenic/osteoblastic
phenotype (37, 38). As multiple sub-populations of VSMCs exist,
including synthetic, contractile, and particularly calcifying prone
cell phenotypes, we recommend other sources of VSMCs are
investigated with ucOCN to confirm our findings (39, 40). Lastly,
it may transpire that cOCN, which has a higher affinity for
calcium ions, may be more relevant in vascular calcification and
further studies should also address this specifically.

In mildly-calcified cells, ucOCN did not increase calcification,
and in strongly-calcified cells ucOCN did not decrease
calcification. Previously, OCN has been proposed to be
involved in the regulation of arterial calcification as it is present
in calcified regions in humans (15). In a rabbit in vivo model,
OCN was detected in 8- and 14-day calcified structures but not
earlier, suggesting OCN may not be involved in the initiation
of calcification but rather later regulation (41). Elsewhere,
OCN levels increased with osteogenic differentiation in two
different mice cell lines, chondrocytes and VSMCs, and when
overexpressed, OCN functioned as a stimulator of differentiation
and mineralization, upregulating Sox9, Runx2, collagen type
X, ALP, proteoglycans, and mineral content in both of these
cell types (16). In matrix GLA protein null mice (MGP−/−)
OCN did not display any anti-mineralisation function in arteries
nor did over-expression of OCN in osteoblasts inhibit normal
mineralisation in bone (13). A correlation between aortal
calcification and elevation of OCN in 1,25(OH)2D3-treated rats,
which was hampered by OCN siRNA silencing, has also been
shown (16). Importantly however, these studies have not been
performed in humans or human cells, thus this study is the first
to examine the effects of ucOCN in human VSMCs.

Our examination of IL-1β and MMP-3 secretion revealed
some interesting insights. IL-1β has emerged in recent years as
a potential stimulator of vascular calcification for example by
increasing ALP activity, and has been proposed as a marker
of inflammatory calcification (29, 42). In contrast, we found
significantly increased secretion of IL-1β over time in control
cells only, compared to mineralisation media treated cells. It
may transpire that immune cell secreted IL-1β contributes
to calcification of VSMCs, but IL-1β secreted from VSMCs
themselves does not induce calcification. At least in our
experiments, VSMC secreted IL-1β may even be protective, as
calcified cells did not have increased levels. Differential cell
specific actions of IL-1β have previously been demonstrated, for
example addition of IL-1β to chondrocytes in vitro was shown
to inhibit ALP activity (42). Similarly, MMP-3 secretion was
increased over time in control cells only, particularly apparent at
day 21.MMP-3 is required for the degradation of the extracellular
matrix and has been associated with vascular calcification,
particularly within atherosclerotic plaques (30). However, our
results would suggest that MMP-3 secretion from VSMCs may

be protective against calcification as control cells did not calcify.
This may be due to differences in models of calcification used,
and more pro-inflammatory and atherosclerotic models may
show different effects of IL-1β andMMP-3. Importantly however,
there was no inhibitory or stimulatory effect of ucOCN on either
IL-1β or MMP-3 secretion.

CONCLUSIONS

OCN has been consistently detected in vascular calcification
plaques. However, circulating total OCN levels were not
correlated with calcification or pulse wave velocity in our study
population. ucOCN over 21 days did not, in either mild or strong
calcification instances, increase the speed or extent of osteogenic
calcification of humanVSMCs, nor showed any inhibitory effects.
The major limitations of our study include measurement of total
OCN only in our human population, and studying a population
which had a low level of calcification. Additionally, we only
assessed in vitro the affects of one circulating form of osteocalcin;
ucOCN. The results presented in this study suggest that ucOCN is
likely not an active contributor to calcification, but its consistent
presence detected in vascular calcification reported in relevant
literature may indicate that it is simply a resulting product of
the process of calcification and trans-differentiation of osteogenic
vascular cells. Further investigations of other circulating forms
of OCN and in other vascular cell types and conditions are
recommended to confirm these findings.
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