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Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by ineffective hematopoiesis and a
wide spectrum of manifestations ranging from indolent and asymptomatic cytopenias to acute myeloid leukemia (AML). MDS
result from genetic and epigenetic derangements in clonal cells and their surrounding microenvironments. Studies have shown
associations betweenMDS and other autoimmune diseases. Several immunemechanisms have been identified inMDS, suggesting
that immune dysregulation might be at least partially implicated in its pathogenesis. This has led to rigorous investigations on the
role of immunomodulatorydrugs as potential treatment options. Epigenetic modification via immune checkpoint inhibition, while
well established as a treatmentmethod for advanced solid tumors, is a new approach being considered in hematologicmalignancies
including high risk MDS. Several trials are looking at the efficacy of these agents in MDS, as frontline therapy and in relapse, both
as monotherapy and in combination with other drugs. In this review, we explore the utility of immune checkpoint inhibitors in
MDS and current research evaluating their efficacy.

1. Introduction

Myelodysplastic syndromes (MDS) are a complex set of
diseases characterized by ineffective hematopoiesis and a
wide spectrum of manifestations, ranging from indolent and
asymptomatic cytopenias to acute myeloid leukemia (AML).
Most patients are elderly with the vast majority diagnosed
after the age of 60 years [1]. According to the World Health
Organization (WHO) classification, diagnosis of MDS is still
based mostly on histologic and cytologic examination of
the bone marrow and peripheral blood. A large number of
somatic driver mutations in splicing factors and other epige-
netic regulators are thought to have diagnostic and prognostic
implications, with the exception of del(5q) and SF3B1 which
arementioned in the classification [2, 3] (Table 1). Patients are
risk stratified using several scores including the International
Prognostic Scoring System (IPSS), revised IPSS, and the MD
Anderson Cancer Center scores. Low risk MDS patients
remain stable for years with a 4-year survival rate of 80%,

whereas high risk MDS is associated with poor outcomes and
rapid progression to leukemia with a median survival of less
than a year [2].

Standard of care in MDS includes supportive care with
blood transfusions, hematopoietic growth factors, immune
modulation with lenalidomide in del(5q), and epigenetic
modulation by hypomethylating agents (HMA) such as azac-
itidine and decitabine. Lenalidomide and HMA have led to a
decrease in transfusion dependency and progression toAML.
Azacitidine in particular has been associated with an increase
in overall survival [4]. However, response to these agents
can be lost over time, which emphasizes the importance of
gaining a deeper understanding of the disease pathogenesis
and development of novel therapies.

2. Immune Mechanisms in MDS

Several studies have shown an association between autoim-
mune diseases and low risk MDS. People with preexisting
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Table 1: Common gene mutations in MDS and the prognostic values [3].

Genes Prognostic Impact
Epigenetic Regulators
TET2 poor
EZH2 poor
ASXL1 poor
DNMT3A poor
IDH1/IDH2 poor
Spliceosomal genes
SF3B1 good
U2AF1 poor
SRSF2 poor
ZRSR2 unknown
Cytoplasmic tyrosine kinases
JAK2 poor
Signaling molecules
SETBP1 poor
NRAS poor
Transcriptional factors
ETV6 poor
RUNX1 poor
Tumor suppressors
TP53 poor
ROBO1/ROBO2 poor
Chromatid cohesion
STAG2 poor

autoimmune disease have an odds ratio of 1.5 to 3.5 for
developing MDS [5–7]. There are several immune based
mechanisms identified in MDS, suggesting that immune
dysregulation might be at least partially implicated in the
pathogenesis of MDS.

At the level of the bone marrow, normal hematopoiesis
is regulated by the immune system via a complex inter-
play between T-cells, cytokines, innate immunity, and mes-
enchymal stromal cells (MSC) Figure 1. In MDS, immune
dysregulation occurs through several mechanisms including
T-cell mediated bone marrow suppression, expression of
cytokines, overactivation of pathways involved in innate
immunity, and altered mesenchymal stromal cells (MSC).We
elaborate on each of these mechanisms to better understand
the pathogenesis of MDS.

In low risk MDS, apoptosis plays a key role through
T-cell inhibition. Many MDS patients have oligoclonal T-
cells, largely derived from a malignant MDS clone. These
cytotoxic CD8+ T-cells recognize MHC-class I molecules on
progenitor cells inhibiting growth and leading to cytopenias
and abnormal hematopoiesis. These cytotoxic T-cells carry
specific TCR subtypes that intoxicate hematopoietic cells
[8, 9]. A study by Wu et al. showed the possible inhibitory
function of T-cells was likely due to type-1 polarization
involving both the CD-4+ and CD-8+ subsets [10].

Another study has questioned the autoreactivity of T-
cells in MDS which was suggested by a defective in vitro
cytotoxicity [11]. Overall, studies have shown that cytotoxic

T-cells are likely involved in autoimmune reactions towards
hematopoietic cells. These immune mechanisms have been
further reinforced in trials that showed hematopoietic recov-
ery and delayed progression to AML with immunosup-
pressive therapies that block the cytotoxic effects of CD8+
lymphocytes [8, 9].

Several cytokines are abnormally expressed in MDS,
either by clonal cells or surrounding stromal cells. Tumor
necrosis factor alpha (TNF-𝛼) and interferon gamma (IFN-𝛾)
are overly expressed inMDS [12–14].These cytokines increase
the expression of Fas receptors (FasR) on hematopoietic cells
and enhance their interaction with Fas ligands leading to
apoptosis [15]. TNF-𝛼 and IFN-𝛾 were shown to induce the
immunoinhibitory molecule B7-H1, via nuclear factor-kappa
B activation in blasts of MDS patients [16]. The role of TGF-
𝛽 cytokine in inhibition of normal stem cells is also well
established, and its pathway has been recently targeted by
several drugs. TGF-𝛽 binds to a set of TGF-𝛽 receptors and
leads to the activation of intracellular SMAD2/3 proteins [12–
15]. The levels of TNF-𝛼 and TGF-B are inversely related to
hemoglobin and survival [8].These cytokines also induce the
expression of programmed death ligand 1 (PD-L1) on tumor
cells, a mechanism that can potentially allow tumor cells to
escape from the immunemediated tumor surveillance. CD3+
CD4+ interleukin (IL)-17 producing T-cells have been shown
to be upregulated in low risk MDS, and higher levels have
been also associated with more severe anemia [17, 18].
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Figure 1: Immune mechanisms in MDS. Early (low risk) MDS. (1) Malignant MDS cells (M) induce clonal expansion of CD8+ T-cells (T).
(2) CD-8+ T-cells produce cytokines like TNF-a and INF-Y. (3) This results in apoptosis in hematopoietic stem cells (HSC) resulting in
cytopenias but also keep MDS cells (M) from proliferating. (4) MSC in normal hematopoiesis suppress T-cell activation, a process that is
aberrant inMDS. (5)MSC also produce proinflammatory cytokines. Late (high risk)MDS. (6)While continued inflammation leads tomore
apoptosis of hematopoietic stem cells (HSC) and cytopenias worsen, TNF-a and INF-Y start inducing PDL-1 expression onMDS clonal cells.
(7) PD-L1 allows theMDS cells to escape immune surveillance by T-cell suppression.AML. (8) MDS transitions into acutemyeloid leukemia
(AML).

Myeloid-derived suppressor cells (MDSC) were shown to
be increased in the bonemarrow ofMDS patients. These cells
overproduce cytokines that suppress normal hematopoiesis
and induce mechanisms that target hematopoietic progeni-
tors leading to increased apoptosis. The expansion of MDSC
results from the interaction of the proinflammatory molecule
S100A9 with CD33 and the subsequent production of the
proinflammatory interleukin-10 and TGF-B [19, 20].

Innate immunity also plays a role in MDS. Innate immu-
nity depends on pattern recognition of microbial markers
by receptors such as toll-like receptors (TLRs). TLR-2 and
TLR-4 are upregulated in the bone marrow of MDS patients.
TLR-4 expression is correlated with increased apoptosis [21].
Overactive TLRs lead to overexpression of activators such as
MYD88, TIRAP, IRAK1/4, and TRAF and downregulation
of inhibitory factors such as miR145 and miR146a. This
subsequently enhances the NF-kB and mitogen-activated
protein kinase (MAPK) pathways and ultimately increases
the production of inflammatory cytokines [22–24]. Interest-
ingly, MYD88 blockade leads to an increase in erythroid
colony formation [25].

MDS is characterized by an inefficient dendritic cells
(DC) pool likely from the decreased ability of monocytes
to differentiate fully into mature DC. DC derived in vitro
from peripheral blood mononuclear cells of MDS patients
were reduced in numbers compared with healthy controls.

DC in MDS express lower levels of CD1a, CD54, CD80, and
MHC II molecules [26]. Immature DC have an impaired
cytokine secretion which likely accounts for their reduced
allostimulatory capacity [27].

Normal hematopoiesis is a fine balance that depends not
only on the hematopoietic progenitor cells, but also on the
surrounding MSC. They play a pivotal role in the birth of
MDS clones and other myeloid malignancies. In MDS, MSC
may be absent or dysfunctional due to genetic aberrations.
The selective deletion of Dicer1 gene in MSC cells of murine
models was shown to induce MDS and AML [28]. Research
has shown that cytogenetically abnormal MSC in MDS lead
to the production of proinflammatory cytokines such as
TNF-𝛼, IL-6, TGF-B, and IFN-𝛾 [29, 30]. Normally, MSC
exert immunosuppressive effects on the surrounding T-cells
through paracrine and cell-to-cell interactions, which then
arrests T-cells in the G1-phase and diminishes their cytokine
secretion [8, 31]. However, this immunosuppressive effect on
CD 8+ T-cells can become aberrant in MDS. Interestingly,
significant differences in the immunoregulatory functions
were demonstrated between MSC in low risk MDS versus
high risk MDS. In high risk MDS, MSC are characterized by
increased TGF-B1 expression, apoptosis, immunosuppressive
rate, and reduced hematopoietic support ability [31]. MSC
in low risk MDS are also characterized by a poor ability to
suppress dendritic cells differentiation and maturation [32].
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Though these intricate immune mechanisms suggest that
immunomodulatory and immunosuppressive therapies can
be potential treatment options for MDS, these therapies were
interestingly trialed even before the underlying mechanisms
were completely understood. Immunosuppressive drugs such
as antithymocyte globulin (ATG), cyclosporine (CS), and
mycophenolate mofetil (MM) have been studied in low
risk MDS [33], but still underutilized in MDS patients due
to conflicting data and variable rates of response reported
by the different studies [34–36]. Also, MAPK and TLR
inhibitors, which target overactive TLR pathways inMDS, are
currently being evaluated in several clinical trials [8, 37, 38].
Checkpoint inhibitors are another family of drugs that have
been approved for solid tumors and now being investigated
in high risk MDS and other hematologic malignancies such
as AML [1].

3. The Rise of Immune Checkpoint Inhibitors

The concept of developing therapies targeting the immune
system rather than tumor cells originated from Dr. James
Allison’s discovery of the cytotoxic T-lymphocyte antigen
4 (CTLA-4), a T-cell receptor that downregulates T-cells
and the immune system. This led to the development of
ipilimumab (Yervoy, Bristol-Myers Squibb), a human IgG1
CTLA-4 checkpoint inhibitor which blocks T-cell suppres-
sion and upregulates antitumor immune defenses [39].
Programmed cell death receptor (PD-1) and programmed
cell death ligand (PD-L1) represent an immune checkpoint
involved in regulating T-cells at the level of the peripheral
tissues. Tumors can express PD-L1 and use these ligands to
evade the host’s immune system, making this checkpoint a
potential target for cancer therapy [40, 41]. This pathway
inspired the development of monoclonal antibodies that
block the interaction between PD-1 receptors and PD-L1
ligands to help restore anticancer immune responses [42].
These agents have proven to be very effective in tumors
refractory to standard chemotherapy regimens in more than
10 organ systems.

Pembrolizumab (Keytruda, Merck) was the first PD1
inhibitor approved by the US Food and Drug Administra-
tion (FDA) in September 2014 for treatment of advanced
melanoma refractory to BRAF inhibitors and ipilimumab.
Nivolumab (Opdivo, Bristol-Myers Squibb), the fully human
IgG4 anti-PD-1 antibody, was approved by the FDA in
December 2014 for unresectable or metastatic melanoma
that progressed after ipilimumab therapy and for patients
with positive BRAF V600 mutation who failed treatment
with BRAF inhibitors. The approval came after the landmark
clinical trial Checkmate-037 [43]. In addition to melanoma,
Nivolumab is now FDA approved for metastatic non-small
cell lung cancer, metastatic renal cell carcinoma and urothe-
lial cancers, refractory Hodgkin’s lymphoma, cancers of the
head and neck, and hepatocellular carcinoma. Results in non-
Hodgkin’s lymphoma were favorable in refractory follicular
lymphoma. Results in relapsed diffuse large B-cell lymphoma
following autologous stem cell transplantation have shown
an overall survival probability of 82% at 16 months following
treatment with pidilizumab, an experimental PD-1 inhibitor.

Monotherapy with anti-PD-1 agents in multiple myeloma
has not shown any promising results; however, current trials
are studying the effect of anti-PD-1 agents in combination
with standard myeloma therapy. Preliminary data from these
trials has shown a synergistic effect and higher response rates
compared to standard chemotherapy alone [39, 44, 45].There
are several ongoing clinical trials investigating the role of PD-
1 blockage in myelodysplastic syndromes as well, either as
monotherapy or in combination with other therapies.

The use of checkpoint inhibitors is expected to rise
dramatically as we learn more about their efficacy across a
wide range of cancers. These medications, however, are not
harmless. Some of the adverse effects are mild and easily con-
trolled with systemic steroids, but others can be serious and
fatal. In their attempt to augment the immune response, PD-1
inhibitors can breach immunologic tolerance by upregulating
autoreactive T-cells causing immunemediated reactions such
as rash, pneumonitis, colitis, thyroiditis, hepatitis, nephritis,
uveitis, adrenalitis, facial nerve paresis, hypophysitis, aseptic
meningitis, and fulminant diabetes [41]. The role of autoim-
munity has been recognized as a pathogenic mechanism in
low risk MDS but is still under discussion and not clearly
delineated. In high risk MDS, the role of autoimmunity is
even less so understood. Check point inhibitors should be
used with caution in high risk MDS due to their potential
autoimmune side effects.

4. MDS and Checkpoint Inhibitors

Epigenetic modification via PD-1 inhibition is a new
approach being considered in high risk MDS and other
hematologicmalignancies. Yang et al. [46] reported abnormal
upregulation of PD-L1, PD-L2, PD-1, and CTLA4 in CD34+
cells in MDS patients compared to healthy controls. This may
be one of the major mechanisms triggering high risk MDS.
Patients with high risk MDS have a higher percentage of PD-
L1 expression on their blasts compared to those with low risk
MDS.This upregulation of PD-1/PD-L1 is evident not only in
the clonal cells but also in their surrounding mesenchymal
cells. Dail et al. [47] measured PD-L1 expression using
multicolor flow cytometry and immunohistochemistry and
found that PD-L1 is detectable in more than 2% of cells in
all MDS patients, with the majority of expression occurring
in non-tumor hematopoietic cells. This supports that the
upregulation of PD-1/PD-L1 occurs in both clonal cells and
MSC. The interaction between these cells and PD-1/PD-L1
leads to T-cell suppression and influences cell cycle progres-
sion. This also results in genetic and epigenetic modulation
leading to increased apoptosis and cancer tolerance [48].
Some of themechanisms implicated in this T-cell suppression
include inhibition of Lck/ZAP-70 and PI3K-Akt/MEK-ERK
MAPKpathways, indirect activation of p38MAPK, increased
proliferation of T regulatory cells with suppressor effects
on the immune response, and inhibition of T-cell receptor
mediated lymphocyte proliferation and cytokine secretion
[2].

There are some trials evaluating the role of checkpoint
inhibitors as monotherapy in MDS. Garcia-Manero et al.
conducted a phase Ib trial to investigate the efficacy and side
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effect profile of the PD-1 inhibitor, pembrolizumab, in 28
MDS patients with intermediate 1 or 2 or high risk MDS
who failed therapy with HMA. The trial showed favorable
outcomes. Efficacy was evaluated in 27 patients using the
IWG 2006 response criteria for MDS [49]. Partial response
was observed in 1 patient (3%), complete marrow response
in 3 patients (11%), and stable disease in 14 patients (52%)
and progressive disease was noted in 9 patients (33%). The
median overall survival for all patients was 23 weeks, and 4 of
the 27 patients were alive for more than 2 years [50]. Adverse
effects were noted in 10 of 28 patients with most common
effects being fatigue and hypothyroidism. There was one case
of grade 3 gastroenteritis and one case of grade 4 tumor lysis
syndrome [1].

The CTLA-4 inhibitor, ipilimumab, yielded stabilization
of high risk MDS in 5 of 11 patients in a phase Ib study [51].
Zeidan et al. [51] studied the efficacy of ipilimumab in high
risk MDS patients who failed HMA in a multicenter phase
Ib clinical trial enrolling 29 patients with IPSS intermediate-
1 or 2 to high risk. Two complete marrow responses were
reported (7%). Prolonged stable disease for 46 weeks or more
occurred in 6 patients and for 54 weeks or more in 3 patients.
Median overall survival was 294 days and for those who
received maintenance ipilimumab, it was 400 days. Patients
who responded had increased expression of inducible T-
cell costimulator (ICOS), a biomarker of T-cell activation.
This trial revealed that the effect of ipilimumab monotherapy
while effective in some cases is, however, limited and more
combination-based approaches should be considered for
more significant response rates.

Since research on checkpoint inhibitors as monotherapy
in HMA refractory patients has shown limited response,
checkpoint inhibitors are now being studied in combination
with other MDS therapies particularly HMA to assess for
synergistic response. Wrangle et al. [52] were the first to
describe the sensitization effect of HMA to anti-PD-1 agents.
They noticed high response rates in non-small cell lung
cancer patients who failed treatment with azacitidine and
were later enrolled in a trial with a PD-1 inhibitor. HMAwere
found to induce viral mimicry by upregulating endogenous
retroviruses (ERVs) leading to upregulation of checkpoint
pathways, increase in apoptosis, and sensitization of MDS
cells to checkpoint inhibitors [53–55]. HMA increase PD-1
expression in peripheral blood mononuclear cells and bone
marrow cells [46]. If resistance to HMA is at least partially
mediated by the increased activation of checkpoint path-
ways, then combining both HMA and checkpoint inhibitors
should theoretically yield more favorable results. Another
mechanism by which HMA increase the sensitivity to PD-
1/PD-L1 inhibition is through the suppression of myeloid-
derived suppressor cells (MDSCs) in the bone marrow [48].
While HMA are thought to increase sensitivity to PD-
1 inhibitors by upregulating PD-1, PD-L1, and PD-L2, it
remains unclear if blocking the PD-1/PD-L1 pathway will
result in restoring sensitivity to HMA in treatment refractory
patients. Garcia-Manero et al. evaluated multiple cohorts
that included cohort 1 treated with nivolumab alone, cohort
2 with ipilimumab alone, and cohort 3 with nivolumab
combined with ipilimumab. All three cohorts evaluated MDS

patients who progressed on HMA therapy. The study also
included cohort 4 treated with azacitidine and nivolumab,
cohort 5 azacitidine combined with ipilimumab, and cohort
6 azacitidine combined with nivolumab and ipilimumab, all
of which were previously untreated intermediate 2 to high
risk MDS patients. Cohort 1 that received nivolumab alone
did not show any significant response. Cohort 2 that received
ipilimumab showed an overall response rate of 30% (5 of 16)
with 18%of the patients (3 of 16) experiencing grade 3 ormore
adverse events related to the therapy [56]. The response rate
in cohort 4 that received a combination of azacitidine and
nivolumabwas 80% (13 of 17). It is noteworthy that in cohort 1,
patients received nivolumab alone after failing treatmentwith
HMA and did not have any significant response, whereas the
cohort receiving combination therapy with nivolumab and
azacitidine had a good response rate, suggesting that both
drugs are likely working synergistically. The higher response
rate of azacitidine and nivolumab suggest that combination
therapy is more effective than nivolumab monotherapy [1].
Data from cohort 6 is not yet available (Table 2).

PD-L1 inhibitors atezolizumab and durvalumab are
currently being investigated alone and in combination
with HMA [39]. Other ongoing trials in MDS include
pembrolizumab in combination with entinostat, a histone
deacetylase inhibitor, inHMA refractory patients. Two ongo-
ing phase 1b trials are studying atezolizumab in combination
with other agents in previously untreated patients (Table 2).

5. Conclusion

MDS are a complex disease resulting from genetic and
epigenetic derangements in clonal cells and their surrounding
microenvironment. Over the past 10 years, our deeper under-
standing of the disease has allowed for great pharmacologic
and therapeutic advancements with azacitidine, decitabine,
and lenalidomide. Unfortunately, the results are still not
optimal. It is not surprising given the involvement of several
signaling pathways and underlying mechanisms as patients
often do not respond or lose response over time to a specific
therapy. There is still a significant knowledge gap that needs
to be filled for MDS. Several somatic mutations have been
identified in MDS suggesting that precision medicine with
targeting of actionable mutations such as IDH1/2, RAS, JAK,
and FLT3 may be an attractive approach [57]. One should
keep in mind that targeting one specific mutation may only
be a short-term solution as clonal cells may develop new
escape mechanisms and novel mutations leading to loss of
response. We are in need of therapeutic options that can be
used inMDS regardless of genomic profiles. Immunotherapy
is a new approach that is independent of genomic background
[57]. It is unclear whether immune checkpoint inhibitors
will provide any benefit as monotherapy. Preliminary data
from clinical trials show promising results when these agents
are combined with HMA in patients who initially failed
HMA monotherapy, suggesting synergistic effect between
the drugs. Currently, there are some phase I trials study-
ing the efficacy of checkpoint inhibitors in patients with
MDS, both as frontline therapy and in refractory disease
[57].
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Finally, as we gain a better understanding of the intricate
pathophysiologic basis of MDS, it is not unreasonable to
assume that combining several agents together, each acting
via a different mechanism, is likely to achieve more promising
results, albeit at the expense of potentially more significant
drug related adverse events. This approach will likely be the
main focus of future research. It is challenging to predict
outcomes to therapy in MDS as they may vary with the
specific population. Efforts should be directed to elicit specific
characteristics to help predict response in selected popula-
tions.
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