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Simple Summary: Glioblastoma (GBM) remains the most aggressive brain tumor. Treatment typ-
ically includes surgery and radio/chemotherapy, but in spite of intensive treatment, virtually all
tumors recur within the time-frame of months with insufficient and unsuccessful second line options.
This clinical reality is in contrast to preclinical animal experiments, which often show successful
outcomes of novel immunotherapeutic approaches. This discrepancy is largely explained by the
small number of animal models and their limited capacity to mimic the complexity of the human
disease. Moreover, new treatment options are typically administered as single treatments in animal
models, whereas patients receive them in combination with standard-of-care. In this review, we
provide an overview of the existing mouse models for GBM research and how each of them mimic
(parts of) the human disease spectrum. As such we provide an overview of the advantages and
limitations of the currently available options for in vivo drug testing for GBM.

Abstract: Glioblastoma (GBM) is the most aggressive intrinsic brain tumor in adults. Despite
maximal therapy consisting of surgery and radio/chemotherapy, GBM remains largely incurable
with a median survival of less than 15 months. GBM has a strong immunosuppressive nature with a
multitude of tumor and microenvironment (TME) derived factors that prohibit an effective immune
response. To date, all clinical trials failed to provide lasting clinical efficacy, despite the relatively
high success rates of preclinical studies to show effectivity of immunotherapy. Various factors
may explain this discrepancy, including the inability of a single mouse model to fully recapitulate
the complexity and heterogeneity of GBM. It is therefore critical to understand the features and
limitations of each model, which should probably be combined to grab the full spectrum of the
disease. In this review, we summarize the available knowledge concerning immune composition,
stem cell characteristics and response to standard-of-care and immunotherapeutics for the most
commonly available immunocompetent mouse models of GBM.

Keywords: glioblastoma; immunotherapy; model; animal model; preclinical; murine; immune re-
sponse

1. Introduction

Glioblastoma (GBM), is the most lethal brain tumor in adults, despite all therapeutic
efforts [1,2]. After standard-of-care treatment, consisting of maximal surgical resection
followed by radiotherapy (RT) and adjuvant temozolomide (TMZ), the median overall
survival generally does not exceed 15 months [3–5]. This underscores the unmet medi-
cal need for the development of more efficient treatments. Several immunotherapeutic
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strategies, such as immune checkpoint inhibitors, cellular therapies and oncolytic viral
therapies, have been explored in GBM [6,7]. However, to date all randomized clinical trials
failed to provide lasting clinical efficacy [8–12], despite the many successes of pre-clinical
studies [13–15]. We are therefore facing an important translational gap.

We believe that the discrepancy between preclinical and clinical results for immunother-
apy in GBM can be explained by several factors, two of which play a pivotal role. First, cur-
rent experimental models probably insufficiently mimic the complex situation in the human
brain and are therefore unable to adequately predict the clinical scenario. In particular, the
immune suppressive tumor microenvironment and its impact on immunotherapy has been
mostly ignored or insufficiently characterized in previous preclinical studies [16,17]. Sec-
ond, preclinical studies have rarely implemented the standard-of-care treatment (surgery,
RT and TMZ) when testing the effect of immune modulators. This issue is particularly rele-
vant for immunotherapy, since conventional treatments can modify the immune biology of
GBM thereby altering the response to additional immunotherapy [8,18–21].

We believe that addressing these two problems would strongly boost the translational
impact of GBM preclinical studies. However, integrating the full standard-of-care in pre-
clinical research is challenging and require specific neurosurgical skills and equipment,
which are not always available. Conversely, preclinical testing with multiple immuno-
competent mouse models in order to better recapitulate multiple aspects of GBM biology
and inter-patient heterogeneity is relatively straightforward. Nevertheless, to this end it is
essential to know all relevant features of the available tumor models [22–29], in order to
make an appropriate evaluation of which are the most adequate for each specific research
question.

In this review, we will summarize the main features of the most relevant immunocom-
petent GBM mouse models (Tables 1 and 2). For each model, we collected the available
information on tumor immunity, cancer stemness, response to standard-of-care treatment
and the effect of immunotherapeutics. The final goal will be to provide a useful tool for
model selection and combination for the preclinical testing of new immunotherapeutic
approaches against GBM.

2. Oldest Available Immunocompetent Mouse Models for GBM

The development and characterization of these oldest models has already been re-
viewed in detail in a previous publication by Oh et al. in 2014 [30]. Therefore, for these
older models we will mainly focus on their most recent developments. An overview of
these mouse models and relevant information can be found in Figure 1 and Table 1.
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Table 1. Overview of the different characteristics of the GL26, GL261, ML/CT-2A, SMA-560 and 4C8 mouse models.

Model Host Induction Histology Immune Composition Stem Cells
Effect of

Standard-of-Care
Therapy

Response to
Immunotherapy Reference

GL261 C57BL/6

Chemical
induction with
methylcholan-

threne

GBM, ependy-
moblastoma

Immunogenic profile with high
of frequency activated

microglia and CD3+ T cells, low
frequency of Tregs, presence of
TAMs, low frequency of APCs

Stem cell like
phenotype with

Nestin and CD133
expression

RT: +/−
TMZ: +

Survival benefit with
several

immunotherapeutic
strategies in single and
combination treatment

(ICB, vaccination,
virotherapy, . . . )

Ausman 1970
[15,21,31–115]

GL26 C57BL/6

Chemical
induction with

carcinogen
implantation

GBM, ependy-
moblastoma

CD8+ T cell and myeloid cell
infiltration with high

expression of PD-1 and TIGIT
immune checkpoints

Gene expression
profile of glioma

stem cells
TMZ: + Generally positive Sugiura 1969

[116–130]

ML/CT-2A C57BL/6

Chemical
induction with
methylcholan-

threne

Anaplastic
astrocytoma

Overall immune suppressive
microenvironment with low
numbers of microglia, high

numbers of resident
macrophages and exhausted
CD8+ T cells with TIM-3 and

LAG-3 expression

Positive for CD133,
Nestin and Oct4

stem cell markers
RT: - Generally positive Seyfried 1992

[26,33,77,131–147]

SMA-560 VM/Dk Spontaneous Anaplastic
astrocytoma

Upregulation
immunoregulatory pathways,

TGF-β signaling

CD44 and Nestin
expression when

cultured in
spheres

RT: -
TMZ: - Generally positive Fraser 1971

[134,148–160]

4C8 B6D2F1

Clonal cell lines of
a glial tumor from

a transgenic
mouse

Oligodendroglioma,
astrocytoma

Large number of macrophages
at the tumor periphery instead

of in the tumor core
Not assessed Not assessed

Generally positive
(limited amount of data

available)

Weiner 1999
[161–165]

GBM: glioblastoma, Treg: regulatory T cell, DC: dendritic cell, MHC-I/II: major histocompatibility complex I or II, TAM: tumor associated macrophage, APC: antigen presenting cell, PD-1: programmed cell
death protein 1, TIGIT: T cell immunoglobulin and ITIM domain, TGF-β: transforming growth factor β, TIM-3: T cell immunoglobulin and mucin-domain containing 3, LAG-3: lymphocyte activation gene 3, RT:
radiotherapy, TMZ: Temozolomide, ICB: immune checkpoint blockade. Bold: highlight.



Cancers 2021, 13, 19 4 of 24

Cancers 2021, 13, x 3 of 25 
 

Table 1. Overview of the different characteristics of the GL26, GL261, ML/CT-2A, SMA-560 and 4C8 mouse models. 

Model Host Induction Histology Immune Composition Stem Cells 

Effect of 
Standard-

of-Care 
Therapy 

Response to Im-
munotherapy 

Reference 

GL261 C57BL/6 

Chemical 
induction 

with 
methyl-
cholan-
threne 

GBM, ependy-
moblastoma 

Immunogenic profile with 
high of frequency activated 
microglia and CD3+ T cells, 

low frequency of Tregs, 
presence of TAMs, low fre-

quency of APCs 

Stem cell like 
phenotype with 

Nestin and 
CD133 expression 

RT: +/− 
TMZ: + 

Survival benefit 
with several im-
munotherapeutic 

strategies in single 
and combination 
treatment (ICB, 

vaccination, viro-
therapy, …) 

Ausman 1970 
[15,21,31–115] 

GL26 C57BL/6 

Chemical 
induction 
with car-
cinogen 

implanta-
tion 

GBM, ependy-
moblastoma 

CD8+ T cell and myeloid cell 
infiltration with high expres-
sion of PD-1 and TIGIT im-

mune checkpoints 

Gene expression 
profile of glioma 

stem cells 
TMZ: + Generally positive 

Sugiura 1969 
[116–130] 

ML/CT-
2A C57BL/6 

Chemical 
induction 

with 
methyl-
cholan-
threne 

Anaplastic astro-
cytoma 

Overall immune suppres-
sive microenvironment with 
low numbers of microglia, 
high numbers of resident 

macrophages and exhausted 
CD8+ T cells with TIM-3 and 

LAG-3 expression 

Positive for 
CD133, Nestin 
and Oct4 stem 
cell markers 

RT: - Generally positive 
Seyfried 1992 

[26,33,77,131–147] 

SMA-560 VM/Dk 
Spontane-

ous 
Anaplastic astro-

cytoma 

Upregulation immunoregu-
latory pathways, TGF-β sig-

naling 

CD44 and Nestin 
expression when 

cultured in 
spheres 

RT: - 
TMZ: - 

Generally positive 
Fraser 1971 

[134,148–160] 

4C8 B6D2F1 

Clonal cell 
lines of a 

glial tumor 
from a 

transgenic 
mouse 

Oligodendrogli-
oma, astrocy-

toma 

Large number of macro-
phages at the tumor periph-
ery instead of in the tumor 

core 

Not assessed 
Not as-
sessed 

Generally positive 
(limited amount of 

data available) 

Weiner 1999 
[161–165] 

GBM: glioblastoma, Treg: regulatory T cell, DC: dendritic cell, MHC-I/II: major histocompatibility complex I or II, TAM: 
tumor associated macrophage, APC: antigen presenting cell, PD-1: programmed cell death protein 1, TIGIT: T cell immu-
noglobulin and ITIM domain, TGF-β: transforming growth factor β, TIM-3: T cell immunoglobulin and mucin-domain 
containing 3, LAG-3: lymphocyte activation gene 3, RT: radiotherapy, TMZ: Temozolomide, ICB: immune checkpoint 
blockade. Bold: highlight. 

 
Figure 1. Schematic and chronological presentation of the old preclinical immunocompetent 
mouse models for glioblastoma with information about stemness, immune cell composition, the 
effects of standard of care and the efficiency of immunotherapy. RT: radiotherapy, TMZ: Te-
mozolomide, PD-1: programmed cell death protein 1, TIGIT: T cell immunoglobulin and ITIM 

Figure 1. Schematic and chronological presentation of the old preclinical immunocompetent mouse
models for glioblastoma with information about stemness, immune cell composition, the effects of
standard of care and the efficiency of immunotherapy. RT: radiotherapy, TMZ: Temozolomide, PD-1:
programmed cell death protein 1, TIGIT: T cell immunoglobulin and ITIM domain, Treg: regulatory
T cell, TAM: tumor associated macrophage, TGF-β: transforming growth factor β, TIM-3: T cell
immunoglobulin and mucin-domain containing 3, LAG-3: lymphocyte activation gene 3, (+) presence
of stem cell populations and/or positive effect of treatment administration, (-) no effect of treatment
administration and (?) data not available in literature.

2.1. GL261
2.1.1. Origins and Tumor Characteristics

This chemically induced model was first developed in 1970 by Ausman et al. [116]. and
has by far been the most widely used in glioblastoma research. In vivo, GL261 cells have
been shown to express different general stem cell markers such as CD133 and nestin [31]
while exhibiting infiltrative capacity of brain-tumor derived mesenchymal stem cells posi-
tive for Sox2, nestin, Sca-1, CD9, CD44 and CD166 [32]. Khalsa et al. performed a bulk RNA
sequencing analysis on GL261 tumors which showed a strong enrichment of differentially
expressed genes related to several immune pathways compared to naïve control mice,
especially related to genes relevant for T cells, macrophages and eosinophils [33]. The same
study also indicated a higher frequency of activated microglia, more total T cells, a lower
frequency of regulatory T cells and antigen presenting cells compared to the ML/CT-2A
tumor model [33]. All findings point towards the fact that the GL261 tumor model is more
immunogenic than other models, such as the ML/CT-2A tumor model.

2.1.2. Effect of Standard-of-Care

Both whole brain and focal beam irradiation strategies have been evaluated in the
GL261 model. While whole brian irradiation was able to prolong survival and deliver
long-term surviving mice, focal beam irradiation didn’t show the same potential [34–37].
Administration of TMZ was able to provide similar survival benefits in the GL261 model
as is seen in GBM patients [38–40].

2.1.3. Immunotherapeutic Approaches

Many different immunotherapies have been tested in the GL261 model. These include
studies investigating programmed cell death protein 1 (PD-1) checkpoint blockade or other
immune checkpoint inhibitors, oncolytic virotherapy, chimeric antigen receptor (CAR) T
cell therapy, dendritic cell vaccination and many others [15,35,41–84]. In addition, the effi-
cacy of many other less common immunotherapeutic approaches have been investigated in
the GL261 models [85–109]. The vast majority of these therapies showed promising results,
with a stronger anti-tumor response and improved survival rates. These immunotherapeu-
tic strategies have been investigated as single treatments, in combination with other types
of immunotherapies or in combination with the standard-of-care treatment. However,
only part of the standard-of-care (usually TMZ, less commonly RT or RT-TMZ) was taken
into consideration [39,40,78,79,110–114]. Interestingly, the efficacy of checkpoint inhibition
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directed against PD-1 or its ligand (PD-L1) in combination with TMZ, RT, or both was
tested in six, two or one preclinical studies, respectively. Out of these eight combinatorial
studies, seven were conducted with the GL261 tumor model [21].

The effects of steroids, largely used in the clinic to reduce brain oedema in GBM pa-
tients, were analyzed in one study using the GL261 tumor model. This study demonstrates
that steroids have an inhibitory effect on anti-tumor immunity and that blocking cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), but not PD-1, could partially prevent such
negative modulation [115].

2.2. GL26
2.2.1. Origins and Tumor Characteristics

The GL26 model is the oldest immunocompetent preclinical model for GBM and has
been developed in 1969 by chemical induction [116]. It has been less extensively used than
the (similar) GL261 model. Although both models show a great histological resemblance,
the main difference is that GL26 tumors show a large extent of necrosis and vascularity
and therefore tend to be more hemorrhagic [116]. Crommentuijn et al. [117] described the
presence of a tumor antigen-specific CD8+ T cell population which displays a tolerogenic
phenotype with a high expression of several immune checkpoints such as PD-1 and T cell
immunoglobulin and ITIM domain (TIGIT). The infiltration of myeloid cells expressing
these immune checkpoint ligands was also observed [117]. Furthermore, the importance of
galactokinase (Gal1) in the immune suppression of the GL26 model was described, since
it masks tumor cells from immune recognition [118,119]. The importance of glial toll-like
receptor 2 (TLR2) as a bridge between the innate and the adaptive immune response was
also reported, which is crucial in providing an effective immune response against the
tumor [120]. Genetic analysis of GL26 tumors also revealed a specific acquisition of several
stem cell markers that were correlated to anti-tumor T cell activity [121].

2.2.2. Effect of Standard-of-Care

Radiotherapy (also if as whole body irradiation) and TMZ as a monotherapies have
both been proven to be effective in prolonging survival in the GL26 mouse model [122–126].
Furthermore, TMZ treatment was able to increase cross-priming of tumor antigen-specific
CD4+ T cells and CD8+ T cells and suppressed the frequency of regulatory T cells (Tregs) [125].

2.2.3. Immunotherapeutic Approaches

GBM is strongly invasive and tumor cells can be found embedded in the normal
parenchyma at great distance from the main tumor. This makes a complete resection not
feasible [117]. Yadav et al. analyzed this problem with the GL26 model, and they found
that down regulation of C-X-C chemokine receptor type 4 (CXCR4) led to less perivascular
invasion and increased survival. Furthermore, CXCR4 knockdown sensitizes the tumors to
irradiation, making this molecule an interesting therapeutic target [127]. Another novel
therapeutic strategy targets the proton/H+ eflux mechanism important for the maintance
of the intracellular pH. The inhibition of the H+ eflux mechanism (NHE1) reduced tumor
volume, invasion and prolonged overall survival in GL26 (and SB28) glioma models. This
type of treatment resulted in an accumulation of CD8+ T cells and sensitized animals
to anti-PD-1 therapy [128]. Also the mTOR pathway is a frequent target of anti-glioma
therapy. Targeting this pathway with rapamycin in combination with immunotherapy
had a synergistic effect and a long term survival advantage. Rapamycin administration
also resulted in a long lasting central memory CD8+ T cell response and a stronger anti-
tumor response after a second tumor challenge [129]. The combination of TMZ with
interferon (IFN)-β was also tested in the GL26 model and showed enhanced anti-tumor
effects compared to TMZ alone [130].
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2.3. ML/CT-2A
2.3.1. Origins and Tumor Characteristics

The CT-2A model was first described by Seyfried et al. in 1992 [131] and accurately
represents numerous GBM characteristics, including the intra-tumoral cellular heterogene-
ity and the proliferative and metabolic profiles [132]. CT-2A cells cultured as monolayer
cells (ML/CT-2A) in vitro express different stem cell markers such as CD133, nestin and
Oct4 [26]. Also in vivo the expression of CD133 and Nestin is observed in ML/CT-2A
tumors [133], indicating that the cells keep their stemness during tumor growth in mice.
Khalsa et al. performed RNA sequencing to identify the ML/CT-2A immune profile
in vitro [33]. In contrast to the highly immunogenic GL261 model, ML/CT-2A cells showed
no enrichment of any immune response-related pathway. In vivo, ML/CT-2A tumors had
lower numbers of CD45lowCD11blowCX3CR1+ microglial cells (considered activated or
resting based on MHCII positive or negative staining, respectively), but higher numbers
of CD11b+F4/80+CD64+Ly6C− resident macrophages and CD39+Tim3+Lag3+CD8+ ex-
hausted cytotoxic T cells compared to other glioblastoma tumor models. Furthermore,
70–80% of T cells in the tumor microenvironment of ML/CT-2A tumors exhibit prolonged
expression of T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) and
lymphocyte-activation gene 3 (LAG-3), both markers for dysfunctional T cells [33]. Overall,
the ML/CT-2A model is characterized by an immune suppressive tumor microenvironment
and exhausted effector T cell function, making it a very suitable tumor model for GBM
research in the field of immunotherapy since a similar immune phenotype is observed in
GBM patients [134].

2.3.2. Effect of Standard-of-Care

The ML/CT-2A model has not been widely used in preclinical studies assessing the
effects of the standard-of-care treatment. Only one study described the effects of RT in the
model [135], where whole brain irradiation was ineffective in prolonging survival in mice.
As already mentioned, the surgical removal has an influence on the immune composition
of the remaining/recurrent tumor, with obvious implications for immunotherapies. Never-
theless, this treatment has only occasionally been assessed in preclinical studies. Khalsa et
al. performed an immunophenotyping of the ML/CT-2A mouse model before and after
surgical resection of the tumor [33]. After tumor resection, an increase of CD4+ and CD8+ T
cells and activated microglia was observed with a decrease of resting macrophages and res-
ident microglia. Furthermore, PD-1 expression decreased and CD25 expression increased
on CD4+ T cells post-tumor resection [33]. These data suggest that tumor resection in
the ML/CT-2A model partially removes the immune suppressive microenvironment and
promotes immune activation, possibly creating a favorable momentum for administration
of immunotherapies.

2.3.3. Immunotherapeutic Approaches

Given the disappointing results of checkpoint blockade in GBM patients, the current
focus of preclinical research in this field is on combining checkpoint blockade with newly
identified targets such as interleukin 6 (IL-6), IL-7, IL-12 or phagocytosis pathways, in order
to overcome T cell exhaustion [136–138]. In the ML/CT-2A tumor model, the combination
of PD-1 checkpoint inhibition with anti-CD137 decreased TIL exhaustion, improved TIL
functionality and resulted in 50% long term survivors [139]. Another novel combination
treatment recently tested was the combination of anti-PD-L1 with gene-mediated cytotoxic
immunotherapy which resulted in more long term survivors as compared to the monother-
apies [140]. One last focus of interest has been to improve the delivery of checkpoint
inhibitors via lipid nanoparticles. In combination with RT, this strategy led to a depletion
of tumor-associated myeloid cells and a significantly improved survival in ML/CT-2A and
GL261 models [135].

Oncolytic virus (OV) therapy has great potential for success, however the best balance
between maximal anti-tumor activity and acceptable toxicity is difficult to find, especially



Cancers 2021, 13, 19 7 of 24

following direct intracranial infusion. Certain OVs based on herpes simplex virus (HSV)
are safe but have only little anti-tumor response. To overcome this limitation Passaro et
al. engineered an HSV to express an antibody against PD-1 and injected it intratumorally.
This resulted in an increased median survival and immune memory against the both
ML/CT-2A and GL261 tumors [141]. The combination of OV therapy with PD-1/PD-L1
immunotherapy provided a synergistic effect leading to an improved overall survival
and an activation of the immune response capable to reverse the tumor-induced immune
suppression [142,143]. On the other hand, OVs based on vesicular stomatitis virus (VSV)
have a very robust anti-tumor effect but are extremely neurotoxic when injected in the
brain. Therefore, Balathasan et al. [144] used an intravenous pretreatment of VSV∆51 as a
way to induce peripheral immunization before intracranial injection of an otherwise lethal
dose of VSV∆51. This resulted in complete tumor regression in 20% of ML/CT-2A tumor
bearing mice. Also OVs based on Semliki Forest Virus (SFV) have been developed [145,146].
When injected intravenously, they resulted in a prolonged survival with 27% of the mice
bearing ML/CT-2A tumors cured, whereas there was no significant effect in the GL261
model [146].

In an interesting study, Ladomersky et al. used the ML/CT-2A model to demonstrate
increased immune suppression, decreased immunotherapeutic efficacy and decreased sur-
vival in old age animals (75 week old mice, corresponding to 58–59 year old humans) [77].
The impact of age on GBM development and treatment has been ignored most of times: in
the majority of studies, animals of young age (6–12 weeks, corresponding to early adult-
hood in humans) are used for preclinical GBM research [147]. Given that the median age at
diagnosis for GBM is 65 years, the age difference between tumor models and patients is
extremely relevant.

2.4. SMA-560
2.4.1. Origins and Tumor Characteristics

The SMA-560 model is one of the few models that spontaneously arose in VM/Dk
mice as initially described by Fraser et al. in 1971 [148]. It was established as a cell line in
1980 by Serano and colleagues [149]. The fact that the model developed spontaneously in
immunocompetent mice, makes it a very interesting model to study. A genetic characteri-
zation of the model revealed an upregulation of genes involved in antigen presentation,
interferon-related protein expression and a general increase in genes related to immunoreg-
ulatory pathways indicating the presence of an ineffective immune response in the tumor
microenvironment of the SMA-560 model [150]. Furthermore, the immune suppressive
protein transforming growth factor beta (TGF-β) has been shown to play an important
role in SMA-560 tumor development [151]. The expression of PD-1, TIM-3 and LAG-3
on tumor infiltrating lymphocytes is also increased in SMA-560 tumors [134]. In terms of
stemness characteristics, it has been described that in vitro SMA-560 cells express only a
limited amount of CD44 and nestin stem cell markers. However, when cultured in sphere
cultures the cells seem to increase their CD44 and Nestin expression, which was correlated
with a more aggressive tumor behaviour in vivo [152]. Schneider and colleagues described
the difference in tumorigeneic potential in young and old VM/Dk mice. Interestingly at
baseline, older SMA-560 mice had a significantly worse survival as compared to younger
mice, in contrast to the GL261 model where this difference was not observed [153].

2.4.2. Effect of Standard-of-Care

In vitro, SMA-560 cells were highly resistant to TMZ treatment and only responded
to high doses of irradiation [152]. However, only a few studies assessed these effects
in vivo [154]. Whole brain irradiation as a single treatment or combined with TMZ was
either ineffective or provided only a limited and non-significant improvement in survival
compared to control mice [154,155]. This indicates that the standard-of-care used in GBM
patients is ineffective in prolonging survival of the SMA-560 mouse model. Therefore, the
translational potential of the model should be considered carefully when translating results
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to the whole GBM patient population. However, a tumor model that does not respond to
RT or TMZ can be relevant in studying treatment options for patients who respond poorly
to this standard-of-care treatment regimen or for the recurrent situation where resistance
appeared.

2.4.3. Immunotherapeutic Approaches

An important immunological therapeutic target studied in the SMA-560 model is ex-
cessive TGF-β signaling [156,157]. As such, the administration of phosphorothioate-locked
nucleic acid (LNA)-modified antisense oligonucleotide gapmers targetting TGF-β resulted
in prolonged survival and increased CD3+ and CD8+ cytotoxic T cell infiltration [158].
Another emerging treatment strategy that has been tested in this model is CAR T cell
therapy, which was shown to generate a pro-inflammatory tumor microenvironment and
to significantly extend survival in the SMA-560 model [159]. Furthermore, anti-angiogenic
treatment has a positive effect on survival in the SMA-560 model [155]. One of the prob-
lems in GBM treatment is the delivery of the compound trough the blood brain barrier. In
this regard, microbubbles have been tested to increase the local concentration of certain
types of treatments. This strategy was succesfully tested for doxorubicin in the SMA-560
model [160].

2.5. C8
2.5.1. Origins and Tumor Characteristics

The 4C8 model was established in 1999 from clonal cell lines of a glial tumor (MOCH-
1) in B6D2F1 mice [161]. Gazdzinski et al. [162] compared the characteristics of this model
with the GL261 model. The 4C8 model is less aggressive, the tumor has higher cell
density, less necrosis and invasiveness with a more normal vasculature and less mitotic
cells as compared to the GL261 model. Both models have a large number of infiltrating
macrophages; however, these cells are located at the tumor periphery in the 4C8 model [162].
All these features, consistently pointing towards a lower aggressiveness in comparison to
the GL261 model, have strongly limited the used of the 4C8 tumor model.

2.5.2. Immunotherapeutic Approaches

This model has been used very limitedly in immunotherapeutic or anti-angiogenic
research [163,164]. The combination of an anti-angiogenic receptor tyrosine kinase inhibitor
with a proteasome inhibitor resulted in a significantly improved survival and an induction
of anti-angiogenic effects which leads to vascular normalization [164]. The effects of
oncolytic virotherapy were assessed in the model as well. In vitro, 4C8 cells showed the
same sensitivity as human glioma cells to a series of type HSV-1 [165]. In vivo studies
showed a prolongation of survival with an intracranial injection of an IL-12-expressing
HSV [165].

3. Recently Developed Immunocompetent Mouse Models for GBM

Various new GBM models have been developed in the last years. In most cases, this
has been done by means of viral vectors which were either used to manipulate isolated
mouse cells (mGB2, NSCL61 and bTiTs-G3) or injected directly into the animals’ brain
(SB28, 005 GSC and NFpp10 models). Additionally, tumor models have been generated
from spontaneously developed tumors in genetically altered mice (KR158B and Mut3) or by
culturing older cell lines in a different way (CT-2A). In all cases, stable cells lines amenable
of standard intracranial injection have been obtained [22–25,27,28,166]. An overview of
these mouse models and relevant information can be found in Figure 2 and Table 2.
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Table 2. Overview of the different characteristics of the KR158B, Mut3, 005 GSCs, NSCL61, bRiTs-G3, NFpp10-GBM, NS/CT-2A, SB28 and mGB2 mouse models.

Model Host Induction Histology Immune Composition Stem Cells
Effect of

Standard-of-Care
Therapy

Response to
Immunotherapy Reference

KR158B C57BL/6
Spontaneous tumor

development in Nf1 and
p53 mutant mice

Secondary GBM Not assessed Not assessed RT/TMZ: + Resistance to ICB Reilly 2000
[12,29,65,166–168]

Mut3 C57BL/6
Spontaneous tumor

development in Nf1, p53
and Pten mutant mice

GBM, high-grade
astrocytoma

High levels of classical
and exhausted CD8+ T

cells, CD4+ T cells, Tregs
and resting microglia and

low levels of DC
infiltration

Increased GFAP
and Nestin
expression

Not assessed Not assessed Kwon 2008
[33,169,170]

005 GSCs C57BL/6

Transduction in
hippocampus of adult
mice with vectors with
activated HRas en AKT

GBM,
heterogeneous

Relatively
non-immunogenic,

absence of MHC-I and
down regulation of

co-stimulatory molecules,
limited T cell activation,
strong correlation with
human tumor immune

microenvironment

Glioma stem cell
tumor model Not assessed Resistance to ICB

Marumoto 2008
[24,33,168,171–

175]

NSCL61 BALB/c
HrasL61 overexpression
in p53 deficient neural

stem cells

GBM,
heterogeneous Not assessed

Tumor model is
derived from

neural stem cells
Not assessed

Generally positive
(limited amount of

data available)

Hide 2009
[27,68,72]

bRiTs-G3 C57BL/6

Overexpression of
HRasV12 in neural stem

cells from mice with
homozygous deletion of

the Ink4a/Arf locus

GBM,
mesenchymal Not assessed

Tumor model is
derived from

neural stem cells

RT: +
RT resistance
develops after

repeated exposure

Generally positive
(limited amount of

data available)

Sampetrean 2011
[28,68,176]

NFpp10-
GBM C57BL/6

Embryonic stem cells
infected with shp53-shNf1

and shPten lentiviral
vector

GBM Lack of T cell infiltration
Tumor model is

derived from
neural stem cells

Not assessed Resistance to ICB Allen 2017
[13,24,25,177]
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Table 2. Cont.

Model Host Induction Histology Immune Composition Stem Cells
Effect of

Standard-of-Care
Therapy

Response to
Immunotherapy Reference

NS/CT-2A C57BL/6
Culturing of CT-2A cells
in serum-free stem cell

culture medium
Astrocytoma

Decrease in number of
Tregs and increased CD8+

T cells compared to
ML/CT-2A

Increased
expression of

Nestin and CD133
expression

compared to
ML/CT-2A

RT: +
TMZ: +

RT/TMZ: +
Resistance to ICB Binello 2012

[21,26,30,133,178]

SB28 C57BL/6

Intraventricular
transfection of Nras,
PDGF and shp53 in

neonates

GBM, proneural

Weakly immunogenic:
few infiltrating T cells,
abundant macrophage

and microglial infiltration,
absence of MHC-I and

MHC-II expression

Not assessed Not assessed Resistance to ICB Kosaka 2014
[9,12,23,58]

mGB2 C57BL/6
p53 and Pten deficient

neural stem cells in adult
mice

GBM,
mesenchymal

Strong presence of
myeloid cells and only

few lymphocytes

Tumor model is
derived from

neural stem cells
Not assessed Not assessed Costa 2019

[22,179]

GBM: glioblastoma, Treg: regulatory T cell, DC: dendritic cell, MHC-I/II: major histocompatibility complex I or II, RT: radiotherapy, TMZ: Temozolomide, ICB: immune checkpoint blockade, GFAP: glial fibrillary
acidic protein, PDGF: platelet-derived growth factor, Pten: phosphatase and tensin homolog, Nf1: neurofibromin 1, Nras: neuroblastoma reticular activating system, Hras: Harvey rat sarcoma viral oncogene
homolog. Bold: highlight.
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Figure 2. Schematic and chronological presentation of the more recent preclinical immunocompetent
mouse models for glioblastoma with information about stemness, immune cell composition, the
effects of standard of care and the efficiency of immunotherapy. RT: radiotherapy, TMZ: Temozolo-
mide, Treg: regulatory T cell, DC: dendritic cell, MHC-I/II: major histocompatibility complex I or II,
TAM: tumor associated macrophage, (+) presence of stem cell populations and/or positive effect of
treatment administration, (−) no effect of treatment administration, (?) data not available in literature
and (*) resistance to immune checkpoint blockade.

3.1. KR158B
3.1.1. Origins and Tumor Characteristics

This mouse model was developed in 2000 by Reilly et al. and it is the first astrocytoma
mouse model that was generated by knocking-down neurofibromin 1 (Nf1) and tumor
protein p53 in mice which then spontaneously developed brain tumors with variable
histology from low grade astrocytoma to GBM [29]. KR158B is the cell line derived from
the most aggressive variants, which recapitulate the main features of human GBM [166].
To date, information on the immune and stemness characterization of this model is not
available yet.

3.1.2. Effect of Standard-of-Care

The administration of whole brain irradiation and TMZ as single treatments wasn’t
able to positively affect survival in the KR158B model, and the combination of both re-
sulted in a small median survival benefit of only five days, in line with results in the
most aggressive human GBMs and making this a promising model for future preclinical
research [166].

3.1.3. Immunotherapeutic Approaches

In the KR158B model, the combination of myeloablative conditioning, dendritic cell
(DC) vaccination and adoptive cellular therapy resulted in a doubeling of the median
survival and 30% of cured mice [166]. This model has also been used to test alternative TMZ
treatment schedules in combination with immunotherapy [65,167,168]. The combination
of TMZ and anti-PD-1 treatment has been shown to decrease the expression of T cell
exhaustion markers. However, this had no effect on survival indicating that the model
can develop resistance mechanisms to both these treatments [65]. However, the combined
inhibition of PD-1 and C-C chemokine receptor type 2 (CCR2) lead to a synergistic effect
and improved mouse survival, overvcoming the resistance to anti-PD-1 monotherapy [168].
The recent failure of clinical trials involving anti-PD-1 treatment [12] has demonstrated
that human GBM are able to promote strong resistance mechanisms hampering the efficacy
of checkpoint inhibitors. Therefore, performing preclinical research in models showing the
same type of resistance, such as the KR158B, is of the utmost importance for an appropriate
design of future clinical trials.
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3.2. Mut3

The Mut3 tumor model was developed by Kwon et al. [169] in 2008 by generating
Nf1, p53 and Pten deficient mice which subsequently developed spontaneous high-grade
astrocytomas. Neural stem cells (NSCs) from presymptomatic mice already showed aber-
rant stem cell features including higher proliferation levels, increased glial fibrillary acidic
protein (GFAP) and increased Nestin expression [170]. The Mut3 cell line was generated
by isolating the spontaneously developed tumors and bringing them in culture where
they are maintained in neurosphere conditions [169]. Mut3 tumors are immunologically
characterized by high levels of both classical and exhausted infiltrating CD8+ T cells, CD4+

T cells, Tregs, and resting microglia, and by low levels of DC infiltration [33]. At this
moment, no data is available on effects of standard-of-care or immunotherapeutics in the
model.

3.3. 005 GSCs
3.3.1. Origins and Tumor Characteristics

Marumoto et al. [24] developed this mouse model by injecting Cre-loxP–controlled
lentiviral vectors expressing activated oncogenes AKT and Harvey-Ras in the hippocampus
of GFAP-Cre Tp53+/− mice. Subsequently, the obtained tumor cells were cultured as neu-
rospheres and the 005 GSCs cell line was established [24,171]. Next, Saha et al. developed
an immunocompetent model by reinjecting the 005 GSC cells in C57BL/6 mice [172,173].
005 GSC-derived tumors show the same features as the primary tumor. Furthermore, 005
GSC cells express several stem cell markers such as Nestin, CD133 and Sox2 and proan-
giogenic vascular endothelial growth factor (VEGF) both in vitro and in vivo [173]. Even
though RNA seq analysis performed by Khalsa et al. [33] showed that 005 GSC tumors
exhibit a more immunologically active profile, Cheema et al. [173] described the tumors as
non-immunogenic with the absence of major histocompatibility complex (MHC)-I expres-
sion and down regulation of co-stimulatory molecules. Nonetheless, Khalsa et al. showed
that 005 GSC tumors had large amounts of activated and resting microglia and CD4+ Tregs,
but low numbers of classical and exhausted CD8+ T cells [33]. This immunological pheno-
type strongly correlates with the immune microenvironment of GBM tumors in patients,
making it a highly translational mouse model to be used for preclinical studies involving
immunotherapeutic GBM research [33].

3.3.2. Effect of Standard-of-Care

Saha et al. [174] demonstrated that both low and high doses of TMZ treatment were
ineffective in providing a survival benefit in the 005 GSC tumor model. In combination
with OV, TMZ even counteracted the OVs positive effect on survival, indicating the chemo-
resistant nature of the 005 GSC tumor model and the importance of implementing standard-
of-care treatment in preclinical research. The effects of RT on 005 GSC tumors have not yet
been described.

3.3.3. Immunotherapeutic Approaches

005 GSC model has experienced occasional use in immunotherapy research to evaluate
the effect of combination treatments with OV, VEGF receptor (VEGFR) tyrosine kinase
inhibitors (TKI) and immune checkpoint blockade [172,173,175]. Cheema et al. [173]
showed the effect of a genetically engineered oncolytic HSV armed with IL-12 (G47∆-
mIL12). Median survival was prolonged after intratumoral injection of G47∆-mIL12.
Treatment with G47∆-mIL12 doesn’t only target GSCs but also increases IFN-γ release,
inhibits angiogenesis, and reduces the number of Tregs in the tumor [173]. The combination
of G47∆-mIL12 with the VEGFR TKI axitinib, anti-CTLA-4, anti-PD-1 or anti-PD-L1 further
enhanced the positive effects on survival [172,175] while monotherapy of checkpoint
inhibition with anti-CTLA-4, anti-PD-1 or anti-PD-L1 only showed positive but modest
effects [172]. Interestingly, a triple combination of G47∆-mIL12 with anti-CTLA-4 and
anti-PD-1 showed a synergistic curative effect that was accompanied with M1 macrophage
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polarization and an increased CD8+ T cell / Treg ratio [172]. Additionally, targeting
myeloid-derived suppressor cells (MDSCs) by using a CCR2 antagonist was able to sensitize
005 GSC tumors to anti-PD-1 therapy [168].

3.4. NSCL61
3.4.1. Origins and Tumor Characteristics

The NSCL61 model was originally developed by Hide et al. [27] in 2009 by the
overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRas)L61 in p53
deficient NSCs that subsequently formed tumors in nude mice after stereotactic injection.
These tumors were grown in culture as the NSCL61 cells and consist of an heterogenous
population of both glioma initiating and non-tumorigenic cells [27]. An immunocompetent
tumor model can be established by injecting NSCL61 cells stereotactically in C57BL/6
mice [68]. An immunological evaluation of NSCL61 tumors has not yet been performed.

3.4.2. Immunotherapeutic Approaches

The NSCL61 has only been sparsly used in preclinical GBM research [68,72]. Tumor
cell lysate-based vaccination therapy in combination with immunotherapy targeting CD40
resulted in the induction of IFN-γ secretion from CD4+ T cells and prolonged survival [72].
The local delivery of anti-CD40 monoclonal antibodies resulted in an increased apoptosis,
T cell infiltration and significantly prolonged survival in the NSCL61 and bRiTs-G3 model,
but not in the GL261 model due to a lower CD40 expression [68].

3.5. bRiTs-G3
3.5.1. Origins and Tumor Characteristics

Sampetrean et al. [28] developed the bRiTs-G3 model in 2011 by retroviral transduc-
tion of constitutively active HRasV12 in normal neural stem/progenitor cells isolated from
the subventricular zone of adult mice with a homozygous deletion of the Ink4a/Arf locus.
Brain tumor-initiating cells were subsequently cultured as neurospheres. Molecular charac-
terization of bRiTs-G3 tumors showed expression of mesenchymal and stem cell markers
indicating a mesenchymal GBM subtype [28].

3.5.2. Effect of Standard-of-Care

The bRiTs-G3 tumor model was used to study resistance to RT by exposing the cells
in vitro to repeated cycles of irradiation. After stereotactic injection of the pretreated cells,
bRiTs-G3 tumors were resistant to subsequent treatment with RT, indicating the bRiTs-G3
cells acquire a radio-resistant phenotype after repeated exposure to irradiation [176].

3.5.3. Immunotherapeutic Approaches

When the bRiTs-G3 cells acquire their radioresistant phenotype, this also results in
upregulation of insulin-like growth factor 1 receptor (IGF1R). Therefore, IGF1R blockade
has been proposed as treatment option to prevent RT resistance and recurrence after
RT [176]. Additionally, the bRiTs-G3 models has been used in immunotherapy research
with anti-CD40 treatment where it significantly prolonged survival compared to control
mice [68].

3.6. NFpp10-GBM
3.6.1. Origins and Tumor Characteristics

NFpp10-GBM cells were created in 2017 by infecting embryonic C57Bl/6 NSCs with
lentiviral vectors containing shP53-shNF1 and shPten [13,24,25]. To date, this model has
not yet been fully characterized and has only experienced very limited use in preclinical
GBM research.
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3.6.2. Immunotherapeutic Approaches

The NFpp10-GBM model is mainly used to study tumor vasculature and angio-
genesis [13,177]. The combination treatment of VEGF inhibition and anti-PD-L1 had no
significant effect on survival. The ineffectiveness of the combination treatment was not
due to the lack of PD-L1 expression of the cells, but rather the lack of T cell infiltration
into the tumor [13]. To increase treatment efficacy a vascular targeting peptide (VTP) was
developed containing the tumor necrosis factor (TNF) superfamily cytokine LIGHT which
stimulates T cells, promotes vascular inflammation and is involved in lymph node neogene-
sis. Triple treatment with LIGHT-VTP, anti-VEGF and anti-PD-L1 resulted in a significantly
reduced tumor burden as compared to untreated controls. Additionally, this combination
treatment amplified high endothelial venules’ frequency and T cell accumulation [177].

3.7. NS/CT-2A
3.7.1. Origins and Tumor Characteristics

As highlighted in the already mentioned review by Oh et al. [30], culturing CT-2A cells
in neurospheres (NS/CT-2A) results in an increase of their stemness features. However,
the difference in immunogenicity between CT-2A cells cultured in ML and NS was not
described yet [26]. In a study performed by our group in 2019, NS/CT-2A tumors have
been shown to induce a shorter survival and a higher expression of stemness and vascular
markers compared with their ML counterpart. Furthermore, NS/CT-2A tumors showed an
increase in CD8+ T cells and a decrease in the number of Tregs compared to ML/CT-2A
tumors [133]. These features of the NS/CT-2A tumor model make it suitable for preclinical
research aimed at developing therapeutic strategies against tumor stem cells and immune
suppression.

3.7.2. Effect of Standard-of-Care

In the NS/CT-2A model, TMZ and stereotactic RT were able to prolong survival
when administered as monotherapies or in combination. As monotherapy, stereotactic RT
positively modulated both the adaptive and the innate immune system (increased CD8+

T cells and decreased M2 macrophages and monocytic MDSCs (mMDSCs)) while TMZ
only improved innate immunity (reduced mMDSCs) and to a lower extent than stereotactic
RT [21]. Interestingly, the combination of these two treatments, despite prolonging survival,
was immunologically detrimental compared to RT alone. This model was also used
to assess the effects of stereotactic RT dose-escalation and dose-fractionation. RT dose-
escalation was associated with prolonged survival, improved anti-tumor immunity and
reduced expression of stem cell markers. Conversely, RT dose-fractionation drastically
reduced this positive effect [178]. Given the fact that GBM patients are currently treated
with a fractionated RT schedule, these results highlight the need for studies aimed at
identifying new RT schedules capable to induce a better immune modulation and a more
efficient combination with immunotherapeutics.

3.7.3. Immunotherapeutic Approaches

As already mentioned, the combination of stereotactic RT and TMZ in the NS/CT-
2A model induced a less favorable immune microenvironment compared to RT alone.
The model also appeared quite resistant to anti-PD-1 since this treatment could only
induce minor modifications of survival and tumor immunity when administered alone or
following RT-TMZ [21].

3.8. SB28
3.8.1. Origins and Tumor Characteristics

The SB28 cell line was developed by Kosaka et al. [23] via intraventricular injection of
the oncogenes neuroblastoma reticular activating system (NRas), platelet-derived growth
factor (PDGF) and short hairpin p53 in neonate C56BL/6 mice. Seven weeks following
glioma induction, brain tissue was harvested, minced and seeded. The clone with the
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highest luciferase activity was selected and the SB28 cell-line was established [23]. There
was an inverse correlation between the number of injected SB28 cells and the median
survival [58]. The tumors can be classified as proneural, as indicated by the presence of
PDGF alterations, and they are weakly immunogenic, as is the case for human GBMs [23,
58]. High cellularity of the tumor area, invasion of the normal brain parenchyma and
areas of hypervascularization are also common characteristics of SB28 tumors and human
GBM. Very few infiltrating T cells can be found, in contrast to abundant macrophage and
microglial infiltration. Due to the absence of constitutive MHC-I and MHC-II expression,
SB28 tumors are less susceptible of T cell immunosurveillance compared to GL261 tumors.
SB28 tumors exhibit a very low mutational load (50-fold less than GL261 tumors), resulting
in only a few neoepitopes and explaining the weak immunogenicity. The mutated genes
were equally distributed across several pathways, but 10% of all mutations were found in
the PDGF signaling pathway, confirming the proneural classification [58].

3.8.2. Immunotherapeutic Approaches

The use of combined anti-PD-1 and anti-CTLA-4 was curative in over 50% of GL261
bearing mice, whereas it was ineffective in SB28 tumors [58]. This indicates that the
SB28 model is more representative to human disease where immune checkpoint blockade
provided unsatisfactory results so far [9,12]. Another study investigated the modulation
of CD40 signaling and cyclooxygenase (COX)-2 blockade in the SB28 and GL261 models.
The combination strategy promoted M1 cells, enhanced T cell effectors and prolonged
survival [23].

3.9. mGB2

The mGB2 tumor model was generated by Costa et al. [22] in 2019 by means of a
double knockout (DKO) of Pten and p53 specifically in NSCs. Histopathological analysis of
the developed tumors showed microvascular proliferation, necrotic areas and positivity
for markers such as GFAP, oligodendrocyte transcription factor (OLIG2) and Ki67, all
characteristics of human high-grade gliomas [22]. Subsequently, NSCs were isolated from
the DKO mice and grown in culture. Reinjection of the cells in adult C57Bl/6 mice resulted
in tumor induction 6–8 months later with a median survival of 170 days and with similar
characteristics as the original tumor [22]. In order to try to reduce the survival time, tumor
cells from a fully established invasive high-grade glioma (murine glioblastoma 0; mGB0)
were isolated. Cells were serially implanted for two in vivo passages (mGB1 and mGB2)
resulting in tumor development in all mice and a progressive shortening of the median
survival. Based on genomic and transcriptomic data, mGB0 can be classified as the classical
subtype, mGB1 as the proneural subtype and mGB2 as the mesenchymal subtype. mGB2
was selected as the most representative cell line compared to human disease with the worst
prognosis and many histopathological features of high-grade gliomas. Also similar to what
is observed in human GBMs, abundant myeloid cells and only few lymphocytes were
found [179]. No therapies have been tested so far.

4. Conclusions

Immunocompetent mouse models are essential in preclinical GBM research, especially
in the search for new immunotherapeutic strategies. When we compare all relevant mouse
models based on their stemness, immune characteristics and response to standard-of-
care treatment, it is clear that there is not one mouse model that perfectly recapitulates
the heterogeneity of a human GBM tumor. However, the overview we present here can
help in deciding which model is best suited for which type of research. For instance,
the translational impact of research involving immune checkpoint blockade might not
be recommended for a mouse model such as GL261 that is very sensitive to this type of
immunotherapy (which is not compatible with the clinical situation). A better choice would
be to use mouse models that show a certain degree of resistance to immune checkpoint
blockade such as KR158B, 005 GSC, Nfpp10-GBM or SB28. In addition, if we want to take
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into account any type of model-intrinsic response to certain treatments, it would be even
better to evaluate new treatment modalities in multiple models. Furthermore, different
tumor models might correlate to different patient populations of GBM. Therefore, the
heterogeneity of GBM would be better addressed in preclinical research if a heterogeneous
composition of tumor models is used. Interestingly, a recent study highlighted a variable
response to immune checkpoint inhibitors in syngeneic mice inoculated with the same
type of cells (GL261) [180]. If individual factors are relevant in a standardize situation such
as a syngeneic model, it is reasonable to expect that they play a dramatic role in actual
patients. For all these reasons, we believe that understanding and modelling patients’
heterogeneity in preclinical research will be one of the most relevant challenges in future
preclinical research for GBM.

Another outstanding question relates to how the genomic aberrations of each tumor
model correlate to aberrations in its microenvironment, and, even more importantly, how
this compares to the human situation. Indeed, ongoing trials for targeted therapies are
mainly based on genomic matching; however, the identification of those patient populations
with similar immunologic features as observed in the mouse models is still lacking, but
could be key in targeting the right approaches to the right patients.

Lastly, it is striking that only very few preclinical studies have incorporated the
standard-of-care regimen when testing new treatments. Moreover, in the limited cases
where standard-of-care is taken into account, this usually only consisted of RT and/or TMZ
and rarely included a surgical resection of the tumor, nevertheless the corner stone of the
clinical treatment. It is well known that GBMs at first diagnosis and at recurrence (therefore,
after the whole standard of care treatment) harbor important differences in term of molec-
ular features and druggable targets [181]. In this view, it is of paramount importance to
integrate in the pipeline of preclinical studies surgery, focal radiotherapy and TMZ-based
chemotherapy in order to model such longitudinal neoplastic evolution. A paradigm shift
is necessary: preclinical research should not only be aimed at discovering new treatments,
but also at identifying the most appropriate momentum for their administration in order
to maximize their effect in synergy with standard therapies.
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