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Abstract 

The venetoclax BCL2 inhibitor in combination with hypomethylating agents represents a cornerstone of 

induction therapy for older AML patients, unfit for intensive chemotherapy. Like other targeted therapies, 

venetoclax-based therapies suffer from innate and acquired resistance. While several mechanisms of 

resistance have been identified, the heterogeneity of resistance mechanism across patient populations is 

poorly understood. Here we utilized integrative analysis of transcriptomic and ex-vivo drug response data 

in AML patients to identify four transcriptionally distinct VEN resistant clusters (VR_C1-4), with distinct 

phenotypic, genetic and drug response patterns. VR_C1 was characterized by enrichment for differentiated 

monocytic- and cDC-like blasts, transcriptional activation of PI3K-AKT-mTOR signaling axis, and energy 

metabolism pathways. They showed sensitivity to mTOR and CDK inhibition. VR_C2 was enriched for 

NRAS mutations and associated with distinctive transcriptional suppression of HOX expression. VR_C3 

was characterized by enrichment for TP53 mutations and higher infiltration by cytotoxic T cells. This 

cluster showed transcriptional expression of erythroid markers, suggesting tumor cells mimicking erythroid 

differentiation, activation of JAK-STAT signaling, and sensitivity to JAK inhibition, which in a subset of 

cases synergized with venetoclax. VR_C4 shared transcriptional similarities with venetoclax-sensitive 

patients, with modest over-expression of interferon signaling. They were also characterized by high rates 

of DNMT3A mutations. Finally, we projected venetoclax-resistance states onto single cells profiled from a 

patient who relapsed under venetoclax therapy capturing multiple resistance states in the tumor and shifts 

in their abundance under venetoclax selection, suggesting that single tumors may consist of cells mimicking 

multiple VR_Cs contributing to intra-tumor heterogeneity. Taken together, our results provide a strategy to 

evaluate inter- and intra-tumor heterogeneity of venetoclax resistance mechanisms and provide insights into 

approaches to navigate further management of patients who failed therapy with BCL2 inhibitors. 
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Introduction  

AML (Acute Myeloid Leukemia) cells often upregulate the anti-apoptotic protein BCL2 to avoid apoptosis, 

thus targeting BCL2 represents an attractive therapeutic opportunity in AML1. Treating AML with a 

combination of venetoclax (VEN), a BCL2 inhibitor, and hypomethylating agents like azacitidine (AZA), 

is highly effective, especially in older patients who cannot tolerate intensive conventional therapy2-4. 

However, as is the case with other targeted therapies, VEN-based therapies are associated with frequent 

primary and acquired resistance4,5, with long-term cure rates of less than 25%. Considerable efforts have 

been made to identify mechanisms of resistance in VEN-based therapies and strategies to overcome them1,5. 

The efficacy of VEN therapies has been linked to their ability to eliminate leukemia stem cells (LSCs), that 

have capacity for self-renewal6. AML LSCs are dependent on OxPhos6 driven by upregulating amino acid 

(AA) metabolism7. Combination of VEN and AZA suppresses AA uptake7, resulting in cell death. 

Consequently, activation of alternative energy metabolism pathways that can compensate for VEN 

mediated suppression of OxPhos result in resistance and present a viable target to eradicate VEN resistant 

LSCs8,9. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) screening in a lymphoma 

cell line has also linked increase in OxPhos through dysregulation of AMPK signaling to VEN resistance10. 

CRISPR screens have also linked mitochondrial structure and function to VEN resistance11,12. Disruption 

of mitochondrial structure11 and translation12 result in induction of stress response pathways that re-

sensitizes cells to VEN. Intriguingly loss of TP53 expression, which has been linked to VEN resistance is 

also accompanied by increased OxPhos13. 

Recent studies have linked differentiation status of AML cells to VEN resistance. Using clinical samples, 

Pei et al.14 showed that monocytic AML (more differentiated monocytic(Mono)-like AML cells) suppress 

BCL2, have high expression of OxPhos genes and rely on MCL1 for energy metabolism and survival, 

rendering them inherently resistant to VEN+AZA therapy. Emergence of monocytic clones can occur upon 

relapse14. Correlating deconvoluted abundances of blasts, delineated by development status, from bulk-

RNAseq with ex-vivo drug responses showed association of VEN resistance with enrichment of Mono-like 

blasts15,16. Enrichment of monocytic signature was also observed in primary human AML specimens 

resistance to VEN ex vivo17. However, data from a clinical trial18 did not recapture this association and 

recent study by Waclawiczek et al.19 suggests that resistance to VEN+AZA is predictable from expression 

patterns of BCL2 family of proteins in LSCs rather than presence of Mono-like sub-populations. A recent 

study has also linked VEN resistance to erythroid (FAB(French-American_British classification)-M6) and 

megakaryocytic (FAB-M7) leukemias, driven by over-expression of BCL2L120. Taken together, this body 

of work suggests that developmental characteristics of AML blasts can influence sensitivity to VEN-based 

therapies. As described above differentiated AML blasts often over-express other anti-apoptotic proteins 

like MCL1, BCL2L1 and BCL2A1 that can mitigate efficacy of VEN-based therapies1,5,21. While their 

inhibition presents an approach to overcome VEN resistance in vitro20,21, toxicities associated with their 

inhibition has limited their clinical application5,22,23. Thus, there is a need to identify alternative approaches 

to target VEN resistant differentiated blasts.  

While significant efforts in the field have revealed various mechanisms of resistance to VEN therapy, 

heterogeneity of these mechanisms in patient population and associated therapeutic vulnerabilities are 

poorly understood. Analysis of patient cohorts have linked common mutations in AML such as tandem 

duplication in FLT3 (FLT3-ITD), TP53, RAS and PTPTN1 among others21,24,25 to VEN resistance. 

Indicating diverse contribution of genetic alterations to VEN resistance, which might point to associated 

mechanistic heterogeneity. However, integrative multi-omics analysis has not been performed across large-
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scale AML cohorts to elucidate VEN resistance states. In this study, we used integrative analysis of bulk-

RNAseq and ex-vivo drug response data to identify four transcriptionally distinct clusters/states of VEN 

resistant patients. These states have distinct mutational, phenotypic and drug response characteristics, 

capturing inter-tumor heterogeneity associated with VEN resistance. Using single cell RNAseq 

(scRNAseq), we also illustrate that multiple resistance states can be present in a single tumor and can 

therefore facilitate interrogation of intra-tumor heterogeneity associated with VEN resistance.  

Results 

Decomposing VEN resistance gene-expression signature in VEN resistant patients to capture inter-patient 

heterogeneity 

To explore transcriptional heterogeneity underlying VEN resistance in AML, we first derived a gene-

expression signature associated with VEN resistance from cell-lines (Figure 1A), with homogeneously 

defined relationships between gene expressions and drug responses. Briefly, a Gaussian mixture model was 

fitted to VEN AUC (Area Under Curve) values of leukemia cell lines to identify VEN sensitive and resistant 

cell lines (Figure 1A left and S1B, see Methods). Differential expression analysis comparing resistant and 

sensitive cell-lines identified 1297 differentially expressed genes (DEGs, q < 0.1 and absolute log2 fold-

change (log2FC) > 1; Figure 1A right). The signature was enriched for genes in Heme metabolism, KRAS 

signaling (down) and myogenesis pathways (Figure S1C, q< 0.1). Genes in the signature with low variance 

and mean expression in patient samples from BeatAML126 were filtered out (see Methods). Post-filtering 

(613 genes), the signature retained its functional enrichment profile (Figure S1C). Next, VEN resistant 

patients (VRPs) in BeatAML1 were identified (see Methods). We extracted normalized expression levels 

of the signature genes and decomposed them into constituent factors and their contribution in each sample 

using non-negative matrix factorization (NMF) (Figure 1B and see Methods). The NMF components 

described different gene expression programs, constituting the resistance signature, and loadings of the 

components reflecting their respective contribution in each sample. The patient loadings in these programs 

were scaled and clustered, using consensus clustering, to identify four clusters of VRPs (VEN resistant 

clusters (VR_Cs) 1-4; Figure 1C, Table 1, see Methods). We refer to the VR_Cs along with the VEN 

sensitive patients, or VSC (VEN sensitive cluster), collectively as the five VEN responsive states (VRS) in 

the following sections. 

Clinical and genetic characteristics of VRS 

We compared clinical characteristics between VRS to assess phenotypic differences (Figure 2A-B). We 

identified several clinical factors that show variability across VRS (q < 0.1; Figure 2A). VR_C1 was 

characterized by the high monocytic % in peripheral blood (PB) (Figure 2A) and enrichment for FAB_M5 

patients (72%, Figure 2C) indicating enrichment for Mono-like blasts. VR_C1 also showed elevated levels 

of lactate dehydrogenase (LDH), aspartate transaminase (AST) and mean corpuscular volume (MCV) 

(Figure 2A), consistent with tissue damage, liver, and bone marrow (BM) dysfunction, respectively. 

VR_C3, in contrast, was characterized by patients who were older at diagnosis, had low PB blast %, low 

white blood cell (wbc) counts, with high neutrophil % and lymphocytes % in PB (Figure 2A). We also 

observed modest enrichment (~36%) for residual samples (i.e., cancer remaining after chemotherapy). 

VR_Cs also showed specific and prominent risk distinctions as defined by European LeukemiaNet 

(ELN)2017 classification: with VSC and VR_C4 showing enrichment for patients with favorable 

classification (~ 36% and 41% respectively), VR_C3 for patients classified as non-initial (i.e., specimen is 
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not at initial diagnosis when ELN was accessed; 51%), and VR_C2 showed a modestly higher rate of 

patients classified with adverse risk (30%) and FAB_M2 (50%, Figure 2C). Further, we also observed 

distinct patterns of clinical characteristics between VR_Cs and VSC (adjusted p-value < 0.1; Figure 2B): 

All VR_Cs except for VR_C4 showed significantly lower blast % in PB and BM relative to VSC, while 

other clinical variables like monocytic % in PB, age at diagnosis and lymphocyte % in PB showed cluster 

specific differential patterns (Figure 2B). While correlation of clinical variables to VEN AUC have been 

previously reported21, our analysis localized these associations to specific patient clusters. 

VRS also showed distinct mutational patterns (q < 0.1; Figure 2C); FLT3 and NPM1 are more frequently 

mutated in VSC, VR_C1 and 4. VR_C1 and 4 were further enriched for mutations in DNMT3A, while IDH1 

mutations were found mainly in VR_C4 (Figure 2C). VR_C1 also showed a strong preference for FLT3-

TKD mutations (4/9 mutants). Of the FTL3-ITD mutants, all but one was spread across resistant clusters 

(VR_C2-4). RAS mutations, which have been associated with VEN resistance14,21 were frequently present 

in VR_C2 (NRAS (~35%) and KRAS (~14%)) and showed modest mutation rates in VR_C1 (~14% for 

both). NRAS mutations in VR_C2 were also mutually exclusive from FTL3 mutations (Figure S2A, top). 

VR_C3 was characterized by mutations in DNMT3A (16%), FLT3 (19%), TP53 (19%) and SRSF2 (28%) 

(Figure 2C). Of note, TP53 mutants in VR_C3 were mutually exclusive from mutations in SRSF2 and 

FLT3 (Figure S2A, bottom). 

These data indicate that the VR_Cs derived from transcriptomic data have distinct phenotypic and genomic 

characteristics, further underlining the heterogeneity associated with VEN resistance.  

Cell type composition of VRS 

VEN resistance has been linked to differentiation status of blasts14-16. In agreement with these findings, 

sensitivity to VEN was positively correlated with the abundance of less differentiated progenitor-like (Prog-

like) blasts and inversely with abundance of more differentiated Mono-like blasts and cDC-like blasts (q< 

0.1; Figure S2B). Resistant samples also showed enrichment of differentiated blasts and depletion of prog-

like blasts (q < 0.1; Figure S2C). However, cell-type composition varied among VR_Cs (Figure S2D). 

While there was a general trend for enrichment for Mono-like blasts in VR_Cs relative to VSC, the 

difference was most prominent in VR_C1, along with enrichment for cDC-like blasts (Figure 2D and 

Figure S2E), which agreed with the enrichment of FAB-M5 tumors in VR_C1 (Figure 2C). The depletion 

in prog-like blasts relative to VSC was restricted to VR_C1 and 3 (Figure 2D and S2E). Interestingly, 

VR_C2 and 3 had significantly higher fractions of less differentiated hematopoietic stem cell (HSC) and 

granulocyte-monocyte progenitor (GMP)-like blasts compared to VR_C1 with levels being comparable to 

VSC (Figure 2D and S2E). VR_C4 was characterized by high prevalence of progenitor-like blasts, like 

VSC, along with high cDC-like blasts (Figure 2D and S2E). 

These data suggest that while we recapture the association of VEN resistance with high prevalence of 

monocytic blasts, the cell-type composition of VR_Cs varies. VR_C1 strongly recapitulates previously 

described15,16 enrichments for monocytic blasts and depletion of stem cell-like blasts in VEN resistant 

patients (Figure S2E). In contrast, other VR_Cs showed relative enrichment for more immature cell types 

as in VR_C4 (Prog-like) and VR_C3 (HSC and GMP-like; Figure S2E).  

Transcriptional characteristics of VRS 

We next accessed differential activity of pathways in the VR_Cs using differential expression and gene-set 

enrichment analysis (GSEA)27. VR_Cs as a collective were characterized by increased activity of 
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inflammatory pathways (Interferon signaling, interleukin(IL)2- signal transducer and activator of 

transcription (STAT)5 signaling, IL6-STAT3 signaling, tumor necrosis factor (TNF)α signaling, allograft 

rejection etc.), modest activation of cell surface components/signaling (apical surface, apical junction and 

notch signaling) and other pathways like apoptosis, kirsten rat sarcoma viral oncogene homolog (KRAS) 

signaling, TP53 pathway, epithelial mesenchymal transition (EMT), angiogenesis and hypoxia associated 

with malignant transformation and progression relative to VSC (Figure S2F). When the comparison was 

broken down to level of individual VR_Cs, many of the inflammatory pathways (IL2-STAT5 signaling, 

IL6-STAT3 signaling, TNFα signaling, allograft rejection, interferon signaling) and KRAS signaling up 

were upregulated across VR_Cs (Figure 2E). Interestingly, VR_C4 that had the lowest VEN AUC of the 

VR_Cs showed few differences relative to VSC unlike the other VR_Cs, which indicates a degree of 

transcriptional similarity between VR_C4 and VSC.  

While these results recapitulated many of the general trends of pathway activity in VR_Cs as a whole 

(Figure S2F), we also identified cluster specific difference between individual VR_Cs and VSC (Figure 

2E), as well as differences between VR_Cs (Figure 2F). VR_C1 showed specific activation of several 

metabolic pathways (glycolysis, OxPhos and fatty acid metabolism (FAM)) and activation of the 

(phosphatidylinositol 3-kinase) PI3K_mTOR pathways (PI3K-AKT-MTOR and MTORC1 signaling), 

which is a regulator of metabolic pathways28, relative to VSC (Figure 2E). These trends were also captured 

relative to other VR_Cs, with VR_C1 showing high OxPhos, FAM (vs VR_C2-3), glycolysis (vs VR_C2 

and 4), PI3K-AKT-MTOR (vs VR_C2 and 4) and MTORC1 signaling (vs VR_C2 and 4) (Figure 2F). 

Comparing activity of signaling pathways inferred using progeny29 (see Methods), VR_C1 was 

characterized by activation of PI3K signaling relative to other VRS (q < 0.1, Figure S2G-H), consistent 

with GSEA. 

VR_C2 did not show any unique pathway differentially regulated relative to VSC and other VR_Cs (Figure 

2E-F and S2H). However, we observed suppression of transcriptional activity and expression of homeobox 

A cluster (HOXA) and homeobox B cluster (HOXB) genes (Figure S2I-J). While the mechanistic 

implications of this observation are unclear, suppression of HOX expression has previously been reported 

as a likely biomarker for resistance to VEN+AZA therapy30.  

VR_C3 was characterized by activation of estrogen signaling, cell surface components (apical surface and 

apical junction) and EMT relative to VSC (Figure 2E), which could indicate perturbation in cell-cell 

signaling in the tumor microenvironment (TME). Many of these pathways were also over-expressed in 

VR_C3 relative to other VR_Cs (Figure 2F). VR_C3 furthermore showed a general trend of TP53 pathway 

activation, UV response and apoptotic signaling (Figure 2E-F). Dysregulation of these pathways in VR_C3 

together with observed higher rate of TP53 mutation (Figure 1C) could indicate dysregulation of TP53 

signaling and its regulation of DNA damage and apoptosis. Intriguingly, mutations25 and silencing13 of 

TP53 have been linked to VEN resistance. VR_C3 also showed activation of angiogenesis and hypoxia 

pathways relative to other clusters (Figure 2F-G), which was consistent with high hypoxia and (vascular 

endothelial growth factor) VEGF signaling inferred by Progeny (q < 0.1, Figure S2G-H). Progeny inferred 

signaling activity also indicated activation of several immune associated signaling pathways (JAK-STAT, 

TNF, (Nuclear factor-κB) NFB and TGF(transforming growth factor); q < 0.1, Figure S2G-H), 

consistent with the general trend of higher activation of hallmark immune pathways in VR_C3 relative to 

other VR_Cs (Figure 2E-F). VR_C3 was also characterized by higher infiltration of cytotoxic T-

lymphocytes (CTL) and higher expression of cytotoxic effector and immune-checkpoint genes (Figure 
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S2L-K). While VR_C1 also showed over-expression of immune pathways (Figure 2E-F), it did not show 

the infiltrated CTL phenotype (Figure S2L-K). Recently, it was reported that TP53 mutant AMLs have 

higher immune infiltration with high expression of checkpoint genes, making them responsive to 

immunotherapy31. Although enriched for TP53 mutants (19%, Figure 2C) compared to other VR_Cs, 

VR_C3 is predominantly TP53 WT (wild type), indicating other factors in addition to TP53 mutations 

influence induction of inflammatory signaling and immune cell infiltration.  

VR_C4 showed few differences relative to VSC, with modestly high activation of Interferon signaling 

(Figure 2E) and no significant differences in activity of other signaling pathways (Figure S2H). Relative 

to other VR_Cs, its pathways profiles (Figure 2F) were reminiscent of those observed relative to VSC 

(Figure 2E). These indicate transcriptional similarities between VR_C4 and VSC. However, we did 

observe higher activity of OxPhos and MYC targets relative to VR_C3 (Figure 2F), which might indicate 

higher metabolic activity.  

VR_C clusters show distinct sensitivity to individual drugs 

VR_Cs as a collective showed greater sensitivity to several drugs relative to VSC (see Methods, Figure 

S2M and Table 2). We next identified drugs that showed cluster specific sensitivity in each VR_C ((see 

Methods, Figure S2N and Table 2), recapturing many of the drugs with efficacy in the VR_Cs (Figure 

S2M). VR_C1 showed sensitivity to several PI3K-AKT-mTOR (BEZ235, rapamycin and GDC-0941) and 

RAF(rapidly accelerated fibrosarcoma kinase)_MEK(Mitogen-activated protein kinase/ERK 

kinase)_ERK(extracellular-signal-regulated kinase) inhibitors (trametinib and selumetinib). VR_C1 also 

showed sensitivity to inhibition of  Hsp(heat shock protein)90 (tanespimycin), (histone deacetylase) HDAC 

(panabinostat), (cyclin-dependent kinase) CDK (SNS-032) and BRD(bromodomain protein)4 (JQ1). While 

other clusters shared sensitivity to inhibition of some of these pathways and proteins (PI3K-AKT-mTOR 

(VR_C4), RAF_MEK_ERK (VR_C2), CDK (VR_C3 and VR_C4) and Hsp90 (VR_C4)), they also showed 

distinct sensitivity to other inhibitors. VR_C3 and VR_C2 were selectively sensitive to Elesclomol (induces 

oxidative stress), while VR_C4 showed sensitivity to several tyrosine kinase inhibitors. Many of the 

pathways and proteins targeted by these drugs have been identified as potential targets to mitigate VEN 

resistance5. Our analysis suggests that many of these drugs are likely to be effective in specific AML subsets 

defined by VR_Cs (Figure S2N). 

These data along with transcriptional, mutational, and phenotypic heterogeneity observed in the VR_Cs 

(Figure 2) indicate that VEN resistance is characterized by heterogeneous genetic, transcriptional, and 

phenotypic properties that translate to distinct therapeutic vulnerabilities. 

Validating VR_Cs by mapping VRS onto other expression cohorts 

To assign VRS states to other transcriptomic datasets, we devised a PCA (Principal Component Analysis) 

projection approach (see Methods and Figure S3A). Briefly, genes used for NMF decomposition were 

used to perform PCA on all VR_C and VSC samples in the discovery cohort (BeatAML1). The expression 

of the same genes in the target dataset are extracted and transposed. The dot product between the transposed 

expression matrix and gene PC loadings from BeatAML1 gives the sample PC loadings of the target dataset, 

projecting them into the same PCA space as the samples from BeatAML1. K-mean clustering was then 

used to assign cluster definitions to the projected samples based on their distance from the centroid of the 

original clusters. Using this approach, we projected cluster definitions onto 3 cohorts BeatAML2, CCLE 

(AML cell-lines) and (The Cancer Genome Atlas) TCGA-AML (Table 1). In both BeatAML2 and CCLE 
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samples classified as VR_Cs were enriched for VEN resistant samples and had higher AUC for VEN 

(Figure S3B-E). Many of the mutated genes associated with specific VR_C in BeatAML1 (Figure 2C), 

showed significant association with projected VRS definitions and conserved patterns of association with 

different VR_Cs (Figure S3F-G). Drugs identified in BeatAML1 with cluster specific sensitivity (Figure 

S2M) were recaptured at significant rates in BeatAML2 (Figure S3H). The projected clustering also 

recapitulated major cell composition (Figure S3I-J) and pathway enrichment (Figure S4) patterns in 

BeatAML2 and TCGA. Supplementary Notes 1 discusses the above results in greater detail. These results 

indicate that the projected clustering definitions preserve characteristics of the original clustering and can 

facilitate further exploration. 

VRS reflect developmental expression programs coopted by AML blasts that result in VEN resistance 

Some VRS showed distinctive enrichment for blasts in specific developmental compartments (Figure 2D, 

S2E and S3I, J). VR_C1 was also consistently enriched for FAB_M4/5 AMLs (Figure 2C and S5A). 

Studying the expression of hematopoietic cell-type marker genes in the original and projected VRS (Figure 

S5B), we observed: consistent over-expression of Mono, ProMono and cDC markers in VR_C1, which 

were in turn suppressed in VR_C4 and VSC. VR_C2 lacked a systematic pattern and showed over-

expression of some markers specific for immature blasts, some cDC markers and suppression of erythroid 

markers. VR_C3 showed over-expression of erythroid and megakaryocytic markers. However, it’s unclear 

if VRS specifically capture these developmental programs. To address this, we projected VRS definitions 

onto bulk-RNAseq from sorted mature and stem-cell compartments of monocytic and primitive-like 

leukemias19. These samples segregated by their cellular phenotype and not the clinical classification of the 

patients they were derived from (Figure S5C). Projecting VRS definitions onto these samples, we found 

that VRS were not associated with the clinical phenotype of the samples (Figure 3A), but with their cell-

type (Figure 3B). All mature blasts were classified as VR_C1. The leukemia stem cell-like and non-

leukemia stem-cell samples were distributed across VRS. VR_C4 and VSC were predominantly (> 70%) 

composed of leukemia stem-cell like samples.  

To explore the developmental relationships of VRS in greater granularity, we used scRNAseq data from 

AML blasts with developmental classifications from two studies20,32 covering blasts over a spectrum of 

developmental states (Figure 3C, top). Projecting VRS definitions onto these cells (Figure 3C-D), we 

found that VR_C1 was enriched for mature blasts i.e., Mono-like and cDC-like blasts (Figure 3C-D). 

VR_C2 and VR_C3 in contrast showed enrichment for megakaryocytes/MEP (megakaryocytic-erythroid 

progenitor)-like and erythrocyte-like blasts, respectively (Figure 3C-D). Intriguingly, VR_C4 were 

predominantly Prog-like (Figure 3D, left). VSC’s however showed a mixture of blast types with a 

combined enrichment for less developed blasts (Prog-like (22.6%), HSC-like (9.3%) and GMP-like 

(21.9%)). The blast-type composition of the VRS also mirrored expression of associated cell-type markers 

(Figure 3D right).  

We next analyzed the expression of anti-apoptotic genes, whose over expression is a common mechanism 

of VEN resistance1,5. When we compared VR_C1 samples to all other sorted samples in monocytic-like 

and primitive-like AMLs independently, we observed suppression of BCL2 and over-expression of MCL1 

and BCL2A1 in both comparisons (Figure 3E). At the resolution of single cells (Figure 3C), VR_C1-3 

were characterized by low BCL2 expression and high expression of anti-apoptotic genes (Figure 3F). 

VR_C1 showed high expression of MCL1 and BCL2A1, VR_C2 showed modest expression of MCL1 and 

BCL2L1 in a similar fraction of cells as those observed in VR_C1 and 3, respectively. VR_C3 was 
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characterized by high expression of BCL2L1 with low to no expression of MCL1 and BCL2A1. Expression 

of BCL2 was mostly localized in VR_C4 and VSC, intriguingly they also showed modest expression of 

MCL1. These patterns (Figure 3F) mirror expression patterns observed in normal hematopoietic cells 

(Figure S5D and 3G) mimicked by the VRS (Figure 3B-D): BCL2 (progenitor and HSC; corresponding 

to VR_C4 and VSC), MCL1 (monocytes and cDC; corresponding to VR_C1), BCL2A1 (Monocytes; 

corresponding to VR_C1) and BCL2L1 (erythroid; corresponding to VR_C3).  

These data indicate that some of the VR_Cs (VR_C1 and 3) capture aspects of normal hematopoietic 

development that in the malignant context are associated with resistance to VEN; and can do so at the 

resolution of bulk tumors and single cells.  

VR_C3 is sensitive to JAK inhibition and show synergy with VEN in a subset of VR_C3 like cell lines  

We next focused on identifying specific vulnerabilities in VR_Cs that could be exploited to overcome VEN 

resistance in these states. While we found no drugs with specific sensitivity in VR_C3 across BeatAML1 

and 2 (Figure S2N and 3H), at the level of inhibitor families (see Methods, Figure 4A) VR_C3 showed 

sensitivity to several families of RTK inhibitors. Intriguingly, VR_C3 was also characterized by activation 

of JAK-STAT signaling across cohorts and was sensitive to JAK family of inhibitors (Figure 2E-F, S4A-

B and 4A). Across cohorts, pathways upstream (KEGG cytokine-cytokine receptor signaling) and 

downstream (proliferation, MAPK signaling) of JAK-STAT signaling were often significantly higher in 

VR_C3 relative to other VRS (Figure 4B and S6A-B). We also observed consistent over-expression of 

BCL2L1, downstream of JAK-STAT signaling across datasets (Figure 4C and S6A, C). We further 

confirmed activation of JAK-STAT in VR_C3-like cell lines at the protein level using RPPA (reverse phase 

protein array) data (Figure 4D, see Methods).  

Because VR_C3 was characterized by activation of JAK-STAT signaling and pro-survival and proliferation 

pathways downstream of JAK-STAT (Figure 4A-D and S6A-C), we hypothesized the VR_C3 could be 

sensitive to inhibition of JAK-STAT signaling. In fact, VR_C3-like cell lines were significantly more 

sensitive to two of the four pan-JAK/JAK-STAT inhibitors tested using data from CTRP (Cancer 

Therapeutics Response Portal) v233(Figure 4E). To independently test the hypothesis, we tested the 

response of VR_C3-like cell lines to VEN (VEN), a JAK inhibitor ruxolitinib (RUXO) and their 

combination: VEN+RUXO. VR_C3-like cell lines were resistant to VEN and sensitive to RUXO and 

VEN+RUXO (Figure 4F and S6D). Interestingly, in F36P and M07E, there was a much larger drop in 

AUC between treatment with RUXO and VEN+RUXO (Figure 4F). We therefore tested synergy between 

VEN and RUXO in four VR_C3 cell lines (Figure 4G and S6E-F). We detected modest synergy in F36P 

at most concentrations (Figure S6F, right) and in TF1 at low concentrations of RUXO (0.2-1 nM) and low 

to moderate concentrations of VEN (0.2-37 nM) (Figure S6F, left). Sensitivity in HEL and OCIM1 was 

primarily driven by RUXO (Figure S5E).  

These results indicate that VR_C3 like cells/samples have activation of JAK-STAT signaling, consequently 

are sensitive to its inhibition. In a subset of cases, JAK inhibition also broke VEN resistance resulting in 

synergistic effects.  

VR_C1 is characterized by transcriptional signature of metabolic fitness and sensitivity to CDK inhibition 

VR_C1 showed consistent over-expression of various metabolic pathways (Figure 2E-F and S4A-B) and 

over-expression of genes/enzymes regulating glycolysis, TCA (tricarboxylic acid) cycle and ETC (electron 
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transport chain) (Figure S7A). We also observed consistent over-expression of nutrient transporter 

pathways in VR_C1 (Figure 5A and S7B). Taken together, this indicated that VR_C1 shows higher 

transcriptional activity of metabolic and nutrient uptake pathways, suggesting they might have higher 

metabolic fitness. VR_C1 also showed activation of PI3K-mTOR signaling (Figure 2E-F, S2H and S4A-

B). The activity of PI3K-mTOR signaling, a known regulator of metabolic activity28 was positive 

correlation with activity of metabolic and nutrient uptake pathways (Figure 5B and S7C). Further, the 

activation of PI3K-mTOR signaling and metabolic pathways (glycolysis, OxPhos and FAM) were 

associated with VEN resistance and sensitivity to drugs that showed specific sensitivity in VR_C1 (Figure 

5C, S7D and S2N). We therefore hypothesized that high PI3K-mTOR signaling in VR_C1 increases 

nutrient uptake and metabolic fitness resulting in VEN resistance. VR_C1 patients might therefore be 

sensitive to inhibition of PI3K-mTOR signaling. In fact, in BeatAML1 and 2, VR_C1 showed increased 

sensitivity to several PI3K-mTOR pathway inhibitors (Figure S2N and Table 2) including rapamycin 

(Figure S8A, left). In BeatAML1, VR_C1 had lowest AUC for rapamycin that is significantly lower 

relative to VSC and is significantly lower relative to all other VRS in BeatAML2 (Figure S8A, left). We 

also observed in both BeatAML1 and 2 a specific sensitivity to panobinostat (PANO) a HDAC inhibitor 

(Figure S2N, S8A middle; Table 2).To access the possible mechanism of sensitivity to PANO, we 

compared published bulk-RNAseq (see Methods) of leukemia cells harvested from a preclinical mouse 

model of t(8;21) AML treated with PANO34. PANO treatment resulted in suppressed cell-cycle pathways 

(G2M checkpoint, Mitotic spindle), MTORC1 signaling, MYC targets and OxPhos (Figure S8B), 

indicating that PANO might inhibit metabolism and mTOR signaling contributing to VR_C1 sensitivity to 

PANO. We, however, were unable to recapture VR_C1’s sensitivities to PANO, PANO+VEN (Figure 

S8C) and mTOR inhibition (Figure S8D) in cell line models. This inconsistency could possibly arise due 

to differences in metabolic properties of cell-lines and primary AMLs.  

VR_C1 was also sensitive to the pan-CDK inhibitor SNS-032 (Figure S2N, S8A right; Table 2) and 

showed specific sensitivity to CDK inhibitor family (Figure 4A). VR_C1-like cell-lines were sensitive to 

two of three pan-CDK inhibitors tested from CTRPv233 Figure 5D). Testing sensitivity to SNS-032 and its 

combination with VEN, we recaptured sensitivity of VR_C1 cell-lines to both, though at a nominal degree 

of significance (p = 0.079 and p = 0.081 respectively; Figure 5E), likely due to the small number of VR_C1 

cell-lines (n = 3). VR_C1-like cell-lines had similar sensitivity to SNS-032 and VEN+SNS-032 suggesting 

lack of any additive or synergistic effect between the drugs (Figure 5E). To gain mechanistic understanding 

of VR_C1’s sensitivity to SNS-032, we studied the pathways perturbed by SNS-032 treatment using bulk-

RNAseq from MOLT4 cell-line treated with SNS-032 and DMSO35. SNS-032 suppressed genes (q < 0.1 

and log2FC < -1.5) in E2F and MYC targets, MTORC1 signaling and cell cycle pathways (mitotic spindle 

and G2M checkpoint; Figure 5F). GSEA analysis, although at a lower statistical threshold (q = 0.2), also 

showed suppression of OxPhos along with other pathways (Figure S8E), indicating the sensitivity of 

VR_C1 to SNS-032 in part could be explained by inhibition of metabolic pathways and suppression of 

mTOR signaling (mTORC1 signaling; Figure 5F and S8E).  

The above data therefore indicates that VR_C1 is characterized by a transcriptional activation of metabolic 

pathways and PI3K-mTOR signaling constitutes a key regulator of these pathways. VR_C1 also shows 

sensitivity to CDK inhibition, which may mechanistically function, in part, by suppressing mTOR signaling 

and OxPhos. 

VRS capture intra tumor heterogeneity and dynamics of cell-states in development of VEN resistance 
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To assess whether VRS could elucidate intra-tumor heterogeneity of cell-states associated with VEN 

resistance, we analyzed scRNAseq from pre- and post-treatment cells from a patient who relapsed under 

VEN+AZA treatment, showing expansion of a monocytic clone with NRAS Q61K and loss of a primitive 

SMC1A R807H clone upon relapse14 (Figure 6A, left). The cell-types of the cells were annotated by 

transferring labels from healthy BM (see Methods; Figure 6A, middle) and VRS definitions were projected 

onto cells in the myeloid compartment (Figure 6A, right). Interestingly multiple VRS subtypes (VR_C1, 

C2 and VSC) were well represented in the tumor suggesting that the tumor was a mixture of subtypes. The 

subtype representation in bulk data likely represents a dominance of one cell subtype.  The cell subtype 

composition matched expectations (Figure 2D), with VSC cells enriched for HSCs, VR_C1 for Mono cells 

and VR_C2 showed a mixture of Mono and GMP cells (Figure 6B). Pre-treatment cells existed in both 

sensitive (VSC, 41%) and resistant (VR_C1 and C2, 59%) VRS (Figure 6C), however post-treatment VSC 

cells were eliminated, and resistant states came to dominate (VR_C1: 5% and VR_C2: 93%). VR_C2 

showed a higher proliferation-index (see Methods) before and after treatment, which might provide a 

competitive advantage allowing it to outgrow VR_C1, despite the shared resistance to VEN (Figure 6D). 

At the pathway-level VR_C1 was characterized by higher expression of several inflammatory and 

metabolic pathways as well as high PI3K-mTOR and MTORC1 signaling (Figure 6E) consistent with 

earlier observations (Figure 2E-F). VR_C2 showed increased expression of G2M checkpoint and E2F 

targets (Figure 6E) indicating higher cell-cycle activity which is consistent with the higher inferred 

proliferation rates observed (Figure 6D). Interestingly, the VSC cells showed high expression of MYC 

targets and transcriptional indicators of DNA damage (DNA repair and UV response down; Figure 6E). 

These data illustrated that the VRS can be used to gain insights into intra-tumor heterogeneity and dynamics 

of VEN resistance associated cells states.  

Discussion  

VEN in combination with hypomethylation agents has emerged as a paradigm shifting treatment for AML, 

however primary and acquired resistance4,5 limit the long-term efficacy of therapy. While several 

mechanisms for VEN resistance have been identified1,5,8-14,16,21, the heterogeneity of these mechanisms in 

VEN resistant patients has not been fully elucidated. In this study, we decomposed expression of genes 

associated with VEN resistance to identify four transcriptionally distinct VEN resistant patient groups. 

These groups are characterized by distinct phenotypic, mutational and drug response characteristics.  

Elucidating such heterogeneity can facilitate identification of specific vulnerabilities in VEN resistant 

patients and improve selection of appropriate therapies specific to each patient.   

VEN resistance has been linked to differentiation status of AML blasts, with monocytic tumors being 

resistant to VEN-based therapies14-16,21,36. We recapture this association in VR_C1 patients. Further using 

bulk-RNAseq from sorted cell-types and scRNAseq, we show that the VR_C1-like expression state is 

associated with monocytic differentiation at a more granular resolution. In contrast, VR_C3 showed a 

strong preference for erythroid-like blasts. VR_C1 and VR_C3 showed suppression of expression of BCL2 

and over-expression of other anti-apoptotic genes such as MCL1 (VR_C1), BCL2A1 (VR_C1) and BCL2L1 

(VR_C3), rendering them inherently resistant to VEN. Association of erythrocytic differential and VEN 

resistance has been suggested by Kuusanmaki et al. 20, stating that FAB-M6 and M7 AMLs are resistant to 

VEN in a BCL2L1-dependent manner. This mechanism of resistance may however be more widespread, 

as we identify VR_C3-like tumors outside FAB-M6/7. 
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Inhibiting anti-apoptotic genes over-expressed in VR_C1 and VR_C3 presents a potential therapeutic 

strategy to treat VEN resistant monocytic and erythroid like tumors. While these strategies have been 

effective in vitro, toxicity associated with these inhibitors22,23 has limited their clinical application. Further, 

VR_C3-like tumors showed an enrichment for TP53 mutations which are commonly associated with poor 

outcome and resistance to chemotherapy37,38. Therefore, identifying alternative strategies to treat these VEN 

resistance AML subtypes can have a significant clinical impact.  

Transcriptional characterization of VR_C1 indicates a transcriptional activation of metabolic pathways, 

likely mediated by active PI3K-mTOR signaling, resulting in improved metabolic fitness. Improved 

metabolic fitness has been linked to VEN resistance10. mTOR signaling is a core regulator of 

metabolism28and its over-expression can drive the observed activation of metabolic pathways. Consistent 

with these findings, VR_C1 is characterized by sensitive to mTOR inhibition. Additionally, VR_C1 is 

sensitive to CDK inhibitors, like SNS-032, which suppressed OxPhos and mTOR signaling. Intriguingly, 

mTOR inhibition was ineffective in cell line models, likely because they don’t recapture metabolic 

properties of patient derived cells. SNS-032 was however effective in both models, indicating its effects 

are multifactorial including, but not limited to mTOR inhibition. Taken together, these findings warrant 

further exploration of PI3K-mTOR and CDK inhibition as therapeutic strategies to treat Mono-like AMLs.  

VR_C3 was characterized by activation of JAK-STAT signaling, down-stream activation of pro-survival 

pathways, proliferation, and consequent sensitive to JAK inhibition. Intriguingly in a subset of VR_C3-like 

cell-lines, JAK inhibition by RUXO broke VEN resistance, resulting in synergy for the combination.  This 

observation suggests that treatment with RUXO alone or in combination with VEN might be effective in 

VR_C3-like AMLs, which warrants further exploration. VR_C3 was also characterized by higher 

infiltration by CTLs, high expression of cytotoxic immune effector and immune checkpoints genes, 

suggesting that VR_C3 AML may also benifit for immunotherapy.  

Consistent pathway activation relative to other VRS was absent in VR_C2. We however observed 

consistent suppression of HOX expression and transcriptional activity. This was consistent with absence of 

NPM1 mutations in VR_C239. Suppression of HOX has been previously reported in VEN resistant 

samples30. However, it is unclear if it contributes mechanistically to VEN resistance or is simply a 

consequence of the absence of NPM1 mutations. VR_C2 is also characterized by enrichment of RAS 

mutation (especially NRAS), which have been associated with VEN resistance14,21. As expansion of RAS 

clones have been linked to relapse under VEN-based therapy14, establishing a link between prevalence of 

RAS mutation in a tumor and loss of HOX expression can facilitate development of diagnostic approaches 

that can detect relapse under VEN-based therapy associated with RAS mutations.  

Though VR_C4 consisted of VEN resistant patients, they were enriched for less differentiated blast and 

shared transcriptional characteristics with VSC.  Mutationally VR_C4 like VSC had high mutation rates in 

FLT3 and NPM1, but also in DNMT3A unlike VSC. Mutations in DNMT3A may be associated with better 

response to AZA and cytarabine40,41. Thus VR_C4-like tumors may still benefit from current VEN 

combination therapies and perhaps with some selectively targeting DNMT3 inhibitors42. 

Projecting VRS definitions onto single cell profiles from a patient who relapsed under VEN+AZA, we 

identified co-existence of multiple VR_Cs and how their proportions changed after therapy. Indicating VRS 

can also capture intra-tumor heterogeneity in the context of VEN resistance. Elucidating VEN resistance 

associated intra-tumor heterogeneity can facilitate development of effective combination therapies. 
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Taken together, in this study we capture transcriptomic heterogeneity in VEN resistant patients, which 

translates to distinct phenotypic, mutational and drug response profiles (Figure 1-3). This additional 

granularity facilitated identification of groups of patients with different mechanisms of VEN resistance and 

their specific vulnerabilities, that can be targeted with VEN or selective combinations (Figure 4-5). We 

also show that multiple VRS can co-exist in a single tumor, therefore also capturing intra-tumor 

heterogeneity (Figure 6) 

Limitations of study 

Our analysis of heterogeneity in VEN resistant patients utilizes bulk-RNAseq and ex-vivo drug response 

from BeatAML15,26. VEN is commonly used in the clinical setting in combination with AZA or cytarabine. 

It is therefore likely that some of these observations might not directly translate to clinical cohorts or 

settings. Further, responses in vitro may not always translate to responses in patients, underlining the need 

for further analysis with data from patients treated with VEN combinations. Recent studies have also 

suggested that studying sub-population of LSCs can be critical to understanding the development of 

resistance and relapse to VEN therapies in AML19,43. It is challenging to capture this level of granularity 

using bulk expression data and will require single cell profiling of the LSC compartment. In Figure 3, we 

capture developmental preferences in VRS at the resolution of single cells. VR_C3 and VR_C2 showed 

preference for erythrocyte-like and MEP-like blasts. These cells however came from two previously 

reported20 samples, respectively. While we do observe over-expression of erythroid markers in VR_C3 

across bulk cohorts (Figure S5B), the single cell patterns should be interpreted with caution and warrant 

further analysis in large cohorts. 

VR_C1 shows elevated expression of metabolic pathways. While pathway analysis can capture basic trends 

of metabolic activity, precise changes in metabolic pathways and utilization of metabolites can be 

challenging to infer from gene expression. It is likely that through detailed metabolomic characterization 

VR_C1 can be further sub-divided based on metabolic pathways used to meet their energetic requirements. 

Another limitation in this scenario is using cell lines for downstream validation. Metabolism of cell lines 

can be sensitive to culture conditions that can differ across cell lines. As our analysis requires comparisons 

across diverse set of cell lines instead of comparisons between parental and modified cell lines, it is 

challenging to validate metabolic patterns in VR_C1 using cell line models.  

Star Methods 

Datasets 

mRNA expression (counts), mutation calls and drug response (AUCs) data for the first release of BeatAML 

(BeatAML1) was obtained from Tyner et al.26 using the data portal http://www.vizome.org. mRNA 

expression (counts), mutation call, drug response (AUCs) for the second release of BeatAML15 

(BeatAML2) as well as inhibitor family information and clinical data for all patients was obtained from 

https://biodev.github.io/BeatAML2/. mRNA expression (log2TPM+1) and protein expression (RPPA) for 

CCLE44 cell lines was downloaded from (20Q4: https://depmap.org/portal/) and 

(https://data.broadinstitute.org/ccle/) respective. Drug response data (AUCs) for CCLE cell lines was 

obtained from CTRPv233. mRNA count data for AML TCGA45 samples was obtained from firehose 

(http://firebrowse.org/), normalized mRNA counts, mutation and clinical data was obtained from UCSC 

Xena46 (https://xenabrowser.net/datapages/). mRNA counts of leukemia cells from mice treated with PANO 

and vehicle control was obtained from GSE19811934. Whole transcriptome differential expression statistics 

(log fold changes and q-values) comparing MOLT4 cell line treated with SNS-032 to DMSO treatment was 
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obtained from GSE20661235. FASTQ file of bulk-RNAseq from sorted sub-populations of AML blasts 

were obtained from Waclawiczek et al.19. 

scRNAseq counts (10x genomics) for normal bone marrow were obtained from Abbas et al.47 CITE-seq for 

VEN+AZA treated patient was obtained from GSE14336314. scRNAseq counts for AML blasts was 

obtained from Van Galen et al.32 (SeqWell) and Kuusanmaki et al.20 (10x genomics).  

Mouse and Human Hallmark48 gene sets were obtained from MsigDB27. Gene-sets for nutrient transporters 

were obtained from GO molecular function49 in MSigDB. Through manual inspection we select pathways 

that define transporters for amino acids, carbohydrates, fatty acids, lipids, proteins, sugars, 

monosaccharides, and vitamins.  

Cell culture 

The AML cell lines: MV4-11, MOLM13, HL60, AML193, SKM1, NOMO1, THP1, OCIAML2, 

OCIAML3, OCIAML5, HEL, OCIM1, TF-1, F36P, MO7E and KG,1 were obtained from ATCC and 

DSMZ, and authenticated by short tandem repeat DNA fingerprinting. Cell lines were maintained if not 

otherwise specified in RPMI-1640 medium (SIGMA) with 2 mM Glutamine (SIGMA) containing 10–20% 

heat inactivated (h.i.) fetal calf serum (FCS) and 1% penicillin-streptomycin (Life Technologies 

Laboratories), as suggested by cell lines provider. Additionally, F36P, MO7E, OCIM1, OCIAML5, and 

TF1 were supplemented with 10 ng/ml GM-CSF, and AML193 was cultured in IMDM with 30% h.i. FCS 

and supplemented with IL3 and GM-CSF at 10 ng/ml each. All cells were grown at 37 °C in a humidified 

atmosphere containing 5% carbon dioxide and passaged every 2-3 days at the density of 0.5 million of 

cells/ml.   

Identifying resistant and sensitive cell-lines/patients 

For a drug, high AUC values indicate resistance and low values sensitivity. AUC values of each drug in 

either CCLE (AML and CLL) cell lines or in BeatAML samples were modeled using Gaussian mixture 

models, fitting up to 3 normal distributions to the data using the flexmix R package (https://cran.r-

project.org/web/packages/flexmix/index.html). The optimal model was selected using the “ICL” option in 

the function getModel(). If 2 or 3 normal distributions fit the AUC data and the difference between means 

of the distributions with highest (HDis) and lowest (LDis) means was greater than the sum of their standard 

deviations and mean (LDis) < 10th %ile of AUCs in the dataset. Samples that were part of LDis were 

considered sensitive to the drug and those in HDis were considered resistant. In all other cases a hard 

threshold of AUCs < 10th %ile across all AUCs in the dataset was used to delineate sensitive samples from 

resistant. A threshold of 10 AUC was used for CCLE (Figure S1A), and 112 AUC was used for BeatAML.  

Drug response AUC and synergy calculation 

Selected cell lines were plated at a density of 10,000-20,000 cells/well in complete RPMI-1640 (SIGMA) 

supplemented with 10-20% fetal calf serum onto 96 well plates and subjected to treatment with Ruxolitinib 

(Selleckchem), Venetoclax (ABT-199) (Selleckchem), Panobinostat (Selleckchem) and CDK2,7,9 inhibitor 

SNS-032 either as monotherapy or as combination of Ruxolitinib/VEN or Panobinostat/VEN, or SNS-

032/VEN for 72 h. In one experiment, each treatment condition was seeded in triplicates, each experiment 

was performed independently 3–5 times.  
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Following drug concentrations were used: VEN was used at doses ranging from 0 to 1000 nM for 72 h, 

Ruxolitinib  at doses ranging from 0 to 1000 nM for 72 h, SNS-032 at doses ranging from 0 to 1000 nM for 

72 h, and Panobinostat at doses ranging from 0 to 100 nM.  

Viable cell numbers were measured by quantifying ATP using a CellTiter-Glo Luminescent Cell Viability 

Assay (Promega).  

The response from each technical replicate was calculated. Mean values summarized from responses from 

each independent experiment. Dose-response curves were analyzed using a curve fitting routine based on 

nonlinear regression. The same range of 10 drug concentrations was tested for each cell line to compute a 

curve-free area under the dose–response curve (AUC) based on linear interpolation of the 10 data points 

using a baseline of 0 (=100% inhibition) and a maximum of 100 using GraphPad Prism ver. 950. The AUCs 

generated for each cell line were further summarized based on VEN resistance status and Clustering Status. 

Additionally, to evaluate the synergistic effects of Ruxolitinib and VEN, cells were seeded in 96-well plates 

at densities as described above, creating 10 × 10 matrix of treatment. Viable cell numbers were measured 

by quantifying ATP using a CellTiter-Glo Luminescent Cell Viability Assay (Promega). The results of five 

independent experiments were collected, processed, and visualized for synergy evaluation using 

COMBENEFIT software51. 

Differential gene expression and GSEA pathway analysis 

Differential expression analysis was performed using count data as an input to DEseq252. GSEA was 

performed using gene lists sorted by log2 fold change (log2FC) using the gage53 and Hallmark pathway 

definitions. Differentially expressed pathways are identified at q-value < 0.1. Stat.mean output by gage 

captures magnitude and direction of dysregulation of pathways, positive values indicate over-expression 

and negative suppression.  

Gene set over-representation analysis 

Given a list of genes, analysis of over-represented pathways in them was performed using the 

compareCluster() function implemented in the Bioconductor package clusterProfiler54 with option fun = 

enricher. Over-represented pathways are identified at p-value < 0.05 and q-value < 0.1, unless specified 

otherwise.  

In case of SNS-032 treated cells compared to vehicle treatment DEGs were defined at q < 0.1 and log2FC > 

1.5 and < -1.5 for over-expressed and suppressed genes, respectively. These genes were used as the input 

for over-representation analysis. Significant Hallmark pathways were identified at p-value < 0.01 and q-

value < 0.05.  

Single sample pathway and signaling activity quantification from bulk gene expression 

Normalized gene expression was converted to Hallmark pathway activity using single sample GSEA 

(ssGSEA) implemented in GSVA55.  

Activity of 14 signaling pathways were quantified using Progeny29 using top 100 genes associated with the 

activation of respective pathways.  

Deriving a transcriptional signature associated with VEN resistance 
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A transcriptional signature for VEN resistance was derived from AML and CML CCLE cell lines. First 

resistant and sensitive cells were identified, and DEGs (absolute log2FC > 1 and adjusted p-value < 0.1) 

between them were identified using DEseq252 while controlling for tumor type (Figure 1A).  

The log2 normalized counts of these genes in the BeatAML discovery26 cohort (BeatAML1) were extracted 

and genes which mean expression < 1 and variance < 2 were filtered out. The resultant matrix was 

decomposed using NMF (see below).  

Identifying clusters of VEN resistant patient by decomposing the VEN expression signature 

Gene expression of the VEN resistance signature in VEN resistant samples(M) in the BeatAML1cohort 

was decomposed (Figure 1B) with NMF (non-negative matrix factorization) using the R package NMF56 

with the options seed = "ica" and nrun = 100. NMF decomposition was performed with the number of NMF 

components (K) ranging from 2 to 10. To select the optimal number of components we adopted the 

approach described in Frigyesi et al.57. A random expression matrix (MR) was generated from the original 

matrix using the randomize() function in the NMF package, and the NMF decomposition procedure was 

repeated. The final rank for NMF is selected as the largest value of K for which decrease in RSS (residual 

sum of squares) from K-1 to K is greater in M relative to MR. (Figure S1D, K= 6 was selected for the final 

NMF, resulting in 6 NMF components: C1-C6).  

The patient loading of the NMF components was rescaled to range from 0 to 1. Functional correlates of 

these components were identified by correlating the loadings with Hallmark ssGSEA pathway activity using 

spearman correlation. C1, 2 and 5 showed strong correlation between their loadings and were also 

associated with similar pathways (Figure S1E-F). C2 and 5 were thus discarded. The components C1, 3, 4 

and 6 were then clustered using consensus clustering (Figure 1C) implemented in the R package 

ConsensusClusterPlus58. Optimal number of clusters were identified using the procedure described in 

Senbabaoglu et al.59. The procedure yielded 4 clusters (VR_C1-4) of VEN resistant patients (Figure 1).  

Associating clinical variables with patient clusters 

Clinical variables were divided into 1. Factor variables and 2. Continuous variables. Association of factor 

variables with VRS was tested using Chi-square test and ANOVA was used in the case of continuous 

variables. FDR correction was performed in both cases separately and significant variables were identified 

at q < 0.1. In the case of continuous variables that reached significance pairwise differences between groups 

were evaluated using Tukey’s test.  

Mutational analysis 

Across datasets (TCGA, BeatAML1 and 2), the mutational status of genes was binarized, 1- mutant and 0 

– wild-type. Association between mutation status of a gene and VRS was tested with Chi-square test. P-

values were corrected for multiple testing with FDR and significant mutations were identified at q < 0.1. 

The testing was limited to genes mutated in greater than 5% of patients in the BeatAML1 (Figure 2C). 

Testing in the validation cohorts (BeatAML2 and TCGA) was limited to significant genes identified in 

BeatAML1. 

Mutational mutual exclusivity analysis was performed at the level of each VRS in BeatAML1 using the 

function pairwise.discover.test() implemented in the package DISCOVER60 and was limited to genes used 

for association testing (see above). Mutually exclusive gene pairs were identified at q-value < 0.1. 
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Proliferation Index 

Proliferation rate was inferred from RNAseq data using the R library ProliferativeIndex (https://cran.r-

project.org/web/packages/ProliferativeIndex/vignettes/ProliferativeIndexVignette.html). Variance 

stabilized normalized read counts obtained from the varianceStabilizingTransformation() function in 

DEseq2 was used as input to the function ProliferationIndex() to compute proliferation rate in each sample.  

Proliferation score in case of single cell data was computed using the MetaPCNA signature61 and 

AddModuleScore() function in Seurat62.  

Quantifying activity of transcription factors from gene expression  

Activity of transcription factors (TFs) in each sample was estimated from normalized expression in the 

BeatAML1, BeatAML2 and TCGA using VIPER63 while controlling for pleiotropic regulation. An AML 

specific regulatory network was constructed from TCGA expression data using ARACNE64. Differential 

activity of TFs between two groups is tested using the function rowTtest(), p-values are corrected with FDR. 

For each TF i the difference in mean activity between groups is Mdiffi. A TF i is called differentially 

expressed if  

                                                         𝑞 < 0.01  and  

                           𝑀𝑑𝑖𝑓𝑓𝑖 > 𝑚𝑒𝑎𝑛(𝑀𝐷𝑖𝑓𝑓𝑇𝐹𝑠) + 1.5 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑀𝑑𝑖𝑓𝑓𝑇𝐹𝑠)  or  

                          𝑀𝑑𝑖𝑓𝑓𝑖 < 𝑚𝑒𝑎𝑛(𝑀𝐷𝑖𝑓𝑓𝑇𝐹𝑠) −  1.5 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑀𝑑𝑖𝑓𝑓𝑇𝐹𝑠) 

Where MdiffTFs the vector of difference in mean activity of all TFs tested. This approach was used to 

identify differentially active TFs in VR_C2 relative to other VRS.  

CIBERSORTx cell fraction estimation from gene expression 

Cell type abundance was estimated from bulk gene expression profiles of samples BeatAML2 (including 

samples from BeatAML1) and TCGA using CIBERSORTx65 web-portal 

(https://cibersortx.stanford.edu/index.php). Single cell expression counts from Van Galen et al.32 were used 

as reference samples to create a signature matrix. Deconvolution for each dataset was performed 

independently. For each dataset gene expression data in CPM (counts per million reads) was used as input. 

CIBERSORTx “Impute Cell Fractions” was run in absolute mode, using S-mode for batch correction, no 

quantile normalization and 100 permutations. To quantify relative abundance of leukemia cells, the 

abundance scores of six leukemia populations in each sample were normalized to sum to 1.  

Identifying drugs, a group of samples are sensitive to  

For each VR_C in BeatAML1 drugs they are sensitive to were identified by 1. One-sided T-test to test 

whether AUC value of the drugs was lesser in the cluster relative to all other samples and 2. Whether the 

cluster was enriched for samples that are sensitive to the drug, tested using the hypergeometric text. P-

values in both cases are corrected for multiple testing using FDR. Significant drugs are identified at q < 0.1 

for both approaches and merged. A similar approach is used for identifying drugs that all VRP are sensitive 

to as a collective. The testing is limited to drugs that at least 10% of the resistant samples are sensitive to.  

In case of projected VRS definitions (see below) in BeaAML2 the same approach as above is used to 

identify drugs that each VR_C is sensitive to. The testing is however limited to drugs identified in 
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BeatAML1 for each cluster and the fraction of drugs recaptured is calculated. To quantify the significance 

of the overlap we shuffle VRS membership of samples in BeatAML2, and cluster specific drugs are re-

identified and overlap rate for each VR_C with corresponding VR_C specific drugs identified in BeatAML1 

is computed. The procedure is repeated 5000 times. A p-value is computed for each VR_C as the fraction 

of times a randomly generated VRS definition has a greater overlap than the true projected VRS definitions.  

Projecting cluster definitions onto new expression data 

To project VRS definitions onto new samples, we extracted the expression matrix of the genes used to 

perform the original NMF with gene expression scaled and centered from BeatAML1 (resistant and 

sensitive samples; Re) and the target dataset (Te). Genes common to both datasets are retained. PCA 

(Principal component analysis) analysis is performed using Re generating sample PC loadings (rPC) and 

gene PC (Principal components) loadings (gPC). ith co-ordinate of the centroid in PCA space for each VRS 

are computed: 

𝐶𝑒𝑖𝑗 = 𝑚𝑒𝑎𝑛(𝑟𝑃𝐶𝑖𝑗) 

Where Ceij is the ith coordinate for centroid of the VRS j and rPCij is the vector of PCA loadings of the ith 

PC in samples of VRS j. The PCA loadings of the target dataset (tPC) is computed by taking the dot product 

between the transpose of Te with gPC. The analysis uses 40 PCs, which accounts for 75% of the variability 

in Re. 

With samples from the discovery and target dataset in the same PCA space we use K-means clustering to 

assign each sample in the target dataset to a VRS by passing the PCA loadings of the target samples (tPC) 

and coordinates of the centroids of VRS from the discovery cohort (BeatAML1) to the kmeans function in 

R. The approach is graphically summarized in Figure S3A. This approach was used to project VRS 

definitions onto samples from BeatAML2, TCGA, CCLE and sorted AML sub-compartments19. In case of 

BeatAML2 samples that overlapped with BeatAML1 were excluded. We also projected VRS definitions 

onto malignant cells (single cells) from VanGalen et al.32 and Kuusanmaki et al.20, and the myeloid 

compartment of single cell profiled in a patient who relapsed under VEN+AZA therapy from Pie et al.14 

using their normalized expression as input. 

Response to drug families 

The response profile to a family of drugs was quantified using the approach described in Bottomly et al. 15, 

briefly drug response AUC values are rescaled to range between 0 and 1. The drug scores for drugs in each 

family are merged using ssGSEA implemented in GSVA55 without normalizing the results. The 

transformation was performed using all the samples in BeatAML2 (including samples from BeatAML1). 

To identify drugs families each VRS is sensitive to one-side T-test was used to test whether the drug family 

scores in the VRS of interest were lower relative to all other samples. P-values were corrected for multiple 

testing using FDR and drugs were identified at q < 0.1. The testing was performed independently for each 

VRS. VRS definitions of samples from BeatAML1 (discovery) and BeatAML2 (projected) were combined 

for the analysis.  

CCLE RPPA JAK/STAT activity 

Activity of JAK/STAT pathway was defined as the sum of expression of JAK2, STAT3, STAT3_pY705 

and STAT5. Differential activity between groups was tested using a two-sided T-test.  
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Analysis of gene expression in flow sorted AML blasts 

Gene expression was quantified from fastq files using RSEM66, quantification was performed using rsem-

calculate-expression with the Bowtie267 aligner and the hg19 reference genome. Gene expression counts 

and TPM were read in from the RSEM outputs using tximport68. TPM values were transformed as 

log2(TPM+1) and PCA was performed using the top 5000 variably expressed genes.  

Differential expression was performed comparing VR_C1 like samples to other samples in monocytic-like 

and primitive-like AML patients separately using DESeq252.   

Single cell analysis 

Normal bone marrow(nBM) cells from Abbas et al.47 were processed using the standard Seurat62 workflow. 

Briefly data was normalized and scaled using the functions NormalizeData() with scale.factor = 10,000 

and ScaleData() respectively. 2000 variable genes were identified using FindVariableFeatures(). 

RunPCA(), FindNeighbors(),FindClusters() and RunUMAP() were run to cluster the data and generate a 

uMAP embedding using 30 PCs selected by inspecting the elbow plots. FindAllMarkers() was used to test 

differential expression of pro-survival (BCL2, BCL2L2, BCL2L1, BCL2A1, and MCL1) genes, in more 

differentiated cell-types relative to HSC and Progenitor cells, with logfc.threshold = 0 and min.pct = 0.05 

using wilcox test. DEGs were identified at adjusted_pvalue < 0.01 and absolute average log2FC > 0.25.  

Malignant cells from samples in Van Galen et al.32 (SeqWell) and Kuusanmaki et al. 20 (10x genomics), as 

defined in the original studies, were selected, and merged. The merged Seurat object was then processed, 

briefly data was normalized and scaled using the functions NormalizeData() with scale.factor = 10,000 and 

ScaleData() respectively. 2000 variable genes were identified using FindVariableFeatures(). PCA was 

performed RunPCA() with the npcs = 100. The samples were integrated with Harmony69 using the 

RunHarmony() function, with the first 75 PCs while controlling for sample membership and sequencing 

technology. uMAP embedding was generated using RunUMAP() with dims = 75 and reduction = 

“harmony”.  

Single cell gene expression data from pre- and post-treatment cells from a patient treated with VEN+AZA 

from Pie et al.14 was processed as described above for nBM. FindTransferAnchors and TransferData were 

used to transfer cell type labels from normal BM cells (Figure 6A). Pathway activity of Hallmark pathways 

in each cell was quantified using VAM70. Differentially active pathways were identified using the functions 

FindAllMarkers(), significant pathways were identified at absolute log 2FC > 0.15 and adjusted p-value < 

0.1.    

Statistical analysis 

Statistical analysis was performed in R (v 4.0.1) and GraphPad (v9). Association between continuous 

variables was quantified using spearman correlation. Differences between continuous variables was test 

using 1. Two-sided Wilcox test/T-test as indicated in case of two groups. 2. ANOVA was used in case of 

more than two groups and post-hoc pairwise testing was performed with Tukey’s test. Association between 

factor variables was performed using the Chi-square test. Correction for multiple testing was performed 

with FDR using the function p.adjust(). Significance was defined a p-value < 0.05 or q/adjusted p-value < 

0.1 in case of multiple testing, unless specified.  
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 Figure legends: 

Figure 1: Workflow to identify transcriptionally distinct VEN resistant patients: A) A Gaussian 

mixture model is fit to VEN AUC of cell-lines to identify sensitive and resistant cell-lines (left; see 

Methods). Resistant and sensitive cell-lines are compared to identify differentially expressed genes (right). 

This gene expression signature (GE) is used for decomposition in B. B) NMF decomposition of GE in VEN 

resistant samples in BeatAML1 V and H are gene and patient loading matrices of NMF components C) 

top: VR_Cs identified by clustering H, (see Methods). bottom: boxplots of VEN AUC in resistant and 

sensitive patients (left) and across VRS (right). 

Figure 2:  Phenotypic, genetic, and transcriptional characteristics of VRS (in BeatAML1): A) Boxplot 

of clinical variables significantly different (q < 0.1) between VRS. B) Heatmap of difference between means 

of clinical variables (in A) in each VR_C (column) relative to VSC. The difference is reported for significant 
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comparisons (adjusted P-values (p.adj) < 0.1) C) Heatmap of mutations and clinical factors showing 

significant association with VRS (q < 0.1, see Methods). D) Abundance scores of AML blast-types with 

significantly different (q < 0.1) abundances across VRS. Heatmap of differentially expressed pathways 

comparing VR_Cs to VSC (E) and each other (F). Red indicates over-expression and blue suppression. 

Text in each cell is the q-value, with significance at q < 0.1. Note: comparison of differences between 

multiple groups was performed using ANOVA and p-values corrected by FDR. Post-hoc pairwise testing 

was performed using Tukey’s test.  

Figure 3: Some VR_Cs recapitulate characteristics of hematopoietic development: Fraction of clinical 

sample-type (A) and sorted cell-type (B) in each VRS. C) uMAP of AML blasts colored by their 

developmental status (top) and projected VRS definition (bottom). D) Fraction of each developmental blast 

category across VRS (left) and dot plot depicting expression of hematopoietic cell-type markers across 

VRS (right). E) Heatmap of log2FC of anti-apoptotic in VR_C1 relative to other samples in each clinical 

sub-type. Log2FC reported when significant (p.adj < 0.1). F) Dot plot depicting expression of anti-apoptotic 

genes in VRS projected onto single cells (in C). G) Dot plot depicting expression of anti-apoptotic genes 

across cell-types in normal bone marrow (left) and heatmap of the average log2FC of these genes in 

indicated cell-type relative to primitive cell-types (HSC and Progenitor). The log2FC is reported when 

significant (pa.dj < 0.01 and absolute log2FC > 0.25). Note: association between two factor variables was 

tested using Chi-square test. 

Figure 4: VR_C3 is sensitive to JAK-STAT inhibition: A) Heatmap of T-statistic comparing activity of 

drug family in each cluster with all other samples in BeatAML1 and 2, T-statistic is report when 

significantly lower (q < 0.1; one-sided T-test). B) Boxplot comparing pathway scores (left, mid) and 

proliferation index (right) in BeatAML1. P-values is computed using ANOVA, pairwise p.adj with Tukey’s 

test (significant at p.aj < 0.1). C) Heatmap of log2FC (in BeatAML1) of anti-apoptotic genes in indicated 

comparisons (columns) and reported when significant (p.adj < 0.1).  D) Boxplot comparing JAK-STAT 

activity, inferred from protein expression (RPPA; see Methods; two-sided T-test). E) Boxplot of drug-

response AUC for pan-JAK inhibitors. One-sided T-test followed by FDR correction used to test for 

significantly lower AUC (q<0.1) in VR_C3-like cell lines. F) Heatmap of drug-response AUCs for cell 

lines treated with VEN, RUXO and VEN+RUXO. G) Heatmap of viability of F36P (left) and TF1 (right) 

at different concentrations of combinations of VEN (x-axis) and RUXO (y-axis).  

Figure 5: VR_C1 is characterized by transcriptional signature of higher metabolic activity and 

sensitivity to CDK inhibition: A) Pathway activity of nutrient transport pathways in BeatAML1 with 

differential activity across VRS (ANOVA followed by FDR correction, significant at q < 0.1). B) Heatmap 

of spearman correlation coefficients between metabolic pathways (rows) and the PI3K-mTOR signaling 

axis (columns) in BeatAML1. q-values after FDR correction across each column reported in cells, 

(significance at q < 0.1 C) Heatmap of spearman correlation coefficients between activity of metabolic 

pathways (rows) and drug-response AUCs in BeatAML1. p-values corrected by FDR for each drug 

(significant q < 0.1) D) Boxplot of drug-response AUC for CDK inhibitors. One-sided T-test followed by 

FDR correction used to test for significantly lower AUC (q<0.1) in VR_C1-like cell lines E) Heatmap of 

drug-response AUCs for cell lines treated with VEN, SNS-032 and VEN+SNS-032 (left) and corresponding 

boxplots (right) (two-sided T-test). F) Functions enriched (p < 0.01 and q < 0.05) of genes over and under-

expressed (see Methods) in SNS-032 treated MOLT4 cells relative to vehicle (DMSO) treated cells. Note: 

GO_TA (gene ontology transport activity), H (Hallmark), Progeny indicate the pathway dataset used to 

compute pathway activity (Figure 5A).  
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Figure 6: VRS facilitates interpretation of cellular dynamics in response to VEN treatment: A) 

uMAPs of cells colored by treatment time point (left), cell-type (mid) and VRS definition projected onto 

myeloid cells (right). B) Fraction of cell-types in each VRS. C) Fraction of VRS in pre and post treatment 

cells. D) Boxplot comparing proliferation index between VR_C1 and VR_C2 like cells pre- and post-

treatment (p-values computed using two-sided T-test). E) Heatmap of pathway activity in cells for Pathways 

over-expressed (log2FC > 0.15 and p.adj < 0.01) in VR_C1, VR_C2 and VSC. Note: association between 

two factor variables was tested using Chi-square test. 

 

Supplementary Figure legends: 

Figure S1: NMF decomposition: A) Heatmap of AUC percentiles for cell-lines across tissues of origin in 

CCLE. B) Boxplot of VEN AUC in resistant and sensitive cell-lines (two-sided T-test). C) Pathways 

enriched (p< 0.05 and q < 0.1) in the VEN resistance signature before and after filtering genes (see 

Methods). D) Plot of change in RSS for each increase in number of components used for the NMF. E) 

Heatmap of spearman correlation between patient component loadings. Correlation coefficients are 

reported in the cells. F) Heatmap of spearman correlation of patient level NMF component loadings with 

pathway activity of hallmark pathways. Digits in each cell are q-values after FDR correction across 

pathways for each component (column).   

Figure S2: Phenotypic, genetic, and transcriptional characteristics of VRS (in BeatAML1): A) 

Mutually exclusive mutations in VR_C2 (top) and VR_C3 (bottom; see Methods). B) Heatmap of 

spearman correlation between VEN AUC and AML blast-type abundance scores. q-values after FDR 

correction are reported in the cells. C) Boxplot of AML blast-types with significantly different abundances 

(q < 0.1) between VEN resistant and sensitive samples (two-sided Wilcox-test followed by FDR correction 

is used to compute q-values.). D) Distribution of AML blast-type abundances in each VRS. E) Heatmap of 

pairwise difference between means abundance of AML blast-types in Figure 2D that showed significant 

differences between VRS. The pairwise difference in means is reported in cases where the difference is 

significant (Tukey’s test p.adj < 0.1): F) Differentially activity (q < 0.1) pathways in VEN resistant patients 

relative to sensitive identified using GSEA. Red: over-expression and blue: suppression. G) Heatmap of 

activity of signaling pathways inferred using Progeny across patients in BeatAML1. H) Heatmap of T-

statistics comparing activity of progeny pathways in VR_Cs vs VSC (left) and each VR_C vs other VR_Cs 

(right). P-values are computed with two-sided T-test, q-values after FDR correction for each column are 

reported in the cells. Significant at q < 0.1. I) Heatmap of TF-activity across patients that are differentially 

active (see Methods) in VR_C2 relative to other VRS. J) Heatmap of log2FC of HOXA and HOXB genes 

across comparisons, log2FC are reported in cases where the p.adj < 0.1. K) Heatmap of log2FC of genes 

for cytotoxicity (PRF1, GZMA and GZMB) and targets of immune checkpoint therapies (PDCD1 and 

CTLA4), log2FC are reported in cases where the p.adj < 0.1. L) Boxplot of CTL abundance scores across 

VRS. P-values is computed with ANOVA and pairwise p.adj with a Tukey’s test. Heatmap of Z-

transformed average AUC values of drugs that show specific sensitivity in M) VEN resistant samples 

relative to VSC and N) in each VR_C relative to other samples (see Methods for details). In N, average 

AUC of a drug is reported when it is specifically sensitive in a VR_C.  

Figure S3: Projecting VRS definitions onto new samples: A) Schema to project VRS definitions onto 

target gene expression data (GE target) based on gene PCA loadings (gPC) computed from the BeatAML1 

gene expression data (GE BeatAML_D) used in the NMF (Figure 1). Transpose of GE Target is multiplied 

with gPC to get PCA components of the target samples (tPC) thus projecting the samples into the same 

PCA space as BeatAML1 samples. Cluster definitions are assigned to the new samples (in GE Target) using 
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k-means clustering based on centroid of clusters in BeatAML1 (see Methods for details). Heatmap of 

fraction of projected VRS definitions that are resistant and sensitive to VEN for B) BeatAML2 and C) 

CCLE. Association between VEN resistance status and VRS definitions is tested using Chi-square test. 

Boxplot comparing VEN AUC values between projected VRS definitions in D) BeatAML2 and E) CCLE. 

ANOVA is used to compute significance of difference between groups and pairwise tests comparing 

VR_Cs to VSC (D) and VSC+VR_C4 (E) was performed using Tukey’s test and significance defined at 

p.adj < 0.1. Note: VSC and VR_C4 are merged in CCLE cell-lines because of the small number of cell-

lines and the transcriptional similarity between VSC and VR_C4 (Figure 2E-F). Heatmap of fractions of 

samples carrying a mutation in a gene in each VRS for F) BeatAML2 and G) TCGA. Only genes which 

show significant association with VRS states (q < 0.1; Chi-square test followed by FDR correction) were 

plotted, and testing was limited to mutations identified in BeatAML1 (Figure 2C, see Methods). H) 

Fractions of VR_C specific drugs discovered in BeatAML1 recaptured based on VRS definitions projected 

onto samples from BeatAML2 (see Methods for details). Same as Figure S2E for I) BeatAML2 and J) 

TCGA.  

Figure S4: Transcriptional characteristics of VRS projected onto new samples: Same as Figure 2 E-

F for VRS definitions projected onto A) BeatAML2 and B) TCGA samples. C) Same as Figure S2L for 

BeatAML2 (top) and TCGA (bottom). D) Same as Figure S2K for BeatAML2 (top) and TCGA (bottom). 

E) Same as Figure S2J for BeatAML2 (top) and TCGA (bottom). 

Figure S5: Developmental patterns associated with VRS: Heatmap of fraction of samples in each VRS 

across FAB classifications in A) TCGA and B) CCLE. The significance of association between FAB and 

VRS membership is tested using the Chi-square test. B) Heatmap of log2FC of hematopoietic cell type 

markers in each VRS relative to all other VRS for BeatAML1 (left), BeatAML2 (mid) and TCGA (right). 

Log2FC are reported in the cells where p.adj < 0.1. C) PCA plot based on top 5000 variably expressed 

genes in sorted populations of AML blasts. Samples are colored by clinical classification of the sample and 

shapes indicate its cellular phenotype. Note: samples segregate by cell-type but not clinical classification. 

D) uMAP of healthy BM cells colored by cell-type.    

Figure S6: VR_C3 is characterized by activation of JAK-STAT signaling and is sensitive to its 

inhibition: A) KEGG network for JAK-STAT signaling pathway colored by log2FC of genes when VR_C3 

is compared to all other VRS in BeatAML1. B) Same as Figure 4B for BeatAML2 (top) and TCGA 

(bottom). C) Same as Figure 4C for BeatAML2 (top) and TCGA (bottom). D) Boxplot comparing drug 

AUC, corresponding to Figure 4F, in VR_C3 and non-VR_C3 cell-lines. P-value computed using two-

sided T-test. E) Same as Figure 4G for HEL (top) and OCIM1 (bottom). F) Drug synergy plots for VEN 

and RUXO in F36P (left) and TF1(right; see Methods). 

Figure S7: VR_C1 is characterized by a transcriptional signature indicating active metabolism 

correlated with high PI3K signaling: A) Heatmap of log2FC of metabolic enzymes and genes (in 

glycolysis, TCA cycle, glutaminolysis and ETC) across comparisons in BeatAML1 (left), BeatAML2 (mid) 

and TCGA (right). Log2FC are reported for genes with p.adj < 0.1. B) Heatmap of difference in means 

activity of nutrient transport pathways in VR_C1 relative to other VRS in BeatAML1 (left), BeatAML2 

(mid) and TCGA (right) for nutrient transporter pathways with significant difference in activity across VRS 

(q < 0.1, ANOVA followed by FDR correction). Significance of pairwise differences was tested using 

Tukey’s test, and the difference is reported in the cells when significant (p.adj < 0.1). C) Same as Figure 

5B for BeatAML2 (left) and TCGA (right). D) Same as Figure 5C for BeatAML2.  

Figure S8: VR_C1 is sensitive to Rapamycin, Panobinostat and CDK inhibition: A) Boxplot of AUC 

for rapamycin (left), panobinostat (mid) and SNS-032 (right) in BeatAML1 (top) and BeatAML2 (bottom). 
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Drugs show specificity to VR_C1 (Table 2). In each dataset drug pair one-sided T-tests followed by FDR 

correction was used to test if AUC in VR_C1 is significantly (q < 0.1) lower (sensitive) relative to other 

VRS. B) Pathways significantly (q< 0.1) activated and suppressed in AML blasts treated with panobinostat 

compared to control identified using GSEA. positive stat.mean (mean statistic, see Methods) indicates 

over-expression and negative indicates suppression. C) heatmap of drug-response AUCs for cell-lines 

treated with VEN, PANO and VEN+PANO (left) and boxplots (right) comparing AUC between VR_C1-

like cell-lines and other cell-lines (p-values computed using two-sided T-test). D) Boxplot of drug-response 

AUC for mTOR inhibitors. One-sided T-test followed by FDR correction was used to identify drugs with 

significantly lower AUC (q < 0.1) in VR_C1-like cell-lines. E) GSEA as in Figure S8B for SNS-032 treated 

MOLT4 cells relative to untreated cells. Pathways are plotted at a lowered threshold for significance (q < 

0.2) with the q-values reported alongside the pathway labels.  
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Table 1: Cluster membership for original clustering in BeatAML1 and projected clustering (BeatAML2, TCGA a                 

BeatAML1 BeatAML2
sample_ID cluster resistance_status sample_ID projected_cluster resistance_status
14-00781 VR_C1 resistant 17-00641 VR_C4 sensitive
14-00787 VR_C2 resistant 14-00901 VR_C2 sensitive
14-00798 VR_C2 resistant 17-00350 VR_C4 sensitive
14-00815 VR_C3 resistant 17-00304 VSC sensitive
14-00817 VR_C4 resistant 17-00442 VR_C4 sensitive
14-00832 VR_C2 resistant 18-00048 VR_C4 sensitive
15-00043 VR_C1 resistant 18-00149 VR_C4 sensitive
15-00045 VR_C2 resistant 17-00215 VR_C4 sensitive
15-00057 VR_C3 resistant 17-00077 VR_C2 sensitive
15-00075 VR_C3 resistant 17-00281 VR_C4 sensitive
15-00084 VR_C2 resistant 17-00033 VSC sensitive
15-00123 VR_C4 resistant 17-00064 VSC sensitive
15-00169 VR_C3 resistant 17-00072 VR_C2 sensitive
15-00237 VR_C4 resistant 17-00093 VR_C4 sensitive
15-00248 VR_C2 resistant 17-00123 VR_C4 sensitive
15-00261 VR_C2 resistant 17-00177 VSC sensitive
15-00269 VR_C3 resistant 17-00276 VR_C4 sensitive
15-00275 VR_C3 resistant 17-00313 VSC sensitive
15-00276 VR_C4 resistant 17-00328 VR_C3 sensitive
15-00279 VR_C1 resistant 17-00441 VR_C4 sensitive
15-00300 VR_C3 resistant 17-00452 VR_C3 sensitive
15-00371 VR_C3 resistant 17-00463 VR_C4 sensitive
15-00383 VR_C2 resistant 17-00464 VR_C4 sensitive
15-00417 VR_C3 resistant 17-00485 VR_C4 sensitive
15-00464 VR_C3 resistant 17-00491 VSC sensitive
15-00471 VR_C2 resistant 17-00551 VR_C4 sensitive
15-00482 VR_C4 resistant 17-00678 VR_C4 sensitive
15-00534 VR_C3 resistant 17-00690 VSC sensitive
15-00539 VR_C3 resistant 17-00694 VR_C3 sensitive
15-00559 VR_C3 resistant 17-00755 VSC sensitive
15-00563 VR_C1 resistant 17-00779 VR_C2 sensitive
15-00593 VR_C2 resistant 17-00843 VR_C2 sensitive
15-00610 VR_C3 resistant 17-00849 VSC sensitive
15-00615 VR_C2 resistant 17-00851 VR_C4 sensitive
15-00616 VR_C2 resistant 17-00862 VR_C4 sensitive
15-00633 VR_C1 resistant 17-00901 VR_C1 sensitive
15-00650 VR_C2 resistant 17-00915 VSC sensitive
15-00653 VR_C3 resistant 17-01020 VR_C4 sensitive
15-00680 VR_C1 resistant 17-01038 VR_C4 sensitive
15-00688 VR_C2 resistant 17-01047 VR_C4 sensitive
15-00701 VR_C2 resistant 17-01036 VR_C2 sensitive
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15-00702 VR_C2 resistant 17-01054 VSC sensitive
15-00717 VR_C1 resistant 17-01117 VR_C4 sensitive
15-00734 VR_C1 resistant 18-00007 VR_C4 sensitive
15-00756 VR_C2 resistant 18-00039 VR_C4 sensitive
15-00766 VR_C3 resistant 18-00053 VR_C4 sensitive
15-00767 VR_C3 resistant 18-00073 VSC sensitive
15-00777 VR_C1 resistant 18-00129 VSC sensitive
15-00786 VR_C2 resistant 18-00131 VR_C2 sensitive
15-00807 VR_C2 resistant 18-00173 VSC sensitive
15-00811 VR_C4 resistant 18-00179 VSC sensitive
15-00813 VR_C2 resistant 18-00190 VR_C1 sensitive
15-00829 VR_C3 resistant 18-00192 VSC sensitive
15-00837 VR_C2 resistant 18-00208 VR_C2 sensitive
15-00855 VR_C4 resistant 18-00226 VR_C2 sensitive
15-00858 VR_C4 resistant 18-00230 VR_C4 sensitive
15-00870 VR_C2 resistant 18-00238 VR_C2 sensitive
15-00872 VR_C1 resistant 18-00278 VR_C4 sensitive
15-00883 VR_C4 resistant 18-00279 VR_C1 sensitive
15-00892 VR_C1 resistant 18-00280 VR_C2 sensitive
15-00900 VR_C2 resistant 18-00290 VR_C4 sensitive
15-00903 VR_C2 resistant 18-00390 VR_C3 sensitive
15-00909 VR_C2 resistant 18-00414 VR_C4 sensitive
15-00912 VR_C3 resistant 19-00025 VSC sensitive
15-00936 VR_C4 resistant 19-00062 VR_C2 sensitive
15-00961 VR_C3 resistant 19-00051 VR_C3 sensitive
15-00974 VR_C2 resistant 19-00084 VR_C4 sensitive
15-00975 VR_C2 resistant 19-00092 VSC sensitive
15-00976 VR_C2 resistant 19-00107 VSC sensitive
15-00979 VR_C4 resistant 19-00156 VR_C2 sensitive
15-00990 VR_C1 resistant 19-00313 VSC sensitive
16-00001 VR_C2 resistant 19-00315 VR_C4 sensitive
16-00010 VR_C1 resistant 19-00369 VR_C3 sensitive
16-00027 VR_C4 resistant 17-00059 VR_C3 resistant
16-00031 VR_C4 resistant 16-00834 VR_C3 resistant
16-00048 VR_C2 resistant 16-00980 VR_C2 resistant
16-00067 VR_C1 resistant 17-00963 VR_C4 resistant
16-00075 VR_C3 resistant 17-00436 VR_C1 resistant
16-00077 VR_C2 resistant 17-00021 VR_C4 resistant
16-00094 VR_C2 resistant 17-00025 VR_C1 resistant
16-00102 VR_C4 resistant 17-00066 VR_C2 resistant
16-00113 VR_C3 resistant 17-00094 VR_C3 resistant
16-00115 VR_C2 resistant 17-00113 VR_C2 resistant
16-00145 VR_C3 resistant 17-00195 VR_C2 resistant
16-00157 VR_C4 resistant 17-00210 VR_C3 resistant
16-00217 VR_C2 resistant 17-00230 VR_C1 resistant
16-00226 VR_C2 resistant 17-00248 VR_C4 resistant
16-00249 VR_C3 resistant 17-00252 VR_C3 resistant
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16-00269 VR_C4 resistant 17-00262 VR_C4 resistant
16-00271 VR_C4 resistant 17-00264 VR_C2 resistant
16-00273 VR_C2 resistant 17-00287 VR_C4 resistant
16-00292 VR_C4 resistant 17-00300 VR_C1 resistant
16-00303 VR_C1 resistant 17-00322 VR_C2 resistant
16-00332 VR_C2 resistant 17-00325 VR_C2 resistant
16-00339 VR_C2 resistant 17-00337 VR_C2 resistant
16-00351 VR_C2 resistant 17-00360 VR_C1 resistant
16-00354 VR_C2 resistant 17-00423 VR_C1 resistant
16-00356 VR_C3 resistant 17-00438 VR_C1 resistant
16-00358 VR_C3 resistant 17-00444 VR_C3 resistant
16-00459 VR_C4 resistant 17-00443 VR_C3 resistant
16-00465 VR_C1 resistant 18-00251 VR_C2 resistant
16-00474 VR_C2 resistant 17-00446 VR_C3 resistant
16-00479 VR_C2 resistant 17-00467 VR_C2 resistant
16-00481 VR_C2 resistant 17-00478 VSC resistant
16-00494 VR_C1 resistant 17-00482 VR_C3 resistant
16-00510 VR_C2 resistant 17-00499 VR_C1 resistant
16-00525 VR_C3 resistant 17-00831 VR_C1 resistant
16-00538 VR_C3 resistant 18-00043 VR_C1 resistant
16-00548 VR_C3 resistant 17-00514 VR_C1 resistant
16-00627 VR_C1 resistant 17-00536 VR_C2 resistant
16-00699 VR_C3 resistant 17-00556 VR_C1 resistant
16-00702 VR_C3 resistant 17-00613 VR_C4 resistant
16-00705 VR_C3 resistant 17-00634 VR_C1 resistant
16-00708 VR_C3 resistant 17-00656 VR_C3 resistant
16-00724 VR_C3 resistant 17-00676 VR_C3 resistant
16-00731 VR_C2 resistant 17-00685 VR_C1 resistant
16-00771 VR_C3 resistant 17-00687 VR_C2 resistant
16-00815 VR_C1 resistant 17-00741 VR_C2 resistant
16-00818 VR_C2 resistant 17-00761 VR_C4 resistant
16-00822 VR_C3 resistant 17-00770 VR_C1 resistant
16-00831 VR_C3 resistant 17-00776 VR_C4 resistant
16-00836 VR_C1 resistant 17-00781 VR_C1 resistant
16-00882 VR_C2 resistant 17-00834 VR_C1 resistant
16-01004 VR_C1 resistant 17-00838 VR_C3 resistant
16-01017 VR_C3 resistant 17-00848 VR_C2 resistant
16-01049 VR_C3 resistant 17-00867 VR_C2 resistant
16-01100 VR_C3 resistant 17-00878 VR_C3 resistant
16-01102 VR_C2 resistant 17-00881 VR_C2 resistant
16-01109 VR_C2 resistant 17-00896 VR_C2 resistant
16-01127 VR_C4 resistant 17-00908 VR_C2 resistant
16-01138 VR_C2 resistant 17-00926 VR_C3 resistant
16-01191 VR_C1 resistant 17-00933 VR_C4 resistant
16-01192 VR_C1 resistant 17-01021 VR_C4 resistant
16-01216 VR_C3 resistant 17-01023 VR_C2 resistant
16-01237 VR_C3 resistant 17-01024 VSC resistant
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16-00003 VR_C4 resistant 17-01060 VR_C2 resistant
16-00139 VR_C3 resistant 17-01081 VR_C2 resistant
16-01093 VR_C3 resistant 17-01083 VR_C1 resistant
16-01094 VR_C3 resistant 17-01106 VR_C2 resistant
16-01121 VR_C4 resistant 17-01110 VR_C2 resistant
16-01254 VR_C1 resistant 18-00012 VR_C3 resistant
14-00739 VSC sensitive 18-00014 VR_C3 resistant
14-00831 VSC sensitive 18-00016 VR_C1 resistant
15-00051 VSC sensitive 18-00029 VR_C1 resistant
15-00171 VSC sensitive 18-00055 VR_C1 resistant
15-00175 VSC sensitive 18-00361 VR_C2 resistant
15-00287 VSC sensitive 18-00077 VR_C4 resistant
15-00296 VSC sensitive 18-00082 VR_C2 resistant
15-00302 VSC sensitive 18-00103 VR_C2 resistant
15-00338 VSC sensitive 18-00101 VR_C1 resistant
15-00377 VSC sensitive 18-00135 VR_C1 resistant
15-00470 VSC sensitive 18-00184 VR_C3 resistant
15-00556 VSC sensitive 18-00204 VR_C2 resistant
15-00578 VSC sensitive 18-00206 VR_C2 resistant
15-00670 VSC sensitive 18-00218 VR_C2 resistant
15-00692 VSC sensitive 18-00219 VR_C1 resistant
15-00755 VSC sensitive 18-00223 VR_C2 resistant
15-00874 VSC sensitive 18-00253 VR_C4 resistant
15-00939 VSC sensitive 18-00260 VR_C1 resistant
15-00967 VSC sensitive 19-00334 VR_C1 resistant
16-00056 VSC sensitive 18-00267 VR_C2 resistant
16-00073 VSC sensitive 18-00269 VR_C2 resistant
16-00088 VSC sensitive 18-00270 VR_C1 resistant
16-00118 VSC sensitive 18-00283 VR_C1 resistant
16-00120 VSC sensitive 18-00298 VR_C4 resistant
16-00220 VSC sensitive 18-00305 VR_C4 resistant
16-00278 VSC sensitive 19-00332 VR_C2 resistant
16-00289 VSC sensitive 18-00320 VR_C3 resistant
16-00315 VSC sensitive 18-00327 VR_C4 resistant
16-00410 VSC sensitive 18-00341 VR_C4 resistant
16-00498 VSC sensitive 18-00408 VR_C2 resistant
16-00519 VSC sensitive 19-00027 VR_C2 resistant
16-00540 VSC sensitive 19-00035 VR_C2 resistant
16-00770 VSC sensitive 19-00019 VR_C2 resistant
16-00867 VSC sensitive 19-00029 VR_C1 resistant
16-00951 VSC sensitive 19-00137 VR_C4 resistant
16-01010 VSC sensitive 19-00154 VR_C4 resistant
16-01061 VSC sensitive 19-00165 VR_C3 resistant
16-01097 VSC sensitive 19-00179 VR_C1 resistant
16-01151 VSC sensitive 19-00261 VR_C2 resistant
16-01185 VSC sensitive 19-00290 VR_C4 resistant
16-01219 VSC sensitive 19-00327 VR_C4 resistant
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16-01227 VSC sensitive
16-01262 VSC sensitive
16-01270 VSC sensitive
16-01103 VSC sensitive
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              and CCLE). When venetoclax response data is available resistance status is also presented (BeatA    

TCGA CCLE
sample_ID projected_cluster sample_ID projected_cluster
TCGA.AB.2872.03 VSC AML193 VSC/VR_C4
TCGA.AB.2812.03 VR_C4 P31FUJ VSC/VR_C4
TCGA.AB.2919.03 VR_C4 HEL VR_C3
TCGA.AB.2921.03 VR_C4 KO52 VSC/VR_C4
TCGA.AB.2836.03 VR_C1 HEL9217 VR_C3
TCGA.AB.2983.03 VR_C2 CMK115 VR_C3
TCGA.AB.2843.03 VR_C3 THP1 VR_C1
TCGA.AB.2978.03 VR_C3 GDM1 VR_C2
TCGA.AB.2909.03 VR_C4 KASUMI1 VSC/VR_C4
TCGA.AB.2882.03 VR_C3 CMK VR_C3
TCGA.AB.2845.03 VSC SKM1 VR_C1
TCGA.AB.2877.03 VR_C4 KG1 VR_C2
TCGA.AB.3012.03 VSC HL60 VSC/VR_C4
TCGA.AB.2865.03 VR_C2 MV411 VSC/VR_C4
TCGA.AB.2851.03 VR_C1 MOLM13 VSC/VR_C4
TCGA.AB.2930.03 VR_C4 MONOMAC6 VSC/VR_C4
TCGA.AB.2887.03 VR_C3 TF1 VR_C3
TCGA.AB.2991.03 VSC ME1 VSC/VR_C4
TCGA.AB.2826.03 VR_C1 OCIAML3 VSC/VR_C4
TCGA.AB.2946.03 VSC KASUMI6 VSC/VR_C4
TCGA.AB.2969.03 VR_C1 EOL1 VSC/VR_C4
TCGA.AB.2817.03 VR_C2 MONOMAC1 VSC/VR_C4
TCGA.AB.2862.03 VSC PL21 VSC/VR_C4
TCGA.AB.2885.03 VR_C2 OCIAML2 VSC/VR_C4
TCGA.AB.2821.03 VR_C3 OCIAML5 VSC/VR_C4
TCGA.AB.2965.03 VR_C1 NOMO1 VR_C1
TCGA.AB.2819.03 VR_C2 M07E VR_C3
TCGA.AB.2891.03 VR_C2 NB4 VSC/VR_C4
TCGA.AB.2914.03 VR_C2 OCIM1 VR_C3
TCGA.AB.2880.03 VR_C4 SIGM5 VSC/VR_C4
TCGA.AB.2944.03 VR_C2 MOLM16 VR_C3
TCGA.AB.2867.03 VR_C2 F36P VR_C3
TCGA.AB.2932.03 VR_C1 HNT34 VR_C2
TCGA.AB.2837.03 VR_C1 PLB985 VSC/VR_C4
TCGA.AB.2948.03 VR_C3 SKNO1 VSC/VR_C4
TCGA.AB.2890.03 VR_C2 MUTZ3 VR_C2
TCGA.AB.3005.03 VR_C1 MOLM14 VSC/VR_C4
TCGA.AB.2879.03 VR_C4
TCGA.AB.2984.03 VR_C4
TCGA.AB.2910.03 VR_C1
TCGA.AB.2858.03 VR_C2
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TCGA.AB.2967.03 VR_C3
TCGA.AB.2868.03 VR_C3
TCGA.AB.2929.03 VR_C2
TCGA.AB.2886.03 VR_C4
TCGA.AB.2814.03 VR_C2
TCGA.AB.2863.03 VR_C4
TCGA.AB.2963.03 VR_C1
TCGA.AB.2860.03 VR_C3
TCGA.AB.2975.03 VR_C4
TCGA.AB.2993.03 VR_C4
TCGA.AB.2966.03 VR_C4
TCGA.AB.2874.03 VR_C4
TCGA.AB.2933.03 VR_C2
TCGA.AB.2959.03 VR_C2
TCGA.AB.2972.03 VR_C3
TCGA.AB.2987.03 VR_C1
TCGA.AB.2973.03 VR_C1
TCGA.AB.2931.03 VR_C4
TCGA.AB.2897.03 VSC
TCGA.AB.2822.03 VR_C4
TCGA.AB.2998.03 VR_C4
TCGA.AB.2840.03 VR_C4
TCGA.AB.2924.03 VR_C1
TCGA.AB.3006.03 VSC
TCGA.AB.2810.03 VR_C4
TCGA.AB.2842.03 VR_C1
TCGA.AB.2889.03 VR_C2
TCGA.AB.2908.03 VR_C3
TCGA.AB.2841.03 VSC
TCGA.AB.2964.03 VSC
TCGA.AB.2943.03 VR_C3
TCGA.AB.2920.03 VR_C2
TCGA.AB.2994.03 VSC
TCGA.AB.2980.03 VSC
TCGA.AB.2849.03 VR_C3
TCGA.AB.2834.03 VSC
TCGA.AB.2928.03 VR_C4
TCGA.AB.2937.03 VR_C2
TCGA.AB.2816.03 VR_C1
TCGA.AB.2976.03 VR_C4
TCGA.AB.2977.03 VR_C1
TCGA.AB.2869.03 VSC
TCGA.AB.2838.03 VR_C3
TCGA.AB.2830.03 VR_C3
TCGA.AB.2884.03 VR_C1
TCGA.AB.3001.03 VR_C3
TCGA.AB.2955.03 VR_C4
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TCGA.AB.3011.03 VR_C4
TCGA.AB.2820.03 VR_C2
TCGA.AB.2942.03 VR_C2
TCGA.AB.2854.03 VR_C3
TCGA.AB.2949.03 VR_C2
TCGA.AB.2992.03 VR_C3
TCGA.AB.2950.03 VR_C2
TCGA.AB.2927.03 VR_C3
TCGA.AB.2925.03 VR_C1
TCGA.AB.2833.03 VR_C1
TCGA.AB.2844.03 VSC
TCGA.AB.2873.03 VR_C3
TCGA.AB.2888.03 VR_C1
TCGA.AB.2903.03 VR_C4
TCGA.AB.2918.03 VR_C4
TCGA.AB.2999.03 VSC
TCGA.AB.2848.03 VR_C1
TCGA.AB.2847.03 VR_C3
TCGA.AB.2934.03 VR_C2
TCGA.AB.2940.03 VSC
TCGA.AB.2875.03 VR_C2
TCGA.AB.2815.03 VR_C1
TCGA.AB.2971.03 VR_C1
TCGA.AB.2988.03 VR_C4
TCGA.AB.2808.03 VSC
TCGA.AB.2986.03 VR_C4
TCGA.AB.2839.03 VR_C4
TCGA.AB.2911.03 VR_C1
TCGA.AB.2856.03 VR_C1
TCGA.AB.2823.03 VR_C4
TCGA.AB.2901.03 VR_C2
TCGA.AB.2985.03 VR_C1
TCGA.AB.2954.03 VR_C2
TCGA.AB.2917.03 VR_C3
TCGA.AB.2895.03 VR_C4
TCGA.AB.2811.03 VR_C1
TCGA.AB.2913.03 VR_C4
TCGA.AB.2904.03 VR_C2
TCGA.AB.2832.03 VR_C1
TCGA.AB.2956.03 VR_C1
TCGA.AB.2979.03 VSC
TCGA.AB.2881.03 VR_C2
TCGA.AB.2941.03 VR_C3
TCGA.AB.2806.03 VR_C4
TCGA.AB.2915.03 VR_C2
TCGA.AB.2912.03 VR_C2
TCGA.AB.2825.03 VR_C1
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TCGA.AB.2805.03 VR_C1
TCGA.AB.2859.03 VR_C3
TCGA.AB.2818.03 VR_C1
TCGA.AB.2938.03 VR_C3
TCGA.AB.2896.03 VR_C4
TCGA.AB.2898.03 VR_C3
TCGA.AB.2857.03 VR_C3
TCGA.AB.2853.03 VR_C4
TCGA.AB.2900.03 VR_C1
TCGA.AB.2846.03 VR_C2
TCGA.AB.3000.03 VR_C4
TCGA.AB.2871.03 VR_C3
TCGA.AB.2952.03 VR_C3
TCGA.AB.3008.03 VSC
TCGA.AB.2936.03 VR_C3
TCGA.AB.2813.03 VR_C1
TCGA.AB.2970.03 VR_C3
TCGA.AB.2866.03 VR_C1
TCGA.AB.2990.03 VR_C4
TCGA.AB.3002.03 VR_C2
TCGA.AB.2996.03 VR_C3
TCGA.AB.2939.03 VSC
TCGA.AB.2870.03 VR_C2
TCGA.AB.2807.03 VR_C3
TCGA.AB.3007.03 VSC
TCGA.AB.2828.03 VR_C1
TCGA.AB.2824.03 VR_C3
TCGA.AB.2803.03 VSC
TCGA.AB.2982.03 VR_C3
TCGA.AB.2935.03 VR_C3
TCGA.AB.2835.03 VR_C1
TCGA.AB.2995.03 VR_C3
TCGA.AB.2981.03 VR_C1
TCGA.AB.2855.03 VR_C4
TCGA.AB.2916.03 VR_C1
TCGA.AB.2899.03 VR_C3
TCGA.AB.2861.03 VR_C1
TCGA.AB.3009.03 VR_C2
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                           AML1, BeatAML2 and CCLE)

resistance_status
sensitive
NA
NA
sensitive
NA
NA
resistant
resistant
sensitive
resistant
resistant
NA
NA
NA
NA
sensitive
NA
sensitive
NA
NA
sensitive
resistant
resistant
NA
resistant
resistant
resistant
resistant
resistant
NA
resistant
resistant
NA
NA
NA
NA
NA
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Table 2: Drugs that show specific sensitivity in VRPs, VR_C1 -4 in beatAML 1. q-values for h                                   

BeatAML1
drug enrichment_q T-test_q cluster
17-AAG (Tanespimycin) 0.023938197 0.008336 VRPs
BEZ235 0.016193846 0.021796 VRPs
Bortezomib (Velcade) 0.010586678 0.004425 VRPs
Dasatinib 0.004978496 5.17E-05 VRPs
Flavopiridol 0.02678996 0.011314 VRPs
GDC-0941 0.015982961 0.007526 VRPs
INK-128 0.010713154 0.007555 VRPs
JNJ-28312141 0.027752794 0.062181 VRPs
KI20227 0.00477837 0.000372 VRPs
PD173955 0.09201292 0.152286 VRPs
PI-103 0.005528917 0.021796 VRPs
PP242 0.016193846 0.26134 VRPs
Panobinostat 0.000124277 0.000372 VRPs
Rapamycin 0.005528917 4.61E-05 VRPs
SNS-032 (BMS-387032) 0.049654852 0.050023 VRPs
Selumetinib (AZD6244) 0.010586678 5.41E-06 VRPs
Trametinib (GSK1120212) 0.010586678 0.004636 VRPs
AT7519 0.14664863 0.068772 VRPs
Doramapimod (BIRB 796) 0.111936211 0.050023 VRPs
Elesclomol 0.111936211 0.008953 VRPs
JAK Inhibitor I 0.545562751 0.081601 VRPs
JQ1 0.111936211 0.021796 VRPs
17-AAG (Tanespimycin) 0.127982184 0.017341 VR_C1
GDC-0941 0.003874683 0.035608 VR_C1
JQ1 0.188104085 0.071972 VR_C1
Panobinostat 0.015461869 0.003385 VR_C1
SNS-032 (BMS-387032) 0.130351637 0.024528 VR_C1
Selumetinib (AZD6244) 0.127982184 0.003385 VR_C1
Trametinib (GSK1120212) 0.025549786 0.064412 VR_C1
BEZ235 0.025549786 0.324063 VR_C1
Bortezomib (Velcade) 0.080556956 0.247418 VR_C1
Rapamycin 0.007612853 0.21272 VR_C1
Elesclomol 0 3.74E-05 VR_C2
JQ11 0.049980164 0.042923 VR_C2
Selumetinib (AZD6244) 0.224930667 0.071217 VR_C2
Trametinib (GSK1120212) 0.004321798 0.071217 VR_C2
Elesclomol1 0.195405403 0.009712 VR_C3
SNS-032 (BMS-387032) 0.195405403 0.038991 VR_C3
17-AAG (Tanespimycin) 0.005793033 0.000884 VR_C4
A-674563 0.007973172 0.015082 VR_C4
AT7519 0.128532888 0.051227 VR_C4
BEZ2351 0.510011351 0.082217 VR_C4
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Dasatinib 0.011306871 0.003601 VR_C4
Doramapimod (BIRB 796) 0.04577057 0.030086 VR_C4
Dovitinib (CHIR-258) 0.009161492 0.000884 VR_C4
Foretinib (XL880) 0.000963125 8.19E-05 VR_C4
Gilteritinib (ASP-2215) 0.562167546 0.054318 VR_C4
INK-128 0.032340234 0.002985 VR_C4
JAK Inhibitor I 0.029891586 0.000153 VR_C4
JNJ-28312141 0.042232507 0.022633 VR_C4
KI20227 0.033440521 0.006044 VR_C4
PD173955 0.154265794 0.058263 VR_C4
PI-103 0.017708043 0.002532 VR_C4
PP242 0.08036522 0.072149 VR_C4
Pelitinib (EKB-569) 0.00722152 0.003601 VR_C4
Ponatinib (AP24534) 0.005793033 0.014875 VR_C4
Quizartinib (AC220) 0.009161492 0.000884 VR_C4
Rapamycin 0.238823927 0.031398 VR_C4
Tivozanib (AV-951) 0.001802386 0.006698 VR_C4
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                ypergeometric enrichment (enrichment_q) and one-sided T-test (T-test_q) are presented. Same statistics                        

BeatAML2
drug enrichment_q T-test_q cluster
BEZ235 0.002886533 0.010313501 VR_C1
Bortezomib (Velcade) 0.168509656 0.011026089 VR_C1
GDC-0941 0.001640075 0.015208708 VR_C1
Panobinostat 1.34E-05 3.86E-11 VR_C1
Rapamycin 9.47E-07 8.86E-06 VR_C1
Trametinib (GSK1120212) 1.98E-05 0.000149204 VR_C1
17-AAG (Tanespimycin) 7.25E-05 1.93E-07 VR_C1
JQ1 0.168509656 0.620814291 VR_C1
SNS-032 (BMS-387032) 0 0.006168604 VR_C1
Selumetinib (AZD6244) 4.14E-05 8.68E-07 VR_C1
Elesclomol 0 3.66E-08 VR_C2
JQ11 0.294075213 0.239357815 VR_C2
Trametinib (GSK1120212) 0.02090248 0.060328228 VR_C2
Selumetinib (AZD6244) 0.455290719 0.147067643 VR_C2
Elesclomol1 0.985271037 0.899919232 VR_C3
SNS-032 (BMS-387032) 0.985271037 0.899919232 VR_C3
17-AAG (Tanespimycin) 0.982290673 0.999108571 VR_C4
A-674563 0.195045808 0.746417567 VR_C4
Dasatinib 0.982290673 0.999108571 VR_C4
Doramapimod (BIRB 796) 0.982290673 0.999108571 VR_C4
Dovitinib (CHIR-258) 0.222570439 0.103903473 VR_C4
Foretinib (XL880) 0.195045808 0.73636537 VR_C4
INK-128 0.982290673 0.999108571 VR_C4
JAK Inhibitor I 0.982290673 0.999108571 VR_C4
JNJ-28312141 0.640935916 0.442281378 VR_C4
KI20227 0.982290673 0.843928758 VR_C4
PI-103 0.523581003 0.73636537 VR_C4
PP242 0.982290673 0.999108571 VR_C4
Pelitinib (EKB-569) 0.0019955 0.004034813 VR_C4
Quizartinib (AC220) 0.195045808 0.256332699 VR_C4
Tivozanib (AV-951) 0.769943707 0.746417567 VR_C4
AT7519 0.982290673 0.999108571 VR_C4
BEZ2351 0.982290673 0.999108571 VR_C4
PD173955 0.391261368 0.552299779 VR_C4
Rapamycin 0.982290673 0.999108571 VR_C4
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                           are presented in case of BeatAML2, drugs recaptured her showing specific sensitivity in the same cluste         
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                                          er/clusters as BeatAML 1 are highlighted in yellow. 
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