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Abstract: Staphylococcus aureus is a clinically important pathogen that causes a wide range of human
infections, from minor skin infections to severe tissue infection and sepsis. S. aureus has a high
level of antibiotic resistance and is a common cause of infections in hospitals and the community.
The rising prevalence of community-acquired methicillin-resistant S. aureus (CA-MRSA), combined
with the important severity of S. aureus infections in general, has resulted in the frequent use of
anti-staphylococcal antibiotics, leading to increasing resistance rates. Antibiotic-resistant S. aureus
continues to be a major health concern, necessitating the development of novel therapeutic strategies.
S. aureus uses a wide range of virulence factors, such as toxins, to develop an infection in the host.
Recently, anti-virulence treatments that directly or indirectly neutralize S. aureus toxins have showed
promise. In this review, we provide an update on toxin pathogenic characteristics, as well as anti-toxin
therapeutical strategies.

Keywords: Staphylococcus aureus; pathogenicity; toxins; anti-toxin strategies; virulence

Key Contribution: This review described the main toxins produced by Staphylococcus aureus and
discussed anti-toxin strategies to fight these bacteria.

1. Introduction

Staphylococcus aureus continues to be one of the most involved bacteria in human
diseases. This bacteria is found in the normal skin microbiota of both animals and humans,
with a carriage rate between 20 and 30% in the healthy human population [1,2]. Abscesses,
lung infections, bacteremia, endocarditis, and osteomyelitis are all caused by S. aureus
infections in humans [3]. With the appearance of methicillin-resistant S. aureus (MRSA)
strains, the pathogenicity of S. aureus has become a problem in both health institutions and
community settings. MRSA is on the rise since its discovery in the early 1960s, although
there has been some stabilization or decline in European countries [4]. However, MRSA
remains an important opportunistic pathogen in Europe and the most frequently identified
worldwide [5]. MRSA is prevalent in several hospitals, especially those in Europe, Asia,
and the United States. The prevalence of CA-MRSA strains from community-acquired (CA)
infections among previously healthy individuals with few or no traditional healthcare-
associated (HA) risk factors for MRSA increased in the late 1990s.
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S. aureus infections rely on the production of surface proteins that initiate bacterial
adherence to host tissues, the secretion of extracellular toxins and enzymes that destroy host
cells and tissues, the avoidance or inactivation of the host immune system, and the growth and
expansion of bacteria in host cells and tissue [6]. Coagulase, hyaluronidase, deoxyribonuclease,
and lipase are some of the enzymes that S. aureus can synthesize to enhance its pathogenicity
and disseminate within the host [7]. Moreover, enterotoxins, toxic shock syndrome toxin 1
(TSST-1), exfoliative toxins (ETs), hemolysins, epidermal cell differentiation inhibitors (EDINs),
and Panton–Valentine leukocidin (PVL) have all been identified as extracellular protein toxins
that enhance pathogenicity [8]. Interestingly, some of these toxins were detected in MRSA
infections more frequently than non-MRSA cases [9–11].

Hospitalizations related to staphylococcal infections are frequent, increasing mortality
and health costs [12,13]. Moreover, S. aureus’ capacity to produce antibiotic-neutralizing
enzymes has exacerbated the issues associated with antimicrobial therapy, resulting in nu-
merous resistances to these drugs [14]. Antibiotic resistance enzymes play a significant
role in bacterial resistance to antibiotic pressure regarding diversity, evolution, and spread.
Antibiotic-producing bacteria need strategies to counteract the chemicals’ deadly effects, by
the production of degradative enzymes [14,15]. However, the selection pressure caused by the
widespread use of antibiotics in humans and animals propagated resistant bacterial clones.

Antibiotic resistance develops quickly in S. aureus, and the rise of multidrug-resistant
forms is a major problem. It has been reported that the annual mortality toll from antibiotic-
resistant diseases has surpassed 10 million and that by 2050, it will outnumber cancer
deaths [16]. The morbidity and mortality consequences reinforce the need to urgently
discover new effective solutions due to the inefficiency of traditional antibiotics. Therefore,
alternative treatments represent a promising field of investigation due to the lack of new
antibiotic classes. Different strategies have been conducted, notably based on drug design
with synthetic analogs, that could inhibit virulence factors. However, these studies have not
yet generated promising results due to toxicity and/or low bioavailability. New options
are now under study with a focus on biological molecules or compounds to interfere
with toxins or toxin-regulator genes, constituting a new generation of promising anti-
staphylococcal treatments [17–21].

This review outlines key properties related to the pathogenic roles of numerous
S. aureus toxins (Table 1), as well as up to date anti-toxin treatments (Table 2).

2. Toxins Involved in the Pathogenicity of S. aureus
2.1. Staphylococcal Pore-Forming Toxins (PFTs)

PFTs are a type of bacterial virulence factor found in a wide range of human diseases,
including S. aureus, which uses a variety of pore-forming cytotoxins (i.e., hemolysins,
leukotoxins, and phenol-soluble modulins) to create pores in the host cell membrane
causing cell lysis or to disrupt host cell actin cytoskeleton creating breaches in endothelial
cells (EDIN exotoxin).

2.1.1. Hemolysins

S. aureus encodes α-, β-, γ-, and δ-hemolysins, which are regulated by the acces-
sory gene regulator (Agr) and, principally, lyse erythrocytes by creating pores in host cell
membranes or dissolving cell wall components [22]. The best-studied virulence factor of
S. aureus is α-hemolysin, encoded by the hla gene, causing damage to a large variety of host
cells, such as epithelial cells, endothelial cells, erythrocytes, monocytes, and keratinocytes,
as well as causing cell membrane damage and apoptosis [22]. It is the prototype for the
small β-barrel class pore-forming cytotoxins that is secreted as a 33 kDa water-soluble
monomer that forms a prepore by assembling into one homoheptamer. Then, this pre-
pore matures as a β-barrel transmembrane aqueous channel [23]. Finally, the binding of
α-hemolysin to its host receptor ADAM10 stimulates ADAM10’s metalloprotease activity,
allowing it to cleave endothelial cadherin, compromising endothelial barrier function [24].
Cellular reactions, including the release of potent lipid mediators originating from the
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arachidonate cascade, are then activated by the transport of ions such as Ca2+ through the
pore, resulting in the target cells apoptosis [25].

The large majority of S. aureus strains (95%) possess the hla gene, irrespective of their
resistance to methicillin, without showing a specific repartition in S. aureus clones nor a
higher prevalence in certain regions of the world [26]. The role of the α-hemolysin toxin in
the development of severe infections, such as pneumonia, osteomyelitis, and bacteremia,
has been established in studies employing different experimental models infected with the
S. aureus USA300 strain [27,28]. Interestingly, even though most recent S. aureus strains
encode hla, data suggest that greater hla expression promotes pathogenicity. For instance,
in a rat model of pneumonia, the epidemic strain USA300, which supplanted USA400
to become the dominant community-acquired methicillin-resistant S. aureus (CA MRSA)
strain in the United States during the early 2000s, was reported to be significantly more
virulent and fatal than USA400 and was strongly correlated with a substantial increase in
hla expression [27,29].

Therefore, based on its crucial role in virulence, the α-hemolysin toxin is an ideal
target for the development of anti-toxin treatments against S. aureus.

2.1.2. Panton-Valentine Leukocidin (PVL)

Leukotoxins target white blood cells, such as neutrophils, monocytes, or macrophages [30].
Panton–Valentine leukocidin (PVL), LukDE, and LukAB (sometimes known as LukGH)
are all members of the bi-component Luk toxin family, with PVL presenting a 100-fold
higher leukocytotic activity than the others. This Luk toxin family includes 32–35 kDa
leukotoxins, which are encoded on the core genome or phage and oligomerize to form
a pore structure [31]. Leukotoxins’ leukocytotic activity is based on receptor interaction.
CCR5 on immune cells is the receptor for LukDE, whereas C5aR, C5L2, and CD11b are the
receptors for PVL and LukAB [32–34]. PVL is a toxin that is made of two parts: LukS-PV
and LukF-PV. These two components are excreted before assembling into a pore-forming
heptamer on neutrophil membranes, resulting in their lysis [35].

PVL is primarily linked to skin and soft tissue disease, with other types of invasive dis-
ease, such as pneumonia, musculoskeletal disease, and bacteremia, being far less common.
Infection with a PVL-positive strain does not appear to predict a poor clinical outcome for
staphylococcal pneumonia, musculoskeletal disease, or bacteremia in adults, but patients
with PVL-positive skin and soft tissue disease seem to be more likely to require surgical
intervention [36]. PVL is linked to skin and soft tissue infections in both MRSA and MSSA
strains, irrespective of the strain type [36–38].

Therefore, new treatments are required because the likelihood of infection with
PVL-positive S. aureus strains is rising, and some of these strains are MRSA that already
have limited treatment options.

2.1.3. Phenol-Soluble Modulins (PSMs)

PSMs are one of the most important and aggressive virulence factors in S. aureus
involved in a variety of staphylococcal pathogenesis, such as red and white blood cell lysis,
inflammatory response induction, and antimicrobial activities [39–41]. Moreover, while
PSMs are reported to be the most cytolytic and immunological modulating factors, they
all play a function in epithelial surface spreading and have also been associated with the
structuring and detachment of biofilms [42,43]. S. aureus produces a variety of PSMs, each
with unique cytolytic and antibacterial characteristics [41]. These toxins are a class of small
peptides with an amphipathic α-helical structure and surfactant-like characteristics [41].
PSMs are categorized into two subfamilies: (i) PSMα peptides that are 20–26 amino acids
long and contain PSMα1–PSMα4 and the δ-toxin and (ii) PSMβ peptides that are 43–44
amino acids in length and contain PSMβ1 and PSMβ2 [39]. The PSMα and β peptides
are encoded in the psmα and psmβ operon, while the δ-toxin gene is within the sequence
of RNAIII, the effector molecule of the Agr (accessory gene regulator) quorum-sensing
pathway [44,45]. PSMs attach to the formyl peptide receptor 2 (FPR2), which attracts innate



Toxins 2021, 13, 677 4 of 22

immune cells, such as neutrophils, macrophages, and dendritic cells [46,47]. As a result,
holes formed in the host cell membrane cause osmotic instability and cell lysis. PSMα

peptides have shown their great capacity to lyse human leukocytes and erythrocytes, with
PSMα3 having the most important activity. The δ-toxin, on the other hand, has a mild
cytolytic activity, while the PSMβ peptides are non-cytolytic [40].

PSMs are mainly present in highly virulent S. aureus, notably CA-MRSA. In vitro,
these strains show a greater expression of PSMs, particularly cytolytic PSMα peptides, than
that of hospital-acquired MRSA (HA-MRSA) strains [48]. In animal infection models, the
PSMα peptides generated by the CA-MRSA USA300 and USA400 have a significant impact
on the ability of virulent S. aureus to generate cutaneous infection and bacteremia [49–51].

Therefore, targeting PSMs for anti-staphylococcal treatment and drug development
would be beneficial since eliminating all PSMs’ cytolytic and pro-inflammatory activities
would lower their potency against host cells and possibly their overall contribution to S.
aureus disease progression.

2.1.4. Epidermal Cell Differentiation Inhibitor (EDIN) Exotoxins

To date, three forms of EDIN toxins have been identified: EDIN-A, EDIN-B, and
EDIN-C [52,53]. EDINs enter host cells and induce macroapertures, which are large and
temporary transcellular tunnels within endothelial cells, thus compromising the integrity
of the endothelium barrier, and then target and inhibit the small host protein RhoA [54,55].
This small GTPase is a critical regulator of the actin cytoskeleton in the host cell [56]. The
inhibition of RhoA has been shown in several cell biology studies to have a negative
effect on the cohesiveness of the epithelial and endothelium barrier, thus favoring bacterial
spread [54,57]. In addition, RhoA inhibition suppresses complement-mediated phagocyto-
sis [58]. Overall, a significant number of research exploring the effects of RhoA inhibition
indicate that EDINs secreted factors play an important role in S. aureus colonization and
bacterial host tissue invasion [59,60].

Numerous pathogenic strains of S. aureus, especially those from the European MRSA
lineage (ST80-MRSA-IV) [53], express EDIN or EDIN-like exotoxins [61–63]. The prevalence
of these genes in S. aureus is poorly described. Though, in diabetic foot ulcers, S. aureus
isolates were positive for edin (A and B) genes in 14 (7.2%) out of 195 patients [53]. A
prevalence of 14 % of EDIN-encoding genes (primarily edinC) was found in 256 S. aureus
isolates from diverse clinical sites of infection in Nice (France) [64]. Interestingly, the
association between PVL and EDIN among MRSA has been observed with a prevalence
varying between 12 and 100% [65].

EDIN exotoxins are thus important virulence factors in promoting bacterial colo-
nization and host tissue invasion, such as in diabetic foot infections, bacteremia, and
pneumonia [53,66,67].

2.2. Exfoliative Toxins (ETs)

Staphylococcal exfoliative toxins (ETs) are responsible for staphylococcal scalded skin
syndrome (SSSS), also known as Ritter’s disease, and characterized by dehydration, the
loss of superficial skin layers, and secondary infections [68]. Large areas of the body are
affected by SSSS, and the lesions are frequently sterile. Bullous impetigo is a skin disease
caused by the same exfoliative toxin that causes SSSS, generated by the same underlying
infection, and most commonly affects the face, hands, trunk, and buttocks. Pustules and
blisters grow near the original site of infection in bullous impetigo but not elsewhere on
the body as in SSSS. Because the blisters and pustules originate so close to the epidermis’
surface, they never grow larger than a few millimeters before perforating and expanding at
the border, where oozing and yellow crusting develop, and the infection might disseminate
to the surrounding skin when patients rub the rash [69]. Therefore, the only difference
between the two disorders is the level of skin damage. Bullous impetigo usually affects
young children and infants, although redness and rashes do not develop as they would in
SSSS because older children and adults possess neutralizing antibodies that inactivate the
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toxin [69]. SSSS also primarily affects newborns and infants, although it can also impact
adults with renal insufficiency or immunological deficiencies [68]

ETA, ETB, ETC, and ETD are the most common ETs, while ETA and ETB have received
most of the attention due to their link to SSSS [68]. ETs are encoded on various genetic ele-
ments, and their expression is controlled by the accessory gene regulator (Agr) [31,70]. ETs
exhibit glutamate-specific serine protease activity and target desmoglein 1 (Dsg1; desmoso-
mal intercellular adhesion molecule), a keratinocyte cell–cell adhesion protein [71]. ETs
bind to Dsg1, destroying desmosomal cell attachments and causing epidermal dissociation
of the human epidermis [72]. The rupture of epidermal layers allows bacteria to penetrate
the skin and induce blistering disorders, such as bullous impetigo and SSSS [73].

The prevalence of ETA in methicillin-resistant (MRSA) and methicillin-susceptible
(MSSA) strains does not differ considerably. According to recent studies, 4% of MSSA
strains possess the eta or etb gene, while about 10% of MRSA strains are eta positive [74,75].
Resistant strains, however, may pose a problem in the future. For instance, in Japan, issues
with treating etb-positive CA-MRSA infections that causes SSSS in healthy persons have
already been described [76,77].

2.3. Superantigens (SAgs)

S. aureus superantigens (SAgs) are the most effective T-cell mitogens. The mechanism
of action of SAgs varies from those of traditional peptide antigens. Antigen-presenting
cells (APCs) ingest and process conventional antigens [78]. T-cells are able to identify an
MHC class II-restricted antigenic peptide exposed on APC surfaces utilizing hypervariable
regions of T-cell receptor (TCR) α- and β-chains [78]. However, SAgs can directly link
TCR β-domains by exploiting conserved MHC class II structures displayed on APCs, then
triggering T-cell activation and proliferation without the use of antigen processing [79].
This causes pro-inflammatory cytokines, including IL-2, IFN-γ, and TNF-α, to become
overactive and release causing a multitude of side effects and symptoms, including the
possibility of multi-system organ failure that is specific to each superantigen [79].

SAgs include staphylococcal enterotoxins (SEs) that have emetic effects after oral adminis-
tration and the toxic shock syndrome toxin 1 (TSST-1) that does not have emetic properties [80].

2.3.1. Staphylococcal Enterotoxins (SEs)

SEs are 20–30 kDa released toxins that disrupt intestinal activity and induce staphylo-
coccal food poisoning (SFP), which is characterized by nausea, vomiting, abdominal pain,
and diarrhea without indications of toxic effects, such as fever or hypotension [81–83]. Based
on antigenic heterogeneity, more than 20 SEs (SEA—SElV) have been discovered [81,84,85].
Although the receptors involved in the emetic response to SEs have not been discovered,
clinical signs of SFP have been linked to inflammatory mediators, such as leukotriene B4 and
prostaglandin E2, both of which are produced in response to SEs [86,87]. The stomach and
upper small intestine present the most significant mucosa lesions, which are associated with
neutrophil infiltrates in the epithelium and lamina propria, whereas the jejunum exhibits
broken brush boundaries and enlarged crypts [88].

In some CA-MRSA infections, lethal sepsis, infective endocarditis, and kidney infec-
tions are critically dependent on a high level of staphylococcal enterotoxin C (SEC) [89].
While staphylococcal enterotoxin B (SEB) is associated with food poisoning, it has been
studied for potential utilization as an inhaled biological weapon [88].

2.3.2. Toxic Shock Syndrome Toxin 1 (TSST-1)

Unlike SEs, TSST-1 (22-kD) does not trigger emesis but stimulates the release of sub-
stantial amounts of pro-inflammatory cytokines from the host T-cells and macrophages [90].
This cytokine outburst causes toxic shock syndrome (TSS) symptoms, such as high fever,
rash, desquamation, hypotension, and hypovolemic shock, which can progress to multior-
gan failure [91].
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Given the growing development of MRSA infections associated with TSST-1 expres-
sion, it is therefore becoming more difficult to treat and may ultimately lead to death.

Table 1. Toxins secreted by S. aureus.

Toxin Biological Properties and Function Associated Disease References

α-hemolysin

- Pore-forming activity
- Lysis of erythrocytes, leukocytes,

epithelial cells, and fibroblasts
- Pro-inflammatory properties

- Pneumonia
- Sepsis [23,24,92,93]

Panton–Valentine
Leukocidin (PVL)

- Pore-forming activity
- Lysis of neutrophils, monocytes,

macrophages
- Pro-inflammatory properties

- Pneumonia
- Bacteremia
- Necrotizing fasciitis
- Skin and soft tissue infections

[30,31,94]

Phenol-Soluble Modulins (PSMs)

- Pore-forming activity
- Lysis of erythrocytes, neutrophils,

monocytes, bacterial protoplasts,
spheroplasts

- Pro-inflammatory properties
- Promote biofilm formation

- Bacteremia
- Skin infection [40,82,95,96]

Epidermal Cell Differentiation
Inhibitor (EDIN)

- Transcellular tunnel activity
- Breaches in endothelial cells

- Pneumonia
- Bacteremia
- Diabetic foot ulcer

[53,54,66]

Exfoliative Toxins (ETs)
- Serine protease activity
- Disruption of the cell–cell adhesions and

junctions of the epidermis cells

- Staphylococcal scalded skin
syndrome (SSSS) [68,97]

Staphylococcal Enterotoxins (SEs)
- Superantigen activity
- Pro-inflammatory activity

- Staphylococcal food poisoning
- Toxic shock syndrome [19,81,85]

Toxic Shock Syndrome Toxin 1
(TSST-1)

- Superantigen activity
- Pro-inflammatory activity

- Toxic shock syndrome [82,90,91]

3. Anti-Toxin Treatments

The growth and spread of antibiotic resistance among S. aureus strains emphasize the
imperative need for the development of alternative treatments that do not exert selective
pressure in order to avoid evolution toward multi-resistance, such as that experienced with
antibiotics. Interestingly, toxin-targeting therapy has already been effective against a variety
of pathogenic bacteria, including S. aureus [17]. The therapeutic treatments that neutralize or
interfere with the expression of staphylococcal toxins are detailed in this section.

3.1. Antibodies

Antibodies are one of the most important anti-virulence strategies for neutralizing
toxins. Unlike active immunization, which would necessitate multiple boosters and a
lengthy time to produce optimal immune responses, passive immunization would give
prompt treatment for infected patients, thereby reducing the severity of S. aureus infections.

For instance, attempts to neutralize the α-hemolysin toxin during the course of
human infection are underway and are based on substantial evidence for its participa-
tion in pathogenesis in murine models, as well as its putative importance in human
disease. MEDI4893 (suvratoxumab), an α-hemolysin-neutralizing monoclonal antibody
(mAb) formerly called LC10, is among the best-studied anti-virulence treatments against
S. aureus infections [21]. As described above, α-hemolysin interacts with the metallopro-
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tease ADAM10, which promotes oligomerization and pore formation [98]. By binding to
a highly conserved area of the α-hemolysin toxin, MEDI4893 inhibits its interaction with
ADAM10 as well as it self-oligomerization, thus neutralizing its action [98–100]. The treat-
ment of rabbits with MEDI4893 resulted in a considerable reduction in clinical outcomes,
according to Le et al. [101]. Similarly, Ortines et al. found that S. aureus-infected mice
previously passively immunized with MEDI4893 showed fewer wounds and decreased
bacterial counts than those of untreated controls in non-diabetic and diabetic mice [102].
Surewaard et al. recently revealed that α-hemolysin causes rapid platelet aggregation
and liver injury, resulting in multi-organ failure during S. aureus sepsis, but these conse-
quences could be avoided in mice treated with MEDI4893 [103]. MEDI4893 has passed
Phase 2 clinical studies for the prevention of S. aureus pneumonia in high-risk critical
care unit patients in 2020, and more recently, MEDI4893 showed efficacy and safety in
preventing S. aureus ventilator-associated pneumonia [104,105]. In addition, AR-301 and
ASN100 are two other neutralizing antibodies that have entered clinical trials. AR-301 is
an α-hemolysin-targeting monoclonal antibody that has recently entered Phase 3 tests as
an adjuvant therapy for S. aureus pneumonia [106], and ASN100 is a combination of two
monoclonal antibodies that neutralize six cytolytic toxins corresponding to α-hemolysin,
PVL, LukAB, γ-hemolysin AB (HlgAB), γ -hemolysin CB (HlgCB), and leukocidin ED
(LukED) [107]. Unfortunately, while ASN100 passed the Phase 1 clinical safety testing
by reducing tissue damage in a rabbit model of S. aureus pneumonia, the Phase 2 trial
was stopped due to inefficiency [107]. Although these trials involving MEDI4893 [108],
AR-301 [106], and the multivalent antitoxin ASN100 [107] were not statistically significant,
passive immunization was found to have some protective potential. For example, AR-30
shortened the time spent on mechanical ventilation, whilst MEDI4893 decreased hospital
and intensive care unit stay, as well as antibiotic treatment duration, while remaining safe
and well tolerated [106–108]. Foletti et al. identified antibodies against α-hemolysin from a
human donor-derived single-chain variable fragment (scFv) phage library [99]. LTM14, a
notable clone in this family, was transformed to a complete IgG and showed an unusually
high affinity for α-hemolysin. LMT14 offered protection against S. aureus cutaneous and bac-
teremia mice models of infection and also demonstrated therapeutic potential in a pneumonia
model [99]. In addition, when combined with the antibiotic linezolid, LTM14 showed im-
proved efficacy. This is essential because, in a therapeutic situation, passive immune treatment
will almost certainly be delivered in conjunction with the most suitable antibiotic [99].

While some studies have found an epidemiological link between PVL and CA-MRSA,
the presence of large levels of neutralizing antibodies did not provide resistance to PVL-
positive MRSA skin and soft tissue infections [109–111]. Despite this, PVL is still one of the
most important targets for anti-toxin drug research. PVL-specific antibodies are present in
available commercial human intravenous polyclonal immunoglobulin preparations (IVIg),
which decrease the cytopathic effects of PVL in a dose-dependent manner, most likely through
interfering with PVL–neutrophil interactions [112]. In 2015, Mairpady Shambat et al. showed
that IVIg abolished PVL and α-hemolysin-mediated cytotoxicity in epithelial cells in a human
lung tissue model [113]. Moreover, antibiotic therapy combined with IVIg anti-toxin treatment
significantly improved the situation of patients with acute necrotizing pneumonia caused
by PVL-positive S. aureus strains, demonstrating the effectiveness of IVIg in limiting disease
progression, particularly in highly lethal S. aureus infections linked to PVL production [114].
Moreover, in vitro humanized antibodies developed by Leventie et al. are able to disrupt PVL
binding to polymorphonuclear leukocytes and impede the development of new pores [115]. A
reduction in inflammatory reactions and tissue damage was also found in this non-infectious
rabbit model of endophthalmitis, with the tetravalent anti-PVL antibody [115].

In various in vivo models, antibodies targeting superantigens were shown to neutral-
ize these toxins and have been linked to protection [116]. The staphylococcal enterotoxin B
(SEB) is one of the most studied enterotoxins, and its designation as a bioweapon makes
it an interesting target to produce anti-toxin-neutralizing antibodies. Drozdowski et al.
generated and selected human monoclonal antibodies (HuMAbs) specific for SEB from
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human B-cell hybridomas [117]. In vitro, these antibodies exhibited biological activity
against SEB, and, HuMAb-154, which had the highest anti-SEB affinity, demonstrated both
preventive and therapeutic action in a mouse model of SEB-induced mortality [117]. In
addition, in numerous mouse models, including sepsis and cutaneous and deep tissue
abscesses, another monoclonal antibody against SEB, named 20B1, was demonstrated to be
protective against MRSA infection [118].

Therefore, all these therapy examples highlight the usefulness of antibodies as anti-
virulence treatments able to neutralize staphylococcal toxins.

3.2. Nanoparticles

Aside from the use of anti-toxin antibodies in anti-virulence therapies, researchers
have also shown the effectiveness of manufactured nanoparticles that imitate cell mem-
branes, such as liposomes, in sequestering bacterial toxins in vitro and in vivo [119]. For
example, Henry et al. demonstrated the ability of artificial liposomes to trap bacterial toxins
in vitro while maintaining the integrity of mammalian cells [120]. They also discovered
that administering artificial liposomes to mice during in vivo studies helped them recover
from septicemia induced by S. aureus, as well as protect them against pneumonia [120].
Because customized liposomes are made entirely of naturally occurring lipids, they are not
bactericidal and could be employed alone or in combination with antibiotics to treat bacte-
rial infections and reduce toxin-induced tissue damage [120]. Interestingly, Wolfmeier et al.
employed sphingomyelin liposomes, with or without cholesterol, to neutralize secreted
PSMs and other virulence factors in vitro during human blood or epithelial cell staphy-
lococcal infections, as well as in a murine dermonecrosis model [121]. Sphingomyelin
liposomes blocked cell lysis by PSMs, particularly PSM3, whereas cholesterol-containing
sphingomyelin liposomes preferentially trapped α-hemolysin [121]. A combination of both
liposome types was recently evaluated in a Phase I clinical trial against severe pneumococ-
cal pneumonia, although its utility in S. aureus pneumonia remains unknown. Furthermore,
targeting both PSMs and α-hemolysin at the same time remains a possibility, as PSMs have
been demonstrated to regulate α-hemolysin expression both in vitro and in vivo [23].

Recently, in response to S. aureus infection, exosomes (called “defensosomes”) with
increased ADAM10 receptors were discovered to be produced from host cells in a TLR-
dependent mode, resulting in α-hemolysin retention and a reduction in disease mortal-
ity [122]. Then, therapeutic poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles
covered with natural human erythrocyte membranes performed a comparable decoy effect
to fight infection and reduce the activity of α-hemolysin [123].

Moreover, similar to other anti-virulence strategies, the nanoparticle-based neutral-
ization and administration not only help to avoid severe bacterial infections but can also
participate in reducing the development of antibiotic resistance [124].

3.3. RNAIII-Inhibiting Peptides

In addition to the direct neutralization strategy outlined in the previous sections, tar-
geting S. aureus toxins can be carried out indirectly by affecting the regulatory processes
that govern virulence genes’ expression. This approach is based on the utilization of small
molecules, such as peptides, to target global regulators, such as the accessory gene regulator
Agr in S. aureus. Agr regulates the quorum-sensing pathway that controls whether S. aureus
develops a biofilm or remains planktonic, as well as toxin gene synthesis [44,125,126]. The
P3 promoter of the S. aureus quorum-sensing Agr system transcribes RNAIII, a stable
regulatory RNA that regulates the expression of a large variety of virulence factors [127].
Therefore, inhibiting RNAIII represents a promising strategy for reducing toxin expres-
sion as well as other virulence factors. When evaluated in cellulitis in in vivo models,
RNAIII-inhibiting peptides (RIP) were found to block agr RNA transcripts and impede
staphylococcal adhesion to mammalian cells, resulting in a decrease in S. aureus pathogenic-
ity [128–130]. In an MRSA sepsis model, two new RIP derivatives were recently discovered
to substantially extend mouse survival and reduce pathological damage without impacting
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bacterial viability [131]. Interestingly, in an S. aureus-induced sepsis mouse model, and
in association with clinically prescribed antibiotics, RIP increased the healing of wounds
and reduced mortality in comparison to antibiotics alone, thus confirming the potential
of combined therapies [132,133]. Moreover, PSMs have been specifically targeted using a
variety of methods to neutralize their pathogenic effect. In a mouse pneumonia model,
targeting PSMs indirectly by inhibiting the Agr system with an RNAIII-inhibiting peptide
resulted in a lower bacterial load and mortality [134].

3.4. Antimicrobial Peptides (AMPs)

Antimicrobial peptides (AMPs) have been known for several decades and are part
of the innate immunity of practically all living organisms, ranging from bacteria, insects,
and plants to vertebrates [135]. As of August 2021, the antimicrobial peptide database
(https://aps.unmc.edu/ (accessed on 23 August 2021)) contains 3273 antimicrobial pep-
tides from six kingdoms (369 bacteriocins/peptide antibiotics from bacteria, 5 from archaea,
8 from protists, 22 from fungi, 361 from plants, and 2424 from animals, including some
synthetic peptide records). AMPs have a wide spectrum of antibacterial, antifungal, an-
tiparasitic, and antiviral properties [135]. AMPs not only possess a large spectrum of
antibacterial activity but can also display anti-toxin activities [136,137]. Cathelicidins and
defensins are the two major categories of AMPs in humans. Human defensins are amphi-
pathic cationic peptides that are divided into two types: α- and β -defensins, and, to date,
four α-defensins have been identified from polymorphonuclear neutrophils (PMNs) [138].
Human neutrophil peptides (HNP1–HNP4) are part of the phagolysosome’s microbicidal
machinery that can be detected in the extracellular environment after degranulation [139].
PVL is thought to have a role in CA-MRSA pathogenesis by attracting and lysing PMNs at
the infection site, which induces tissue damage caused by the release of cytotoxic granule
constituents [140]. Interestingly, Cardot-Martin et al. found that HNP3 defensins, but
not HNP-1 or -2, substantially protect neutrophils from PVL-induced lysis by interacting
with LukS-PV and LukF-PV, which disables PVL’s pore creation function and reduces PVL
cytotoxic effects [141].

3.5. Natural Compounds

Natural product-based compounds that present anti-toxin properties correspond to a
promising therapeutical approach to treat S. aureus infections [18]. A modified cyclodextrin
compound, named IB201, is used to treat pneumonia. Cyclodextrins are cyclic oligosaccha-
rides that are made from starch or starch derivatives. Because of its spatial resemblance to
α-hemolysin, this compound was identified based on the prediction that it would prevent
α-hemolysin action with a high affinity [142]. Moreover, in mice S. aureus pneumonia
models, aloe-emodin, an active component from aloe vera, and apigenin, an active com-
pound from parsley, both exhibited sufficient protection [143,144]. Other compounds, such
as morin hydrate (also known as 2′,3,4′,5,7-pentahydroxyflavone), which is a flavonoid
present in Maclura pomifera (Osage orange), in Maclura tinctoria (old fustic), and in the
leaves of Psidium guajava (common guava), was discovered to disrupt the self-assembly
of the transmembrane pore of α-hemolysin in a mouse model of pneumonia and then to
decrease its hemolytic activity [145].

Oroxin A (ORA), oroxin B (ORB), and oroxylin A 7-O-glucuronide (OLG), three
oroxylin glycosides, are natural flavonoids found in strawberries, grapes, onions, apples,
Bignoniaceae plants, and other vegetables and fruits. These substances possess structural
similarities and bind to hemolysin’s stem domain, preventing it from transitioning from
monomer to oligomer in vitro and inhibiting its hemolytic action [146,147].

Friedman et al. showed that the pure olive chemical 4-hydroxytyrosol and the commer-
cialized olive powder Hidrox-12, containing 6% of 4-hydroxytyrosol and 6% of additional
phenolic compounds, were able to suppress the biological action of the superantigen entero-
toxin A (SEA) [148]. However, this effect still remains to be validated in animal models.

https://aps.unmc.edu/
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Solonamide B, a cyclodepsipeptide from the halotolerant bacterium Photobacterium
halotolerans, was one of the first natural inhibitors of the Agr signaling pathway to be
reported [149]. Solonamide B and its derivatives prevent the quorum-sensing peptide
AIP from interacting with AgrC. Interestingly, in CA-MRSA strains, such as USA300,
solonamide B strongly reduced the activity of α-hemolysin and the transcription of psma-
encoding PSMs resulting in an 80% reduction in toxicity of supernatants toward human
neutrophils and rabbit erythrocytes [150–152].

Isorhamnetin, chrysin, and puerarin have been shown to inhibit RNAIII transcription
and, hence, α-hemolysin expression, providing protection against MRSA and MSSA-
induced pneumonia [153–155]. Isorhamnetin (also known as 3′-methoxy-3,4′,5,7- tetrahy-
droxyflavone) is an O-methylated flavanol found in apples, blackberries, cherries, and
pears, as well as in medicinal plants and herbs [155]. Honey, propolis, the passion flow-
ers Passiflora caerulea and Passiflora incarnata, and Oroxylum indicum all contain chrysin
(5, 7-dihydroxyflavone) [156]. Puerarin is the main bioactive compound obtained from the
root plant Pueraria lobata Ohwi, also called Gegen in traditional Chinese medicine [157].

Naringenin, a flavanone found primarily in grapefruit, but also in a range of fruits
and herbs, has been shown to drastically lower the amounts of agrA and hla transcripts
in S. aureus culture as well as to inhibit hemolysin synthesis and protect mice from
S. aureus-induced pneumonia [158,159].

In vitro, Castanea sativa leaf extract 224C-F2 [160] and Schinus terebinthifolia berry
extract 430D-F5 [161] were found to inhibit agr expression, thus resulting in decreased
hemolysin synthesis and hemolytic activity. A pretreatment with 224C-F2 diminished
infection-induced ulcer sizes and substantially lowered morbidity in an in vivo model of
MRSA infection [160]. In addition, pretreatment with a single dose of 430D-F5 massively
reduced skin ulcer formation and mortality in a mouse model of MRSA skin infection [161].

Ambuic acid is a fungal product that targets AgrB activity and has been shown to
prevent hemolysin and RNAIII production in MRSA infections [162]. A single preventive
administration of ambuic acid totally prevented skin ulcer formation in a murine mouse
model [162]. Another fungal product, named omega-hydroxyemodin (OHM) and produced
by Penicillium restrictum, decreases Agr activity by disrupting AgrA binding to its promoter.
Importantly, OHM particularly inhibited the Agr pathway activation in a mouse model of
MRSA cutaneous infection without affecting the host [163,164].

Even though some of the molecular mechanisms of these natural compounds have yet
to be determined, they provide possible novel scaffolds for the development of successful
anti-virulence therapeutics toward S. aureus infection.

3.6. Vaccines

Despite numerous attempts, there is currently no vaccination against S. aureus. As
mentioned in the first section, S. aureus secretes a broad range of toxins during colonization
and infection of the host, which poses a challenge for vaccine development.

There have been several studies to investigate the efficacy of α-hemolysin as a vaccine
agent. Indeed, H35L, a mutant isoform of α-hemolysin, was discovered to have minimal
hemolytic action [165]. In a mouse pneumonia model, this inactivated toxin (toxoid) was
studied in two separate models and found to be efficacious through both active vaccination
and the development of protective rabbit anti α-hemolysin antibodies; despite this fact, no
human trials have been conducted to date [166].

IBT-VO2 is a multivalent vaccine currently under investigation. α-hemolysin, PVL
LukS, LukF, LukAB, enterotoxins A and B, and toxic shock syndrome toxin 1 toxoids are
all included in this heptavalent vaccine [167]. The multi-subunit vaccine generates an
antibody response that is cross-reactive with 12 to 15 S. aureus toxins and gives protection
in different mice and rabbit infection models due to structural similarities [167]. Recently,
IBT-VO2 entered a Phase I clinical study after completing the encouraging pre-clinical
phase, and as a result, received additional funding to help it progress.
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Previous studies in animal models suggested that PVL subunits could be useful
vaccines, but these attempts have yet to be converted into human trials [168,169]. However,
for the creation of the StaphVax vaccine, recombinant PVL subunits were exploited (Nabi
Biopharmaceuticals, Alpharetta, GA), but this vaccine failed in Phase 3 clinical testing [170].
However, some of the vaccine antigens, including PVL, were recycled into a new vaccine
called PentaStaph, which was acquired by GlaxoSmithKline Biologicals (GSK) [171,172].

In mice, an inactive isoform of the staphylococcal enterotoxin B (SEB) was cloned
into an Lactococcus lactis strain and tested as an oral vaccine. The vaccination was able to
generate a significant antibody response, thus resulting in improved survival of infected
mice [173]. Another vaccine against this SEB toxin, named STEBVax, was also generated
and corresponds to a recombinant isoform that impedes the toxin from interacting with the
major histocompatibility complex (MHC) class II [174]. If effective, this vaccine could be
useful as a polyvalent S. aureus vaccine in general.

In another study, the injection of TSST-1-specific antibodies to treat toxic shock syn-
drome has been found to reduce mortality in a septic mouse model of infection [175].
Moreover, a modified TSST-1 antigen was also exploited to create an attenuated TSST-1
vaccine able to prevent infection during sepsis in mice [175]. Subsequently, a recombinant
TSST-1 variant vaccine was created and tested in a Phase I clinical study, which was quite
well tolerated, and a Phase II trial was engaged [176,177].

Even though numerous vaccine candidates have demonstrated protective efficacy in
preclinical or early clinical investigations as detailed above, no vaccine has been authorized
to date for human use.

3.7. Others

Eukaryotes, archaea, and bacteria create extracellular vesicles (EVs), which are lipid
bilayers that form lumen-containing spheres with diameters ranging from 20 to 500 nm.
EVs contain a variety of proteins, polysaccharides, nucleic acids, and lipids. EVs from
Gram-positive bacteria carry physiologically active toxins, display cytotoxicity, and stimu-
late proinflammatory mediators, thus having a significant role in host–pathogen interac-
tions [178]. Unfortunately, the toxicity of staphylococcal EVs limited their use as a vaccine
platform. However, in a recent study, Wang et al. engineered EVs with unique features in
the S. aureus USA300 strain, representative of the dominant CA-MRSA clone in the United
States [179]. The originality of this study was to consider that S. aureus EVs could be used
as a vaccine platform if their cytotoxicity was reduced. Therefore, EVs over producing
Hla- and LukE-modified toxins that possess the capacity to be immunogenic without
being toxic were engineered in order to stimulate the production of toxin-neutralizing
antibodies. Immunization with engineered EVs showed considerable protection in an
S. aureus lethal sepsis model [179]. Though the efficiency of these vesicles as a novel vaccine
platform against different S. aureus strains and in additional infection models has yet to be
determined, they do represent an attractive promise.

Moreover, novel approaches have been developed to combat enterotoxins. In an
in vitro T-cell experiment, Mattis et al. developed a yeast display technology to create a
soluble T-cell receptor variable domain variation capable of neutralizing both SEC and SEB
enterotoxins. In different rabbit models, including endocarditis and necrotizing pneumonia,
this variation was proven to be effective in reducing the infection [180].
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Table 2. Summary of the anti-toxin treatments strategies.

Treatment Name Target References

Antibodies

MEDI4893 (suvratoxumab) α-hemolysin [98–100]

AR-301 α-hemolysin [106]

ASN100

α-hemolysin, Panton–Valentine
leukocidin (PVL), LukAB,
È-hemolysin AB (HlgAB),
È-hemolysin CB (HlgCB), leukocidin
ED (LukED)

[107]

LTM14 α-hemolysin [99]

IVIg α-hemolysin, PVL [112–114]

HuMAb-154 Staphylococcal enterotoxin B (SEB) [117]

20B1 Staphylococcal enterotoxin B (SEB) [118]

Nanoparticles

Sphingomyelin liposomes Phenol-soluble modulins (PSMs) [121]

Cholesterol-containing sphingomyelin liposomes α-hemolysin [121]

Poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles
covered with natural human erythrocyte membranes α-hemolysin [123]

RNAIII-inhibiting peptides RNAIII-inhibiting peptides (RIP) agr RNA transcripts [128–130]

Antimicrobial peptides HNP3 PVL [141]

Natural compounds

Cyclodextrin IB201 α-hemolysin [142]

Aloe-emodin α-hemolysin [144]

Apigenin α-hemolysin [143]

Morin hydrate
(2′,3,4′,5,7-pentahydroxyflavone) α-hemolysin [145]

Oroxylin glycosides
(oroxin A (ORA), oroxin B (ORB), and oroxylin A
7-O-glucuronide (OLG))

α-hemolysin [146,147]

4-hydroxytyrosol
Hidrox-12 Staphylococcal enterotoxin A (SEA) [148]

Solonamide B Quorum-sensing peptide (AIP) [149–152]

Isorhamnetin
(3′-methoxy-3,4′,5,7-tetrahydroxyflavone) α-hemolysin [155]

Chrysin
(5, 7-dihydroxyflavone) α-hemolysin [156]

Puerarin α-hemolysin [157]

Naringenin agrA and hla expression [158,159]

224C-F2 (Castanea sativa leaf)
430D-F5 (Schinus terebinthifolia berry) agr expression [161]

Ambuic acid AgrB activity, RNAIII expression [162]

Omega-hydroxyemodin (OHM) AgrA [163,164]

Vaccines

H35L α-hemolysin [165,166]

IBT-VO2
α-hemolysin, PVL, enterotoxins A and
B, toxic shock syndrome toxin 1
(TSST-1)

[167]

StaphVax PVL [170]

STEBVax SEB [174]

Attenuated TSST-1 vaccine TSST-1 [175–177]

Others
Extracellular vesicles (EVs) α-hemolysin, LukE [181]

Yeast display technology to create a soluble T-cell
receptor SEC, SEB [180]
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4. Conclusions and Future Directions

The problem of antibiotic resistance has prompted scientists around the world to
explore alternatives for effective treatments. Because antimicrobial resistance is a complex
phenomenon, the solution to this problem comprises a variety of techniques aimed at
reducing the factors that contribute to the establishment of resistance and spread. These
strategies require the development of novel therapeutic drugs that work on principles
distinct from those currently available for antibiotics. Bacterial toxins, as detailed in this
review, are directly involved in disease outcomes. Anti-toxin therapies have been proposed
as a promising alternative in this regard, with the intention of reducing pathogen virulence
without exposing pathogens to selective pressure.

Anti-toxin therapies target diseases that are the most dangerous to patients, such as
hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia,
osteomyelitis, sepsis, and endocarditis, and have the capacity to enhance chances of
survival. One of the benefits of these anti-toxin treatments is their use in conjunction with
antibiotics to help fight the most dangerous infections. Furthermore, anti-toxin therapies
contribute to significantly reduce the bacterial load, most likely by interfering with the
bacterial strategies used to multiply involving secreted toxins [182]. Moreover, anti-toxin
treatments do not place selective pressure on bacterial growth since they neutralize the
pathogen rather than killing it, which could provide a long-term solution to the resistance
issue. However, the potential of anti-toxin treatments to counter drug resistance without
putting severe selective pressure on the bacterial population needs more investigation.

Even though efforts to develop innovative anti-toxin compounds have had varying
levels of success, the potential leads need pharmacology and toxicology evidence. For
extensive mechanistic study, additional studies should concentrate on a few very promising
candidates. The anti-toxin treatments potential negative effects must also be considered.
Because of the toxins’ extensive combination and cross-reactivity, efforts to interfere at
the host–toxin level necessitate robust anti-toxin efficacy. Therefore, staphylococcal toxin
biology requires more research to decipher the specific toxin roles, the differences in
expression or genetic existence of toxins all over strain lineages, and the importance of
specific toxins along various clinical strains. Another drawback of anti-toxin compounds
is their possible limited spectrum efficacy, as these treatment candidates only specifically
target virulence-mediated pathways in certain S. aureus strains, thereby limiting their
general clinical use.

Moreover, it is clear that evaluating the effectiveness of anti-toxin compounds is
delayed by the lack of therapy models, which may more precisely mimic the clinical
condition in humans. Thus, developing such models represents an essential future direction.
Human clinical trials will always be required to prove the success of a treatment. However,
even though animal models remain necessary to decipher fundamental host–pathogen
interactions and even though many potentially promising S. aureus anti-toxin therapeutics
exist, most have failed in human trials or have not been tested. Therefore, the development
of humanized mice with engrafted human immune cells for instance could help improve
the translatability of animal investigations to human trials in the future [183–185]. This
strategy will improve animal models, thus helping in deciding which treatments should
proceed to clinical trials.

It is also necessary to specify which criteria will be used to assess the anti-virulence
therapy’s efficacy, as well as which types of infections the treatment is most suited for.
For instance, a defective Agr–quorum sensing system appears to be favorable for the
pathogen in S. aureus chronic infections or bacteremia [186]. Furthermore, it was recently
demonstrated that a dysfunctional Agr system could facilitate antibiotic resistance to
gentamicin and ciprofloxacin [187]. Moreover, phenol-soluble modulin toxins are known
to be implicated in the regulation of S. aureus persister cell populations [188]. Then, as the
Agr system oversees PSMs’ production, a misfunctioning system is likely to suppress PSM
expression, favoring the formation of persister cells resistant to antibiotics.
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To summarize, a tremendous amount of work has investigated S. aureus toxins, expand-
ing our understanding of their mode of action and involvement in pathogenesis, and several
promising therapies have resulted from various treatment strategies. However, improved
therapeutical models need to be developed to validate most of these anti-toxin treatments.
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