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The modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is associated with
the regulation of numerous cellular processes. Despite the importance of O-GlcNAc in
mediating cellular function our understanding of the mechanisms that regulate O-GlcNAc
levels is limited. One factor known to regulate protein O-GlcNAc levels is nutrient availability;
however, the fact that nutrient deficient states such as ischemia increase O-GlcNAc levels
suggests that other factors also contribute to regulating O-GlcNAc levels. We have previously
reported that in unstressed cardiomyocytes exogenous NAD+ resulted in a time and dose
dependent decrease in O-GlcNAc levels. Therefore, we postulated that NAD+ and cellular
O-GlcNAc levelsmaybe coordinately regulated.Using glucose deprivation as amodel system in
an immortalized human ventricular cell line, we examined the influence of extracellular NAD+ on
cellular O-GlcNAc levels and ER stress in the presence and absence of glucose. We found that
NAD+ completely blocked the increase in O-GlcNAc induced by glucose deprivation and
suppressed the activation of ER stress. The NAD+ metabolite cyclic ADP-ribose (cADPR) had
similar effects on O-GlcNAc and ER stress suggesting a common underlying mechanism.
cADPR is a ryanodine receptor (RyR) agonist and like caffeine, which also activates the RyR,
both mimicked the effects of NAD+. SERCA inhibition, which also reduces ER/SR Ca2+ levels
had similar effects to bothNAD+ and cADPRonO-GlcNAc and ER stress responses to glucose
deprivation. The observation that NAD+, cADPR, and caffeine all attenuated the increase in
O-GlcNAc and ER stress in response to glucose deprivation, suggests a potential common
mechanism, linked to ER/SRCa2+ levels, underlying their activation. Moreover, we showed that
TRPM2, a plasma membrane cation channel was necessary for the cellular responses to
glucose deprivation. Collectively, these findings support a novel Ca2+-dependent mechanism
underlying glucose deprivation induced increase in O-GlcNAc and ER stress.
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INTRODUCTION

The posttranslational modification of serine and threonine
residues of proteins by O-linked β-N-acetylglucosamine
(O-GlcNAc) contributes to the regulation of diverse cellular
functions, including epigenetics, Ca2+ signaling, metabolism,
mitochondrial function, autophagy, and cell survival (Chatham
et al., 2021). Sustained increases in cardiac O-GlcNAc levels
observed in diabetes and hypertrophy are linked to cardiac
dysfunction (Marsh et al., 2014; Mailleux et al., 2016);
moreover, increasing evidence suggests that a sustained
increase in cardiomyocyte O-GlcNAc levels is sufficient to lead
to adverse cardiac remodeling (Prakoso et al., 2021; Umapathi
et al., 2021). On the other hand, acute activation of O-GlcNAc
levels has been shown to be cardioprotective, whereas loss of
O-GlcNAc increases susceptibility to oxidative stress and is
associated with increased injury (Ngoh et al., 2010; Wright
et al., 2017). Surprisingly, however, despite the important role
of O-GlcNAcylation in mediating cardiomyocyte (patho)
physiology, our knowledge of the regulation of
O-GlcNAcylation pathway remains remarkably limited.

One factor that is widely considered to regulate protein
O-GlcNAc levels is nutrient availability (Hart, 2019). However,
we have shown that in the perfused rat heart during global
ischemia there is a significant increase in cardiac O-GlcNAc
levels (Fulop et al., 2007), whereas upon reperfusion nuclear
and cytosolic O-GlcNAc levels decline by ∼50% compared to
normoxic controls (Laczy et al., 2010). This is an interesting
paradox given that the increase in O-GlcNAc is seen during
global ischemia, a nutrient deficient state, and the decrease on
reperfusion occurs when nutrient availability is no longer limited.
This suggests that factors other than nutrient availability also
contribute to regulating O-GlcNAc levels. Ischemia also leads to a
decrease in nicotinamide adenine dinucleotide (NAD+) due to the
inability to oxidize NADH, which is one of the many factors
contributing to ischemic injury (Matasic et al., 2018). Rather than
restore NAD+ levels, reperfusion can contribute to further
reductions via depletion of nicotinamide
phosphoribosyltransferase (NAMPT) (Matasic et al., 2018) the
rate limiting enzyme in NAD+ salvage pathway, as well as
activation of poly (ADP-ribose polymerase (PARP) (Szabo
et al., 2004), which uses NAD+ in the polyADP-ribosylation of
proteins. Preserving NAD+ levels, either through inhibition of
PARP or supplementation with NAD+ and its precursors has
been shown to decrease injury and improve recovery following
ischemia/reperfusion (Szabo et al., 2004; Matasic et al., 2018).
Since, maintaining O-GlcNAc levels during reperfusion either by
supplementing O-GlcNAc precursors or inhibiting its
degradation also improves cardiac function following ischemia
reperfusion (Fulop et al., 2007; Laczy et al., 2010), we
hypothesized that NAD+ and cellular O-GlcNAc levels could
be coordinately regulated.

The endoplasmic reticulum (ER) has diverse cellular functions
including regulating Ca2+ homeostasis, control of lipid and
glucose metabolism, and perhaps it is most widely known its
role in regulating protein folding and protein quality control
(Almanza et al., 2019). When cells are subjected to various

stresses which result in Ca2+ dysregulation such as nutrient
depletion and ischemia/reperfusion, there is impaired protein
processing and misfolding of proteins. This triggers a response
commonly known as ER stress, which initiates a complex series of
signaling events, including the release of Bip/GRP78 from ER
stress sensors such as PERK, leading to its phosphorylation
(Almanza et al., 2019). There is a subsequent activation of
numerous transcriptional events designed to restore ER
homeostasis, or if this is not possible lead to the upregulation
of proteins such as C/EBP homologous protein (CHOP), which
helps regulate ER stress induced apoptosis (Almanza et al., 2019).
Interestingly, increasing O-GlcNAc levels has been shown to
attenuate ER stress including reducing levels of CHOP (Ngoh
et al., 2009) and O-GlcNAcylation of key regulatory proteins such
as eukaryotic translation initiation factor 2α (eIF2α) (Jang et al.,
2015) appears to play a key role in maintaining ER homeostasis.
Raising the possibility that O-GlcNAc mediated regulation of ER
stress could be one factor related to the cardioprotective effect of
increasing O-GlcNAc. Interestingly, both nutrient deficient states
and ischemia/reperfusion, which activate ER stress, also reduce
NAD+ levels; however, whether NAD+ itself to directly regulate
ER stress, has not determined.

In support of potential co-regulation of NAD+ and O-GlcNAc
we have previously reported that exogenous NAD+ decreased
O-GlcNAc levels in cultured neonatal cardiomyocytes in a time-
and dose-dependent manner (Durgan et al., 2011); however, this
was under normal unstressed conditions. How NAD+ might
influence O-GlcNAc levels under cellular stress conditions
remains unknown. We have previously reported that glucose
deprivation is a potent stimulus for increasing cellular O-GlcNAc
levels, which was dependent on extracellular Ca2+(Zou et al.,
2012). Therefore, using glucose deprivation as a model system in
an immortalized human ventricular cell line, we examined the
influence of extracellular NAD+ on cellular O-GlcNAc levels and
ER stress in the presence and absence of glucose. We found that
NAD+ completely blocked the increase in O-GlcNAc induced by
glucose deprivation as well as suppressed the activation of ER
stress. We also found that the NAD+ metabolites cyclic ADP-
ribose (cADPR) and ADPR which are ryanodine receptor (RyR)
agonists and caffeine, which activates the RyR, mimicked the
effects of NAD+. Inhibition of SERCA, which like cADPR, ADPR
and caffeine reduce ER/SR Ca2+ levels had similar effects on
O-GlcNAc and ER stress responses to glucose deprivation.
Inhibitors of CaMKII and the Ca2+-dependent phosphatase,
calcineurin all attenuated the glucose deprivation induced
activation of O-GlcNAc and ER stress. Collectively these
results suggest novel Ca2+-dependent pathway(s) underlying
the glucose deprivation induced activation of protein
O-GlcNAcylation and ER stress and the disruption of these
responses by NAD+ and its metabolites.

METHODS

Antibodies and Reagents
The following primary antibodies were used: anti-O-GlcNAc
(CTD110.6 antibody, UAB Epitope Recognition and
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Immunoreagent Core), anti-GAPDH (Abcam, ab8245), anti-
OGA (Santa Cruz, 376429), anti-phospho-PERK (Thr981)
antibody (Santa Cruz, sc-32577), and anti-OGT (Sigma, O-
6264). Anti-PERK (5683), BiP (3177), CHOP (2895), and
acetylated-lysine (9441) were all obtained from Cell Signaling.
Anti-pan-ADP-ribose binding reagent was from Millipore
(MABE1016). The following secondary antibodies were used:
horseradish peroxidase-conjugated anti-mouse IgM
(Calbiochem, 401225), anti-mouse IgG (Bio-Rad, 170-6516),
and anti-rabbit IgG (Bio-Rad, 170-6515).

The following reagents were obtained from Sigma-Aldrich:
β-Nicotinamide adenine dinucleotide hydrate (NAD+, N6522),
Nicotinamide (NAM, 72340), Sirt1 inhibitor (EX-527, E7034),
cyclic adenosine diphosphate ribose (cADPR, C7344), Adenosine
5′-diphosphoribose sodium salt (ADPR, A0752), SERCA
inhibitor (cyclopiazonic acid (CPA), C1530), caffeine (C0750),
PARP1 inhibitors 3-Aminobenzamide (3AB, A0788) and
DR2313 (SML0397), TRPM2 inhibitor [flufenamic acid (FLA),
F9005], and the store operated channel inhibitor, (SKF96365,
S7809). Glucosamine hydrochloride was obtained from Fluka
(49130); note this product has been discontinued and replaced by
G4875 from Sigma-Aldrich. The SERCA inhibitor, thapsigargin
was obtained from Invitrogen (T7459). The CAMKII inhibitor
KN93 (422708) was obtained from Calbiochem. The TRPM2
inhibitor N-(p-Amylcinnamoyl) anthranilic acid (ACA, BML-
EI178-0050) was obtained from Enzo. The calcineurin inhibitor,
CN585 was obtained from Millipore (207008). The doses of the
compounds used in these studies were chosen either based on
past studies (Durgan et al., 2011; Zou et al., 2012) or following
preliminary dose response curves prior to these studies.

The following cell culture reagents were used: Dulbecco’s
modified Eagle’s medium with 1 g/L glucose (Mediateck, Inc.),
Dulbecco’s modified Eagle’s medium, no glucose (Gibco), fetal
bovine serum (Atlanta Biologicals), and antibiotic-antimycotic
(Invitrogen).

Cell Culture
AC16 cells, originally derived from primary cultures of adult
human ventricular heart tissue (Davidson et al., 2005), were used
in all studies except where stated otherwise. The recommended
media for AC16 cell culture is DMEM/F-12 (Gibco), which
includes a 17.5 mM glucose concentration for optimal growth
conditions; however, preliminary studies demonstrated that the
responsiveness of O-GlcNAc levels to different interventions
were substantially blunted at that concentration of glucose.
Therefore, we currently use regular DMEM medium, with
5 mM glucose, for culturing AC16 cells and have observed no
adverse effects. A limited number of studies used wild type (WT)
and TRPM2−/− mouse embryonic fibroblasts, which were
cultured under the same conditions as AC16 cells.

At the beginning of the experiment the cell culture media is
changed to either fresh regular or glucose-free DMEM,
immediately followed by addition of interventions described
below. Unless stated otherwise the treatment period is 24 h.
The composition of the glucose-free DMEM is identical to
regular DMEM except for the lack of both glucose and
sodium pyruvate. In an earlier study, we reported that the

addition of pyruvate to the glucose free DMEM did not
prevent the increase in O-GlcNAc levels (Zou et al., 2012).

At the end of the experiments, all cells were harvested with
lysis buffer (20 mM HEPES, 1.5 mM MgCl2, 20 mM KCl, 20%
glycerol, 0.2 mM EGTA, 1% Triton X-100, 2 mM Na3VO4,
10 mM NaF, and 2% protease inhibitor, pH 7.9), and kept at
–80°C until subsequent analyses.

Western Blotting
Protein concentrations were determined, and lysates were
reduced in 6X sample loading buffer (0.5 M Tris-HCl PH 6.8,
10% SDS, 30% glycerol, 0.2% 2-mercaptoethanol, 0.012%
bromophenol blue), boiled for 5 min, separated by SDS PAGE
(15 µg of protein/lane), and transferred to Immobilon-P
(Millipore) PVDF membrane. Immunoblotting was performed
using a rapid immunodetection method for Immobilon-P
(Millipore Technical Note TN051). Briefly, the membranes
were equilibrated in methanol and air-dried. The dry
membrane was incubated in anti-O-GlcNAc antibody
CTD110.6 in 1% casein/phosphate-buffered saline (PBS)
overnight at 4°C and then washed three times in PBS, as
previously described (Zou et al., 2012). Other membranes were
equilibrated in PBS; incubated in 5% milk with Tris-buffered
saline with 0.01% Tween 20 (TBST) for 1 h for blocking; washed
three times in TBST and then incubated with appropriate
antibodies in 5% milk/TBST overnight at 4°C and then washed
three times in TBST. The membrane was incubated with the
appropriate horseradish peroxidase-conjugated secondary
antibodies for 1 h at room temperature. After further washing
in PBS or TBST the immunoblots were developed with enhanced
chemiluminescence (PerkinElmer Life Sciences) using either
using either autoradiograph film or digitally using the
Amersham Imager 600.

Statistical Analysis
NIH Image J was used for measuring and analysis of immunoblot
densitometry. All data are expressed as mean ± S.E.M. of 3–6
independent experiments and compared by one-way ANOVA
follow by Tukey’s test or Student’s t-test as appropriate.
Statistically significant differences between groups were defined
as p ≤ 0.05.

RESULTS

Consistent with our previous report (Zou et al., 2012) glucose
deprivation resulted in a robust increase in O-GlcNAc levels
(Figure 1A). OGA protein levels decreased with glucose
deprivation and OGT levels were unchanged as previously
reported (Zou et al., 2012). Surprisingly, NAD+ (250 µM)
completely blocked the increase in O-GlcNAc (Figure 1A).
NAM, a cell membrane permeable metabolite of NAD+ had
no effect on basal O-GlcNAc levels and did not block the
increase in O-GlcNAc in response to glucose deprivation
(Figure 1B). NAM increased protein acetylation levels under
basal and glucose deprivation conditions (Figure 1B), consistent
with its effect as a pan-sirtuin (SIRT) inhibitor (Bheda et al., 2016;
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Jiang et al., 2017). To determine if there was a role for SIRTs in
mediating the effects of NAD+, we examined whether EX527, a
SIRT1 and to a lesser extent SIRT2 inhibitor (Peck et al., 2010),
altered the response of O-GlcNAc to NAD+. EX527, had no effect
on the suppression of O-GlcNAc levels by NAD+ in response to
glucose deprivation; although there was an increase in protein
acetylation levels, consistent with its action as a SIRT inhibitor
(Figure 1C).

It had been reported that increased CTD110.6
immunoreactive bands due to glucose deprivation were a
result of cross-reactivity with the attenuated N-linked glycan,
chitobiose Asn-GlcNAc-GlcNAc (Isono, 2011); however, our
earlier study clearly demonstrated that the increase CTD110.6
positive bands in response to glucose deprivation was
predominantly due to increased O-GlcNAc levels (Zou et al.,
2012).

As glucose deprivation is known to induce ER stress
(Malhotra and Kaufman, 2007;De la Cadena et al., 2014),

we examined whether NAD+ also blunted this response.
Glucose deprivation increased levels of the ER stress
response elements BiP/GRP78, phospho-to-total PERK and
CHOP (Figure 1D), all of which were attenuated by NAD+.
The NAD+ metabolite, NAM, had no effect on the O-GlcNAc
response to glucose deprivation; however, NAD+ can also be
metabolized to cADPR and ADPR (Malavasi et al., 2008; Ernst
et al., 2013). We found that both cADPR and ADPR blocked
the glucose-deprivation induced increase in O-GlcNAc levels
(Figures 2A,B) and like NAD+ they also blocked the glucose
deprivation induced increase in phospho-to-total PERK, but
they had minor effects on the increases in BiP/GRP78 and
CHOP (Figures 2C,D).

A potential intracellular target of both cADPR and ADPR is
the RyR, resulting in ER/SR Ca2+ release (Bastide et al., 2002;Lee,
2012;Ernst et al., 2013;Guse, 2015). We found that caffeine, a
widely used RyR agonist, also blocked the glucose deprivation
induced increase in O-GlcNAc (Figure 3A). Due to its effects on

FIGURE 1 | Effects of NAD+ on O-GlcNAc levels and ER stress in response to glucose deprivation in AC16 cells. (A) Left panel: O-GlcNAc, OGA and OGT
immunoblots, with and without glucose (5 mM) and NAD+ (250 µM). Right panel: Quantification of immunoblots normalized to GAPDH. (B) Left panel: O-GlcNAc and
acetylated lysine immunoblots, with and without glucose (5 mM) and nicotinamide (NAM, 5 mM). Right panel: Quantification of immunoblots normalized to GAPDH. (C)
Left panel: Effects of SIRT1 inhibitor EX527 (10 µM) on O-GlcNAc and acetylated lysine levels in response to glucose deprivation with NAD+. Right panel:
Quantification of immunoblots normalized to GAPDH. (D) Left panel: BiP, CHOP, phospho- (P) and total (T) PERK immunoblots, with and without glucose (5 mM) and
NAD+ (250 µM). Right panel: Quantification of immunoblots normalized to GAPDH. *p < 0.05 vs. Control (Con) group; #p < 0.05 vs. glucose deprivation (GD) group. All
data are expressed as mean ± S.E.M. of 3–6 independent experiments.
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ER/SR Ca2+ homeostasis caffeine alone resulted in modest
increases in BiP/GRP78 and phospho-to-total PERK; however,
under conditions of glucose deprivation caffeine treatment
blocked the increases in BiP/GRP78, CHOP, and phospho-to-
total PERK (Figure 3B). To determine if these results were
specific for activation of the RyR or whether a reduction in
ER/SR Ca2+ levels in general were sufficient, we examined the
effects of the SERCA inhibitor thapsigargin, which also decreases
ER/SR Ca2+ levels (Krebs et al., 2015).We found that thapsigargin
significantly attenuated the glucose deprivation-induced increase
in O-GlcNAc (Figure 3C). As expected thapsigargin alone
induced ER stress resulting in increases in BiP/GRP78 and
CHOP in the presence of glucose; however, thapsigargin
attenuated the glucose deprivation-induced increase in BiP/
GRP78 and phospho-to-total PERK (Figure 3D).
Cyclopiazonic acid (CPA) another SERCA inhibitor had
similar effects to thapsigargin on the O-GlcNAc and ER stress
responses to glucose deprivation (Supplementary Figure S1).
These data are consistent with a mechanism by which cADPR

and ADPR attenuate the cellular response to glucose deprivation
via activation of the RyR and lowering ER/SR Ca2+ levels.

To try and determine whether the effects of ADPR might be
mediated via a different mechanism than cADPR, we examined
whether inhibiting poly-ADPR polymerase (PARP) enzymes,
which are responsible for catalyzing poly-ADP ribosylation
protein modification (Hottiger, 2015) prevented the effects of
NAD+ on the response to glucose deprivation. We used two
PARP inhibitors 3AB and DR2313 and found that neither
inhibitor blocked the effects of NAD+ in preventing the increase
in O-GlcNAc; however, they both reduced overall protein ADP-
ribosylation levels at the same concentrations, demonstrating their
effectiveness at inhibiting PARP under the same conditions
(Supplementary Figure S2). The transient receptor potential
melastatin 2 (TRPM2) protein, a Ca2+ permeable, non-selective
cation channel is activated by ADPR binding to the C-terminal
domain (Sumoza-Toledo and Penner, 2011; Ernst et al., 2013).
cADPR has also been reported to activate TRPM2 (Sumoza-Toledo
and Penner, 2011). Therefore, we speculated that TRPM2

FIGURE 2 | The effects of cADPR and ADPR on the glucose deprivation induced increase in O-GlcNAc and ER Stress in AC16 cells. (A) Left panel: O-GlcNAc
immunoblots with and without glucose in the presence or absence of cADPR (100 µM). Right panel Quantification of immunoblots normalized to GAPDH. (B) Left panel:
O-GlcNAc immunoblots with and without glucose in the presence or absence of ADPR (50 µM). Right panel: Quantification of immunoblots normalized to GAPDH. (C)
Left panel: BiP, CHOP, phospho- (P) and total (T) PERK immunoblots, with and without glucose in the presence or absence of cADPR (100 µM). Right panel:
Quantification of immunoblots normalized to GAPDH. (D) Left panel: BiP, CHOP, phospho- (P) and total (T) PERK immunoblots, with and without glucose in the presence
or absence of ADPR (50 µM). Right panel: Quantification of immunoblots normalized toGAPDH. *p < 0.05 vs. Control (Con) group; #p < 0.05 vs. glucose deprivation (GD)
group. All data are expressed as mean ± S.E.M. of 3–6 independent experiments.
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FIGURE 3 | The effects of caffeine and thapsigargin (TG) on the glucose deprivation induced increase in O-GlcNAc and ER Stress in AC16 cells: (A) Left panel:
O-GlcNAc immunoblots with and without glucose in the presence or absence of caffeine (5 mM). Right panel: Quantification of immunoblots normalized to GAPDH. (B)
Left panel: BiP, CHOP, phospho- (P) and total (T) PERK immunoblots, with andwithout glucose in the presence or absence of caffeine (5 mM). Right panel: Quantification
of immunoblots normalized to GAPDH. (C) Left panel: O-GlcNAc immunoblots with and without glucose in the presence or absence of thapsigargin (1 µM). Right
panel Quantification of immunoblots normalized to GAPDH. (D) Left panel: BiP, CHOP, phospho- (P) and total (T) PERK immunoblots, with and without glucose in the
presence of thapsigargin (1 µM). Right panel: Quantification of immunoblots normalized to GAPDH. All data are expressed as mean ± S.E.M. of 3–6 independent
experiments. *p < 0.05 vs. Control (Con) group; #p < 0.05 vs. glucose deprivation (GD) group.
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FIGURE 4 | The effects of TRPM2 inhibition in AC16 cells, or TRPM2 deletion in MEFs on the glucose deprivation induced increase in O-GlcNAc and ER Stress: (A)
Top Panels: O-GlcNAc immunoblots with and without glucose in the presence or absence of TRPM2 inhibitors FLA (5–100 µM) and ACA (1–10 µM); Bottom Panels:
Quantification of immunoblots at 50 and 100 µM FLA and 5 and 10 µM ACA normalized to GAPDH. (B) Top Panels: BiP and CHOP immunoblots with and without
glucose in the presence or absence of TRPM2 inhibitors FLA (50, 100 µM) and ACA (5, 10 µM); Bottom Panels: Quantification of immunoblots normalized to
GAPDH. (C) Left O-GlcNAc immunoblots fromwild type (WT) and TRPM2−/− cells with and without glucose in the presence or absence of NAD+ (250 µM); Quantification
of immunoblots for WT and TRMP2−/− normalized to GAPDH. (D) Top Panels: Immunoblots for BiP and CHOP from wild type (WT) and TRPM2−/− cells with and without
glucose in the presence or absence of NAD+ (250 µM); Bottom Panels: Quantification of immunoblots for WT and TRPM2−/− normalized to GAPDH. *p < 0.05 vs. Control
(Con) group; #p < 0.05 vs. glucose deprivation (GD) group. All data are expressed as mean ± S.E.M. of 3–6 independent experiments.
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inhibition might prevent cADPR/ADPR from blocking the
glucose deprivation induced increase in O-GlcNAc.
Surprisingly however, two different TRPM2 inhibitors, FLA
and ACA (Kraft et al., 2006; Naziroglu et al., 2007), attenuated
the glucose deprivation induced increase in O-GlcNAc in a
concentration-dependent manner (Figure 4A). Consistent
with other interventions that attenuated the increase in
O-GlcNAc they both attenuated the activation of the ER
stress response as indicated by lower levels of BiP/GRP78
and CHOP (Figure 4B). To further explore the role of
TRPM2 in mediating the response to glucose deprivation
and rule out potential off target effects of FLA and ACA,
we examined the effects of NAD+ on O-GlcNAc levels in wild
type and TRPM2−/− mouse embryonic fibroblasts (MEFs). In
wild type cells we observed the expected increase in O-GlcNAc
levels in response to glucose deprivation, which was

suppressed by NAD+; however, in TRPM2−/− cells glucose
deprivation did not result in an increase in O-GlcNAc
levels, supporting the findings with TRPM2 inhibitors
(Figure 4C). NAD+ had no effect on O-GlcNAc levels in
TRPM2−/− cells regardless of the presence or absence of
glucose. Following glucose deprivation, WT MEFs exhibited
>3-fold increase in BiP/GRP78 and CHOP levels, which was
attenuated by NAD+ (Figure 4D), consistent with the
responses of AC16 cells (Figure 1D). However, TRPM2−/−

cells exhibited very modest increases in BiP/GRP78 and CHOP
in response to glucose deprivation and these changes were
unaffected by the presence of NAD+ (Figure 4D). These
findings suggest that the effects of cADPR/ADPR are not
mediated by activation of TRPM2, but instead revealed that
TRPM2 is a potential a mediator of the cellular responses to
glucose deprivation.

FIGURE 5 | The effects of SKF96365, KN93, CN585, and glucosamine on the glucose deprivation induced increase in O-GlcNAc levels and indices of ER stress in
AC16 cells. (A) Left Panel: Immunoblots O-GlcNAc, BiP and CHOP with and without glucose in the presence or absence of SKF96365 (20 µM); Right Panels:
Quantification of immunoblots normalized to GAPDH. (Note the duration of these experiments was shortened from 24 to 6 h because longer periods of glucose
deprivation in the presence of SKF96365 resulted in cell death; hence the increase in O-GlcNAc following glucose deprivation is lower than other studies where the
experimental period was 24 h), (B) Left Panels: Immunoblots for O-GlcNAc, BiP and CHOPwith and without glucose in the presence or absence of KN93 (20 µM); Right
Panels: Quantification of immunoblots normalized to GAPDH. (C) Left Panels: Immunoblots for O-GlcNAc, BiP and CHOP with and without glucose in the presence or
absence of CN585 (60 µM); Right Panels: Quantification of immunoblots normalized to GAPDH. (D) Left Panel: Immunoblots O-GlcNAc, BiP and CHOPwith andwithout
glucose in the presence or absence of glucosamine; Right Panels: Quantification of immunoblots normalized to GAPDH. *p < 0.05 vs. Control (Con) group; #p < 0.05 vs.
glucose deprivation (GD) group. All data are expressed as mean ± S.E.M. of 3–6 independent experiments.
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The observation that TRPM2, a Ca2+ permeable cation
channel, appears to be necessary for glucose deprivation
induced activation of O-GlcNAc is consistent with our earlier
study indicating that influx of extracellular Ca2+ was needed for
glucose deprivation-induced activation of O-GlcNAc levels in
cardiomyocytes (Zou et al., 2012). However, in those studies we
did not determine ER stress responses. Here we found that as
previously reported (Zou et al., 2012), the store operated Ca2+

channel inhibitor SKF9635 blunted the increase in O-GlcNAc;
importantly however, it also attenuated the glucose deprivation
induced increase in BiP/GRP78 and CHOP (Figure 5A). We also
found that as previously shown (Zou et al., 2012) the CaMKII
inhibitor KN93 attenuated the glucose deprivation induced
increase in O-GlcNAc, it also blunted the increase in BiP/
GRP78 and CHOP (Figure 5B). Recent studies have suggested
that KN93 directly binds Ca2+/CaM (Pellicena and Schulman,
2014; Wong et al., 2019), thereby, potentially influencing other
Ca2+/CaM protein interactions. The Ca2+-dependent protein
phosphatase, calcineurin is a well-established target for Ca2+/
CaM and has been associated with the regulation of ER stress
(Carreras-Sureda et al., 2018). We found that CN585 a highly
selective calcineurin inhibitor (Erdmann et al., 2010), blunted the
glucose deprivation induced increases in O-GlcNAc, BiP/GRP78,
and CHOP (Figure 5C).

In our earlier study we found that low concentrations of
glucosamine, attenuated the increase in O-GlcNAc resulting
from glucose deprivation (Zou et al., 2012). Here we show
that not only does glucosamine block the increase in
O-GlcNAc levels, but it also blunted the increase in BiP/
GRP78 and CHOP that occurs in response to glucose
deprivation (Figure 5D). Thus, all interventions tested thus
far, that attenuate the glucose deprivation induced increase in
O-GlcNAc, also attenuate the ER stress response, consistent with
a common underlying activation mechanism.

DISCUSSION

The primary regulation of cellular O-GlcNAc levels is
commonly linked to glucose availability, with increased
glucose levels leading to higher O-GlcNAc levels and vice
versa. However, there are reasons to believe that other factors
could be important in the short-term regulation of O-GlcNAc
levels. Of particular relevance are the number of studies that
have shown that glucose deprivation is a potent stimulus for
increasing O-GlcNAc levels (Cheung and Hart, 2008; Taylor
et al., 2008; Taylor et al., 2009; Zou et al., 2012). Interestingly
glucose deprivation is also known to lead to a decrease in
NAD+ levels and we have previously shown that exogenous
NAD+ decreased cardiomyocyte O-GlcNAc levels without
changes in substrate availability (Durgan et al., 2011). We
proposed therefore that cellular NAD+ and O-GlcNAc levels
may be coordinately regulated. Using glucose deprivation in
an immortalized human ventricular cell line (AC16 cells) as a
model system, we found that NAD+ and its metabolites
cADPR and ADPR, completely blocked the increase in
O-GlcNAc induced by glucose deprivation while also

suppressing activation of ER stress. NAD+ is a potential
activator of glycolysis thereby possibly increasing pyruvate
availability; however, we have shown that the addition of
pyruvate had no effect on the response to glucose deprivation
(Zou et al., 2012), suggesting that activation of glycolysis was
not the mechanism underlying the effects of NAD+. cADPR
and ADPR are putative ryanodine receptor (RyR) agonists,
and caffeine, which also activates the RyR and lowers ER/SR
Ca2+ levels, mimicked the effects of NAD+, cADPR, and
ADPR. Other treatments which also reduce ER/SR Ca2+

levels, such as SERCA inhibitors thapsigargin and CPA,
had similar effects to NAD+ on O-GlcNAc and ER stress
responses to glucose deprivation (Figures 2, 3,
Supplementary Figure S1). Collectively, these observations
suggest a potential common mechanism regulating
O-GlcNAc levels in response to glucose deprivation. The
fact that inhibition or deletion of the plasma membrane
cation channel TRPM2 blocked the effects of NAD+ and
glucose deprivation (Figure 4) suggests that Ca2+ signaling
may be a common element in both the glucose deprivation
induced increase in O-GlcNAc and ER stress and the
inhibition of these responses by NAD+.

Additional support for a role of Ca2+ in mediating the cellular
response to glucose deprivation is that KN93, a CaMKII inhibitor,
attenuated both the increase in O-GlcNAc and the ER stress
response to glucose deprivation, like that seen with NAD+

(Figure 5B). KN93, one of the most widely used CaMKII
inhibitors, does so by directly binding Ca2+/CaM (Pellicena
and Schulman, 2014; Wong et al., 2019) rather than CaMKII
itself thereby, potentially inhibiting other Ca2+/CaM protein
interactions. The Ca2+-dependent protein phosphatase,
calcineurin is a well-established Ca2+/CaM target and has been
associated with the regulation of ER stress (Carreras-Sureda et al.,
2018). There is also evidence, of crosstalk been calcineurin and
O-GlcNAc regulation in cardiomyocytes (Facundo et al., 2012).
Here we found that CN585, a highly selective calcineurin
inhibitor (Erdmann et al., 2010), exhibited similar effects to
both KN93 and NAD+ by blunting the glucose deprivation
induced increases in O-GlcNAc, BiP/GRP78, and CHOP
(Figure 5C). Additional studies are needed to determine how
Ca2+/CaM or calcineurin activation initiates ER stress and
increases O-GlcNAc levels; nevertheless, these data suggest
than canonical Ca2+ signaling pathways contribute to the
regulation of O-GlcNAc and ER stress following glucose
deprivation.

Collectively these studies suggest a common pathway for
activation of both O-GlcNAc levels and ER stress, in response
to glucose deprivation consistent with the coordinated
mobilization of intra- and extra-cellular Ca2+. This process
appears to be interfered with by NAD+, thereby, blocking the
increase in O-GlcNAc levels and ER stress. Based on these data a
schematic outlining potential early cellular responses to glucose
deprivation as well as potential mechanism by which NAD+

blocks this response is shown in Figure 6. While there could
be parallel, independent activation of O-GlcNAc and ER stress,
we cannot rule out the possibility that their activation is
interdependent. For example, ER stress has been directly
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linked to the activation of the HBP (Wang et al., 2014) and
O-GlcNAc signaling has been shown to influence ER stress (Ngoh
et al., 2009).

Consistent with our earlier report (Zou et al., 2012), we found
that 100 µM glucosamine blocked the increase in O-GlcNAc; here
we show it also attenuated the ER stress response to glucose
deprivation (Figure 5D). Glucosamine is phosphorylated by
hexokinase to glucosamine-6-phosphate and subsequently to
UDP-GlcNAc via the HBP. Since increasing the HBP flux
with the addition of glucosamine blocks the cellular responses
to glucose deprivation, it seems likely that a decrease in HBP flux
triggers these responses. This is consistent with other studies
indicating glucose deprivation induced increase in O-GlcNAc
was associated with decreased HBP flux (Taylor et al., 2009; Zou
et al., 2012). Since activation of the HBP attenuates the effects of
glucose deprivation, it appears unlikely that OGT activation
contributes to the increase in O-GlcNAcylation. Future studies
using recently available selective OGT inhibitors (Martin et al.,
2018) could be used to examine this question further.

Since NAD+ metabolites cADPR and ADPR blocked the
effects of glucose deprivation, an outstanding question is
whether NAD+ can directly cross the plasma membrane. It
has been suggested that extracellular NAD+ cannot cross the
plasma membrane but must undergo extracellular hydrolysis by
NAD hydrolases such as CD38 and CD157 producing cADPR
and ADPR which are membrane permeable (Malavasi et al.,
2008). On the other hand, others have reported that Connexin
43 hemichannels (Cx43) facilitate the bidirectional transport of
NAD+ (Bruzzone et al., 2001; Wang et al., 2013), thereby,
providing a pathway for NAD+ to directly enter the cell. We
did not measure intracellular NAD+ levels in our studies, thus we
do not know whether NAD+ directly entered the cells. If cADPR
and ADPR result from extracellular hydrolysis it is also possible
that they could act on the purinergic receptors. Interestingly,
ADPR has been shown to specifically activate the purinergic P2Y1
receptor (Gustafsson et al., 2011). Even if the primary mechanism
of action of cADPR and ADPR is via activation of purinergic
receptors a common downstream consequence is the IP3R

FIGURE 6 | A schematic summarizing the results and illustrating potential mechanisms underlying effects of glucose deprivation on O-GlcNAc and ER stress and
how they might be regulated by NAD+ and its metabolites: 1) In response to glucose deprivation there is a decrease in HBP flux, which is supported by the observation
that glucosamine, which is metabolized to UDP-GlcNAc via the HBP, attenuates the responses to glucose deprivation. 2) While the downstream effector of the
decreased HBP flux has yet to be identified, a likely candidate would the loss of O-GlcNAc from specific site(s) on a protein(s) subsequently triggering a release of
Ca2+ from the ER/SR. This is supported by observations that interventions that decrease ER/SR Ca2+ levels attenuate the responses to glucose deprivation. 3) Inhibition
of TRPM2 or loss of TRPM2 blocked the glucose deprivation responses, suggesting that its activation via glucose deprivation resulted in an influx of extracellular Ca2+. In
addition, ER/SR Ca2+ release has been shown to be sufficient to activate TRPM2 channels. This is supported by earlier observations that extracellular Ca2+ was required
for the glucose deprivation induced increase in O-GlcNAc (Zou et al., 2012) and that inhibition of downstream Ca2+ signaling pathways blunted the increase in ER stress
and O-GlcNAc in response to glucose deprivation. In addition, SKF96365 a SOCE inhibitor, which also attenuates the response to glucose deprivation, is reported to
inhibit members of the transient receptor potential family including TRPM2 channels (Harteneck et al., 2011). 4) The TRPM2mediated influx of Ca2+ activates Ca2+/CaM-
dependent pathway, which potentially via activation of calcineurin leads to increased ER stress and O-GlcNAc levels. This is supported by the observation that KN93 a
CaMKII and Ca2+/CaM inhibitor and CN585, a calcineurin inhibitor, attenuated the responses to glucose deprivation. The links between Ca2+/CaM and the increase in ER
stress and O-GlcNAc following glucose deprivation are currently not known, although calcineurin has been associated with activation of ER stress (Carreras-Sureda
et al., 2018). 5) The NAD+ metabolites, cADPR and ADPR, are known to activate the RyR releasing ER/SR Ca2+ and caffeine a RyR agonist all attenuate the cellular
responses to glucose deprivation. The SERCA inhibitors thapsigargin (Thg) and CPA, which decrease ER/SR Ca2+ levels also blunt the response to glucose deprivation.
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dependent release of ER Ca2+ stores (Huang et al., 2021), which
would be consistent with the overall concept that mobilization of
intracellular Ca2+ stores is involved in these responses. However,
we found that CD38 null MEFs exhibited the same response to
glucose deprivation as WT MEFs and did not blunt the response
of NAD+ (data not shown). Therefore, at least in these studies
CD38 mediated hydrolysis of NAD+ did not play a role in its
effects on the responses to glucose deprivation; however, this does
not rule out possible roles of other extracellular NAD+ hydrolases
(Malavasi et al., 2008).

Regardless of whether NAD+ can directly cross the plasma
membrane, cADPR and ADPR are both known to activate RyR
(Bastide et al., 2002; Lee, 2012; Ernst et al., 2013; Guse, 2015).
Caffeine a known RyR agonist had the same effects as, cADPR
and ADPR on the responses to glucose deprivation and SERCA
inhibitors thapsigargin and CPA, which also decrease ER/SR Ca2+

levels, blunts the responses to glucose deprivation. Collectively
these findings suggest that full ER/SR Ca2+ stores are required to
initiate the cellular responses to glucose deprivation and that
mistimed release of these stores via RyR activation or SERCA
inhibition interferes with the downstream response to glucose
deprivation. Additional pharmacological approaches to
independently lower or increase cytosolic Ca2+ levels would
help to further dissect the specific cytosolic pools of Ca2+

involved in the response to glucose deprivation. We have
shown that extracellular Ca2+ was required for the glucose
deprivation induced increase in O-GlcNAc suggesting that the
influx of extracellular Ca2+ is a necessary part of this process (Zou
et al., 2012); however, the specific Ca2+ entry pathway was not
identified.

Unexpectedly, we found that inhibition of the plasma
membrane cation channel TRPM2 in AC16 cells and the
deletion of TRMP2 in MEFs completely abrogated the
responses of O-GlcNAc and ER stress to glucose deprivation
in both cell types. The results from this study suggest that TRPM2
is very likely the Ca2+ channel that is responsible for influx of
extracellular Ca2+ following glucose deprivation. Our studies also
suggest that the cellular responses to glucose deprivation requires
full ER/SR Ca2+ stores. One established Ca2+ signaling pathway
that requires both full ER/SR Ca2+ stores and influx of
extracellular Ca2+ is store operated calcium entry (SOCE), in
which a transient release of Ca2+ from the ER/SR triggers, in a
highly coordinated manner, the influx of extracellular Ca2+ via
plasma membrane cation channels, leading to a more sustained
increase in intracellular Ca2+ (Collins et al., 2013). TRPM2 is not
recognized as a classical SOCE channel; however, both intra- and
extracellular Ca2+ are required for its full activation (Sumoza-
Toledo and Penner, 2011). Moreover, Ca2+ release from
intracellular stores is both necessary and sufficient for the
initial activation of TRPM2 (Du et al., 2009). In addition,
SKF96365, a SOCE inhibitor, also inhibits transient receptor
potential family including TRPM2 channels (Harteneck et al.,
2011); thus, the effect of SKF96365 on attenuating the O-GlcNAc
and ER stress response to glucose deprivation (Figure 5A) could
be due to inhibition of TRPM2 mediated Ca2+ influx. The
mechanism by which the influx of Ca2+ regulates ER stress
and O-GlcNAc levels remains to be determined; however,

Ca2+/CaM-mediated Ca2+ signaling has been shown to
regulate ER stress via activation of calcineurin (Carreras-
Sureda et al., 2018). Further studies are needed to better
understand the Ca2+-dependent regulation of O-GlcNAcylation.

While we cannot rule out contributions from other plasma
membrane cation channels in mediating the responses to glucose
deprivation, these data provide strong evidence for a role for
TRPM2 in mediating this stress response. TRPM2 is widely
expressed (Miller and Cheung, 2016), however, it has not been
previously linked to the cellular response to glucose deprivation,
ER stress or O-GlcNAcylation. Interestingly, in the heart TRPM2
activation was found to be protective against ischemia/
reperfusion injury (Miller et al., 2013; Miller et al., 2014).
TRPM2 has also plays a role in mediating oxidative stress
induced increase in intracellular Ca2+ (Li et al., 2017) and
appears to be upstream of several cell death pathways (Shi
et al., 2021). It has also been linked to the regulation of
insulin signaling and glucose metabolism in a Ca2+/calmodulin
dependent fashion in the heart (Zhang et al., 2012). Therefore,
while unexpected, it is not unrealistic that TRPM2 channels could
be involved in mediating cellular stress responses such as glucose
deprivation. Future studies using TRPM2-KO mice (Yamamoto
et al., 2008) or cell-type specific TRPM2 deletion will provide
addition insights into the role of TRPM2mediated Ca2+ signaling
and O-GlcNAc regulation, and ER stress activation. It is also
possible that other Ca2+ channels could contribute to stress
responses such as glucose deprivation in a tissue and cell-type
dependent manner.

Together these findings indicate that the initial response to
glucose deprivation is the coordinated release of ER/SR Ca2+,
which triggers TRPM2 channel opening, the influx of
extracellular Ca2+, and the subsequent activation of canonical
Ca2+/CaM signaling pathways. One possible mechanism by
which a glucose deprivation induced decrease in HBP flux
could trigger such a response could be the loss of O-GlcNAc
on a protein or proteins that regulates ER Ca2+ release. While
identifying a specific O-GlcNAc target, is beyond the scope of this
study, one possibility could be changes in O-GlcNAcylation of the
RyR itself, although it remains unclear whether RyR is an
O-GlcNAc target (Okolo, 2019; Popescu et al., 2019).
Interestingly, TRPM2 has multiple phosphorylation sites
(Hornbeck et al., 2015) and overall tyrosine phosphorylation
has been shown to regulate TRPM2 activity (Zhang et al., 2007).
Thus, it is possible that a decrease in O-GlcNAcylation of specific
TRPM2 sites could result in an increase in TRPM2
phosphorylation, thereby enhancing its activation by ER/SR
Ca2+ release. Conclusively demonstrating that the loss of
O-GlcNAc from a specific site on one or more proteins
initiates the response to glucose deprivation will be very
challenging; however, RyR and TRPM2 are intriguing
possibilities.

In conclusion, while nutrient availability is widely
considered to be the major regulator of cellular O-GlcNAc
levels, there are a number of situations where this does not
appear to be the case including ischemia/reperfusion (Fulop
et al., 2007; Laczy et al., 2010) and glucose deprivation (Zou
et al., 2012). We have previously reported that NAD+ decreased
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O-GlcNAc levels in unstressed cardiomyocytes (Durgan et al.,
2011), suggesting the potential for coordinated regulation
between O-GlcNAc and NAD+. Therefore, using glucose
deprivation, a potent activator of O-GlcNAc levels, as a
model system we examined how NAD+ influenced the
response of O-GlcNAc levels and ER stress in the presence
and absence of glucose. Our data shown here combined with
earlier studies (Zou et al., 2012), suggests that in response to
glucose deprivation a decrease in HBP flux leads to a
coordinated release of Ca2+ from the ER/SR, leading to a
subsequent influx of extracellular Ca2+ and activation of
canonical Ca2+/CaM-mediated Ca2+ signaling pathway,
which activates O-GlcNAc levels and ER stress. NAD+

appears to disrupt these responses by the mistimed release
of intracellular Ca2+ likely via RyR activation by its metabolites
cADPR and ADPR. We have also identified TRPM2, a widely
expressed plasma membrane cation channel (Sumoza-Toledo
and Penner, 2011), as a potential key mediator of the cellular
responses to glucose deprivation. Nevertheless, detailed
characterization of the electrophysiological responses to
glucose deprivation are clearly needed to identify the specific
source of Ca2+ release from the ER/SR as well as the biophysical
properties of the Ca2+ influx channel(s) involved, and how this
is affected by NAD+ and its metabolites. The molecular
mechanisms underlying the Ca2+ dependent regulation of
O-GlcNAc levels also requires further investigation.
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