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Abstract
Background. Postoperative pediatric cerebellar mutism syndrome (pCMS) is a common but severe complication 
that may arise following the resection of posterior fossa tumors in children. Two previous studies have aimed to 
preoperatively predict pCMS, with varying results. In this work, we examine the generalization of these models and 
determine if pCMS can be predicted more accurately using an artificial neural network (ANN).
Methods. An overview of reviews was performed to identify risk factors for pCMS, and a retrospective dataset was 
collected as per these defined risk factors from children undergoing resection of primary posterior fossa tumors. 
The ANN was trained on this dataset and its performance was evaluated in comparison to logistic regression and 
other predictive indices via analysis of receiver operator characteristic curves. The area under the curve (AUC) and 
accuracy were calculated and compared using a Wilcoxon signed-rank test, with P < .05 considered statistically 
significant.
Results. Two hundred and four children were included, of whom 80 developed pCMS. The performance of the ANN 
(AUC 0.949; accuracy 90.9%) exceeded that of logistic regression (P < .05) and both external models (P < .001).
Conclusion. Using an ANN, we show improved prediction of pCMS in comparison to previous models and con-
ventional methods.

Key Points

• We identify predictive and reproducible anatomical risk factors of cerebellar mutism 
syndrome.

• Cerebellar mutism syndrome can be accurately predicted using an artificial neural 
network.

Improved prediction of postoperative pediatric 
cerebellar mutism syndrome using an artificial neural 
network
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Brain tumors are the most common solid tumors of child-
hood and the leading cause of cancer-related deaths in 
children.1 The vast majority (60–70%) arise within the poste-
rior fossa, an area dense with eloquent neural parenchyma, 
and have an outcome dependent upon the extent of sur-
gical resection.2,3 As such, the neurosurgeon must take care 
to balance the prognostic benefits of decompression and 
cytoreduction with the risk of incurring long-lasting neu-
rological sequelae.

Despite recent advances in surgical management, peri-
operative imaging, and adjuvant therapies, postoperative 
pediatric cerebellar mutism syndrome (pCMS) remains 
an enduring complication of posterior fossa tumor resec-
tion, with a reported prevalence of 8–39%.4,5 Characterized 
by a delayed onset transient mutism, emotional lability, 
ataxia, and hypotonia, pCMS is thought to arise secondary 
to proximal damage to the efferent cerebellar pathways 
during surgery.6,7 Children typically recover slowly over 
several months, though their speech may never return 
to normal, and they may be late to reach developmental 
milestones—requiring intensive physiotherapy and speech 
and language therapy throughout the course of their re-
covery.8,9 Long-term neuropsychological deficits have also 
been reported in children with pCMS, with sparse recovery 
and the potential for further neurocognitive decline during 
development.10

Machine learning is a form of artificial intelligence in 
which algorithms improve their performance with experi-
ence (training). Given their ability to identify complex pat-
terns in large datasets, such computational methods have 
the potential to improve outcome prediction beyond an in-
dividual surgeon’s clinical intuition.11 In light of the severity 
and long-term impact of pCMS, the accurate prediction of 
its onset will enable clinicians to counsel families preop-
eratively, as well as to formulate postoperative manage-
ment plans, and ultimately, to implement risk-mitigating 
measures toward the prevention of pCMS, with consider-
ation of less aggressive resective surgery for children at 
greatest risk.

Two previous studies have attempted to preoperatively 
predict pCMS using machine learning.12,13 However, these 
are trained on small datasets, employ quite restricted 
models that permit little interaction between input risk 

factors, and lack external validation. Our aim is to interro-
gate the external validity of these models and to improve 
the prediction of pCMS by training and validating an arti-
ficial neural network (ANN) on a large series of operated 
children with primary posterior fossa tumors. We hypothe-
sized that an ANN would improve the prediction of pCMS 
as it considers implicit and complex nonlinear interactions 
between input risk factors. Indeed, the efficacy of this 
learning framework on relatively small datasets within 
neurosurgery has recently been shown.14,15

Materials and Methods

This study was approved by the institutional review boards 
of all collaborating institutions prior to commencement.

Defining Risk Factors for pCMS

An overview of reviews was performed in accordance with 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) statement to identify risk factors 
for pCMS.16

Inclusion criteria.—We included review articles written in 
the English language that report clinical and radiological 
features predictive of pCMS in children (≤18 years).

Databases, search strategy, and study selection.—Ovid 
Medline and Embase were searched using the following 
strategy: (akinetic mutism) OR (cerebellar cognitive and 
affective syndrome) OR (CCAS) OR (Schmahmann’s syn-
drome) OR (posterior fossa syndrome) OR (transient cer-
ebellar mutism) OR (transient cerebellar mutism and 
subsequent dysarthria) OR (cerebellar mutism) OR (cere-
bellar mutism syndrome) OR (post-operative paediatric 
cerebellar mutism syndrome) OR (post-operative pediatric 
cerebellar mutism syndrome) OR (POPCMS) OR (POP-
CMS) OR (CMS) OR (pCMS).

Titles and abstracts were screened to identify articles 
that met the inclusion criteria (Supplementary Figure 1). 

Importance of the Study

Postoperative pediatric cerebellar mutism syn-
drome (pCMS) is a severe complication of child-
hood posterior fossa tumor resection. Despite 
its relatively high incidence, the syndrome’s 
etiology and predisposing risk factors are 
poorly understood. As such, not only is the pre-
diction of pCMS clinically challenging, but this 
knowledge gap represents a significant area of 
uncertainty for patients giving consent prior 
to surgery and for clinicians developing post-
operative management plans. Our study, the 
first to implement an artificial neural network 

for the prediction of complications in pediatric 
neuro-oncology, demonstrates that pCMS can 
be accurately and reproducibly predicted. By 
interpreting logistic regression coefficients, 
we also identify the neuroanatomical features 
most predictive of pCMS. It is our hope that 
this model will facilitate the routine clinical pre-
diction of pCMS and act as a novel clinical deci-
sion-making tool: permitting the consideration 
of less aggressive resective surgery in combi-
nation with adjuvant therapies for patients at 
greatest risk.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac003#supplementary-data
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A  full-text review of these articles was then performed, 
and reported risk factors were recorded (Supplementary 
Table 1).5,8,9,17–62

Refinement of risk factors.—Several risk factors were ex-
cluded prior to data collection: patient socioeconomic 
status, handedness, and preoperative language and/or be-
havioral impairment could not be reliably determined from 
retrospective medical records. Surgical risk factors such 
as the extent of resection, surgical approach, and use of a 
cavitron ultrasonic surgical aspirator were also excluded, 
as they are determined intraoperatively rather than preop-
eratively and so cannot be reliably included in a preopera-
tive risk prediction model.

Features did not have to reach a certain risk threshold 
to be included. Given our relatively poor understanding of 
the pathophysiology underlying pCMS, a key advantage of 
using an ANN for prediction is that the model itself selects 
and weights the most predictive features.

Patient Selection and Data Curation

The Strengthening Reporting of Observational Studies 
in Epidemiology (STROBE) statement was used to 
inform the collation of our retrospective cohort.63 
Modeling methods and results are reported in line with 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
statement.64

A prospectively maintained neuro-oncology database 
was searched for all patients with primary posterior fossa 
tumors who underwent craniotomy and resection at our 
institution between January 1, 2002 and January 1, 2021. 
All patients received treatment as per local guidelines in-
cluding case discussion within a dedicated pediatric neuro-
oncology multidisciplinary team.

Clinical notes were interrogated for demographics and 
relevant surgical risk factors. pCMS was diagnosed in pa-
tients meeting the 2016 consensus criteria: transient re-
duced speech or mutism and emotional lability of delayed 
onset following resection of their posterior fossa tumor.43 
Preoperative magnetic resonance imaging (MRI) of the 
neuraxis was reviewed independently by 3 observers (J.S., 
U.L., and K.M.) blinded to outcome, with imaging features 
and measurements recorded as per our defined risk fac-
tors. All imaging was obtained electronically as part of 
routine clinical care and did not undergo any subsequent 
modification. Compression, signal change, and infiltra-
tion were assessed on all sequences and confirmed on 2 
planes. Interobserver agreement was calculated for qual-
itative variables using Fleiss’s κ, with the minimum cutoff 
for inclusion defined as κ ≥ 0.60, and for quantitative vari-
ables, using the intraclass correlation coefficient with the 
same inclusion cutoff.65 Table 1 defines the variables we 
selected for data collection in addition to the interobserver 
reliability achieved. Due to their low interobserver agree-
ment, risk factors involving the dentate, red, and inferior 
olivary nuclei were not included in the model. All other 
variables were included in both the ANN and logistic 
regression models.

To define the final inputs of our model, we used the 
modal value for qualitative variables and the mean value 
for quantitative variables. Missing data were encoun-
tered at random in 2 instances and was handled in the 
following manner:

 1.  Children without apparent diffusion coefficient 
(ADC) values on preoperative MRI. The ADC rep-
resents a quantitative indicator of the diffusion 
of water molecules within a tissue and has well-
reported ranges in the literature corresponding 
to tumor type.67 Hence, the mean ADC was cal-
culated for each tumor type in our cohort for 
children with and without pCMS. This mean ADC 
was then used in place of missing values (n = 36).

 2.  Children who underwent cerebrospinal fluid di-
version prior to preoperative MRI and tumor re-
section. In these cases, as children have reached 
the threshold for neurosurgical intervention, they 
were assumed to have a hydrocephalus severity 
score of 3 and their Evan’s index was imputed as 
the mean of children with this score who did and 
did not develop pCMS (n = 12).

In order to increase the number of patients included with 
pCMS and, therefore, the potential accuracy of our model, 
additional patients with pCMS were included from 2 collab-
orating institutions subject to identical inclusion criteria. 
Preoperative imaging from these institutions was read in 
consensus between J.S., K.M., and the collaborating au-
thor (S.M.T. or D.M.M.). As a high interobserver reliability 
was achieved across 3 observers on our large single-center 
cohort, and external data constituted less than 10% of all 
included patients, a consensus agreement between 3 au-
thors was deemed sufficient for the inclusion of this data. 
In areas of disagreement, the modal value was taken (ie, 
agreement between a minimum of 2 of the 3 observers).

ANN Theory

We implement a previously reported ANN with proven 
accuracy within neurosurgery.15 A  complete descrip-
tion of our computational approach is presented in 
Supplementary Material.

In brief, we used nested cross-validation: the inner loop 
performed evolutionary hyperparameter optimization 
across 100 repeats of 10-fold stratified cross-validation, 
while the outer loop evaluated the network across 10 re-
peats of 10-fold stratified cross-validation. The final model 
was a stacked ensemble of 1000 constituent ANNs produ-
cing a single output. The loss function minimized during 
training was the mean squared error between the ANN 
prediction and the patient’s clinical outcome. The fitness of 
each solution was defined by the average validation error 
of the set of ANNs. Early stopping was applied to improve 
generalization and to prevent overfitting.

A cross-validated paired Wilcoxon signed-rank 
test was used to interrogate the statistical signif-
icance of the difference in performance between 
(1) our ANN and logistic regression and (2) our 
ANN and the Liu et  al. and Dhaenens et  al. models. 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac003#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac003#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac003#supplementary-data
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Averaged receiver operating characteristic (ROC) 
curves were created for these comparative models 
using 10 repeats of 10-fold stratified cross-validation 
(the outer loop of nested cross-validation). The accu-
racy of the final models was determined by comparing 
the ANN prediction with the patient’s clinical out-
come. The area under the curve (AUC) was calculated 
for each of the ROC curves and evaluated to compare 
the discriminatory power of the models. To evaluate 
the fit of the models, sensitivity, specificity, negative 
and positive predictive values were calculated using 
the same approach. In all instances, P < .05 was con-
sidered statistically significant.

Results

Patient Sample Characteristics

A retrospective review of medical records identified 426 
children who underwent resection of primary posterior 
fossa tumors at our institution, of whom 66 (15.5%) de-
veloped pCMS. Four patients with pCMS were excluded 
due to a lack of preoperative MRI. Eighteen patients 
with pCMS were added from collaborating centers. Our 
final dataset consisted of all pCMS patients with preop-
erative MRI (n = 80) in addition to 124 patients without 
pCMS randomly sampled from the remaining dataset 
via a random number generator. The decision to train 
our model on a subsample of 124 patients who did not 
develop pCMS rather than the total 360 was pragmatic 

and constraint-based. Indeed, given the high reported ac-
curacy of our ANN as a neurosurgical predictive model 
when trained on a dataset of 135 patients, training on 
this large subset should not negatively impact the perfor-
mance of the ANN.15

Patient demographics, tumor characteristics, and sur-
gical management are summarized in Table 2.

Network Selection

The mean network structure had 3 layers: a 55-neuron input 
layer of risk factors for pCMS; one hidden layer containing 
8 neurons; and an output layer containing one neuron rep-
resenting the probability of a patient developing pCMS.

The optimal mean network hyperparameters defined by 
evolutionary hyperparameter optimization are detailed in 
Supplementary Table 2.

Network Evaluation

The comparative performance of the ANN is reported in 
Figure 1 and is illustrated as the mean ROC curve.

The AUC and accuracy of the ANN exceeded that of 
any other model (P < .05 vs logistic regression; P < .001 
vs Liu et al. and Dhaenens et al.). The ANN also outper-
formed all models in terms of its sensitivity and nega-
tive predictive value (P < .001 in all instances). Though 
the specificity and positive predictive value of the ANN 
were not significantly different to logistic regression and 
worse than the Dhaenens et al. model, the ANN’s more 

  
Table 2. Patient Demographics With Descriptive Statistical Analysis Using t-tests for Continuous Variables and Chi-Square Tests for Categorical 
Variables

Cohort P 

 All pCMS Non-pCMS 

Number of patients enrolled 204 80 124 <.00001

Mean age (SD) (years) 5.92 (3.88) 5.19 (3.69) 6.17 (4.09) .20

Median age (interquartile range) (years) 5.12 (2.61–8.64) 4.46 (2.63–7.09) 5.74 (2.52–8.90) —

Male:female ratio 1.58: 1 2.20: 1 1.30: 1 .08

Tumor type Medulloblastoma 108 48 60 .18

Pilocytic astrocytoma 49 16 33

Ependymoma 31 9 22

Atypical teratoid rhabdoid tumor 10 5 5

Other 6 2 4

Surgical approach Transvermian 102 44 58 .02

Telovelar 69 29 40

Other 11 0 11

Unknown 22 7 15

Extent of resection Gross total resection 146 56 90 .55

Subtotal resection 51 22 29

Unknown 7 2 5

pCMS, pediatric cerebellar mutism syndrome. Significant values (P < .05) are given in bold.

  

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac003#supplementary-data
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substantive improvements in sensitivity and negative 
predictive value rendered it a more accurate predictive 
test for pCMS.

The most predictive neuroanatomical features of pCMS 
as determined by logistic regression coefficients are 

illustrated in Figure 2. Notably, tumoral involvement of 
structures associated with the dentatorubrothalamocortical 
tracts is shown to heighten the risk of developing pCMS, 
thereby lending further support to the implication of this 
tract in the pathophysiology of pCMS.9,20
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Figure 1. (A) Mean receiver operating characteristic (ROC) curves derived from the prediction of pediatric cerebellar mutism syndrome (pCMS) 
using an artificial neural network (ANN), logistic regression (LR), and external models. (B) Mean classification performance parameters were 
achieved using 10 × 10 stratified cross-validation to predict pCMS on the ANN, LR, and external models. Optimal metrics are highlighted in blue. 
The ANN performed better than Liu et al.’s model across all metrics (P < .001). It also performed better than Dhaenens et al.’s model in terms of the 
AUC, accuracy, sensitivity, and negative predictive value (P < .001), though performed worse in terms of specificity and positive predictive value 
(P < .001). Against logistic regression, the ANN performed better in terms of the AUC and accuracy (P < .05) as well as the sensitivity and negative 
predictive value (P < .001), though the specificity and positive predictive value did not reach statistical significance. AUC, area under the curve; 
PPV, positive predictive value; NPV, negative predictive value.
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Figure 2. Distribution of logistic regression coefficients over cross-validation folds. Arrows indicate whether a risk factor is protective or predictive 
of pediatric cerebellar mutism syndrome (pCMS). Coefficients represent the log odds ratio of developing pCMS given a certain risk factor. The log 
odds of developing pCMS for each tumor type are relative to the modal class (medulloblastoma), while the log odds of developing pCMS given com-
pression, signal change, or infiltration of a certain structure are relative to the midline (eg, compression of the right cerebellar hemisphere is protective 
in comparison to midline cerebellar compression). Of particular note, the log odds of developing pCMS given involvement of the right/left cerebellar 
peduncles are relative to involvement of a set of hypothetical midline cerebellar peduncles. In consequence, involvement of the right/left cerebellar 
peduncles appears falsely protective for pCMS—it is only protective in comparison to this set of (more predictive) hypothetical midline cerebellar ped-
uncles. This is intuitive as midline tumors are more commonly implicated in pCMS, and so they are more likely to affect a set of hypothetical midline 
cerebellar peduncles. Hence, involvement of the cerebellar peduncles does significantly predispose a child to developing pCMS, with more midline 
involvement indicative of more severe risk.
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Discussion

This is the first study to report the use of an ANN for 
the prediction of complications in pediatric neuro-
oncology. This is also the first study to implement an 
ANN for the prediction of pCMS and to demonstrate 
improved accuracy of the ANN over and above existing 
risk prediction models. Though the clinical significance 
of this improved accuracy in comparison to logistic re-
gression remains uncertain, given the severity of pCMS 
and the relatively high volume of posterior fossa tu-
mors encountered within pediatric neurosurgical prac-
tice, the increase in accuracy achieved may endow 
some benefit.

It is our hope that the model (available as an online 
calculator: https://amarcu5.github.io/cerebellar-mutism-
prediction/calc.htm) will act as a useful adjunct to surgical 
decision making and as a counseling tool for children and 
their families when giving informed consent prior to sur-
gery. Figure 3 highlights the potential utility of our model 
in clinical practice by illustrating ANN predictions for 3 pa-
tients: 1 who developed pCMS and 2 who did not.

Since 1990, survival rates for children with 
medulloblastoma, the most common tumor type im-
plicated in pCMS, have remained relatively constant, 
in part due to the increasing importance of balancing 
the side effects of aggressive therapy (such as pCMS) 
with the potential for improved outcome.68 A large ret-
rospective study of 787 children with medulloblastoma 
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has shown that, though gross total resection remains 
the gold-standard surgical outcome, children left with 
minimal residual tumor following subtotal resection 
can expect similar outcomes.69 Hence, in the context 
of continuing uncertainty as to the oncological impor-
tance of complete resection in medulloblastoma, an 

accurate predictive model such as ours may permit 
the development of a clinical trial in which limited in-
itial surgical resection, followed by adjuvant therapy 
and late second-look surgery of a smaller tumor, 
may be considered for children at very high risk of 
developing pCMS.

  
A B C D

E F G H

I J K L

Figure 3. (A–D) Preoperative brain MRI of a 6.5-year-old boy showed a fourth ventricular medulloblastoma with corresponding restricted diffu-
sion (C—apparent diffusion coefficient map). Axial T2-weighted MRI (A) and coronal T2-weighted-fluid-attenuated inversion recovery (B) show 
compression of the right middle cerebellar peduncle; infiltration of the cerebellar vermis, left cerebellar hemisphere, and left cerebellar peduncles; 
and compression of the right superior cerebellar peduncle. Sagittal T1-weighted postcontrast imaging (D) shows compression of the brainstem 
and midbrain. Moderate hydrocephalus is also noted (B, D). Given these anatomical and imaging characteristics, the ANN predicted that the pa-
tient would develop pCMS (likelihood 90.6%). Clinically, the child subsequently underwent gross total resection via a transvermian approach and 
manifested symptoms of pCMS in line with this prediction. (E–H) Preoperative brain MRI of a 4.5-year-old girl showed a large cystic lesion within 
the posterior fossa with high apparent diffusion coefficient values (G) and an enhancing mural nodule (H—sagittal T1-weighted postcontrast im-
aging). These imaging features are in keeping with a pilocytic astrocytoma. Axial T2-weighted MRI (E) and coronal T1-weighted inversion recovery 
(F) show infiltration of the right middle cerebellar peduncle and compression of the brainstem, vermis, fourth ventricle, and left cerebellar hemi-
sphere. Mild hydrocephalus is also noted (F). Given these anatomical and imaging characteristics, the ANN predicted that the patient would not 
develop pCMS (likelihood 24.1%). Clinically, the child subsequently underwent gross total resection via a trans-cerebellar approach and did not 
manifest any symptoms of pCMS in line with this prediction. (I–L) Preoperative brain MRI of an 8-year-old girl showed a caudal intraventricular 
medulloblastoma with compression of the brainstem and cerebellar vermis (I—axial T2-weighted MRI), corresponding restricted diffusion (J—ap-
parent diffusion coefficient map), and moderate hydrocephalus (K—coronal T1-weighted MRI; L—sagittal T1-weighted postcontrast imaging). 
Given these anatomical and imaging characteristics, the ANN predicted that the patient would not develop pCMS (likelihood 2.4%). Clinically, the 
child underwent gross total resection via a telovelar approach and did not manifest any symptoms of pCMS in line with this prediction.
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Liu et al.12 first aimed to predict pCMS using a C4.5 deci-
sion tree and reported an accuracy of 88.8%. Subsequent 
attempts to validate this model by both our study and 
Dhaenens et  al. have been unsuccessful, with reported 
accuracies of 39.8% and 78%, respectively.12,13 This poor 
generalization performance may be partly explained by 
Liu et al.’s model architecture: a single, non-ensemble de-
cision tree that is consequently more susceptible to noise 
and has the potential to overfit. Aiming to improve upon 
Liu et al.’s work, Dhaenens et al.13 implemented a logistic 
regression model and reported an accuracy of 87%, which 
generalizes well to our cohort (accuracy 88.7%). Indeed, 
the comparatively weaker classification performance of 
decision trees when compared to logistic regression and 
ANNs has been shown empirically.70

The improved accuracy of the ANN (90.9%) most likely 
lies in its ability to weigh complex nonlinear relation-
ships between variables, such as those underlying pCMS, 
when little is known about their distribution and inter-
action. Hence, through this work, we also reinforce the 
fact that accurate ANNs can be developed on relatively 
small datasets by following established best practices: 
using a stacked ensemble, taking the mean performance 
of multiple runs, and evaluating the model using k-fold 
cross-validation.71–73

This work does, however, have several limitations. 
First, we employed a retrospective study design that 
rendered several risk factors indeterminable and risked 
the introduction of selection bias. However, given the 
relative rarity of pediatric brain tumors, this choice was 
pragmatic and enabled us to report one of the largest 
cohorts of children with pCMS in the literature. By sam-
pling children with pCMS from multiple centers, we also 
increased the replicability of our model beyond a single 
institution. Second, we predominantly trained our ANN 
on imaging features predictive of pCMS from preoper-
ative MRI. While this did permit direct comparison with 
and interrogation of other models to date, we hypothe-
size that the accuracy of our model would be improved 
by training a convolutional neural network on raw pre-
operative imaging. This shift toward automated predic-
tion would also increase the practical utility of our model 
by eliminating the time-consuming process of image 
interpretation and manual measurement. Third, due to 
the nature of preoperative predictions, we are unable to 
account for individual variation between surgeons, ap-
proaches, and techniques employed. Most notably, all 
surgeons and institutions will differ in how they balance 
the benefits of more aggressive surgery, and a potential 
gross total resection, with the risk of incurring pCMS.

For the above reasons, our results should not be taken 
as direct clinical recommendations at this stage. However, 
we will aim to address these limitations in a planned pro-
spective multicentre study. We will also aim to expand our 
model to consider and predict other common postoper-
ative complications of posterior fossa tumor resection in 
children, namely, disturbances of motor function and gait, 
cranial nerve deficits, and visual impairment.4 A prospec-
tive study would also permit the integration and analysis 
of recently identified surgical risk factors excluded in this 
retrospective study, namely, surgical experience and ex-
tent of resection.74,75

Conclusion

We present a novel framework that interprets features 
from preoperative MRI and more accurately predicts the 
likelihood of a patient developing pCMS than previous 
methods. It is our hope that, following prospective valida-
tion of our model, the routine clinical prediction of pCMS 
will lead to safer surgery and better-informed discussions 
of the risks involved with patients and their families. As 
such, this work represents an exciting step toward the per-
sonalized, risk-stratified surgical management of children 
with brain tumors.

Supplementary material

Supplementary material is available at Neuro-Oncology 
Advances online.
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