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Objectives  To assess (1) the effects of different 
Spikes on human primary MΦ inflammation; (2) 
whether LPS contamination of recombinant Spike is 
(con)cause in vitro of increased MΦ inflammation.
Methods  Human primary MΦ were incubated in the 
presence/absence of several different Spikes (10 nM) 
or graded concentrations of LPS. Pro-inflammatory 
marker expression (qPCR and ELISA) and super-
natant endotoxin contamination (LAL test) were the 
main readouts.
Results  LPS-free, glycosylated Spike (the form 
expressed in infected humans) caused no inflamma-
tion in  human primary MΦ. Two (out of five) Spikes 
were contaminated with endotoxins ≥ 3 EU/ml and 
triggered inflammation. A non-contaminated non-
glycosylated Spike produced in E. coli induced MΦ 
inflammation.

Abstract  
Introduction  The inflammatory potential of SARS-
CoV-2 Spike S1 (Spike) has never been tested in 
human primary macrophages (MΦ). Different recom-
binant Spikes might display different effects in vitro, 
according to protein length and glycosylation, and 
endotoxin (lipopolysaccharide, LPS) contamination.
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Conclusions  Glycosylated Spike per se is not pro-
inflammatory for human MΦ, a feature which may 
be crucial to evade the host innate immunity. In vitro 
studies with commercially available Spike should be 
conducted with excruciating attention to potential 
LPS contamination.

Keywords  SARS-CoV-2 infection · Human 
macrophages · Inflammation · Lipopolysaccharide · 
Spike protein

Introduction

Coronavirus disease 2019 (COVID-19) is caused 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), a single-stranded RNA virus of the 
genus Betacoronavirus in the Coronaviridae family, 
which also includes SARS-CoV-1 and Middle-East 
Respiratory Syndrome coronavirus (MERS-CoV) 
(Zhu et al. 2020).

In most cases, SARS-CoV-2 engages, via the viral 
surface glycosylated Spike protein (Spike), the angio-
tensin-converting enzyme 2 (ACE2), thereby gaining 
access to the cytoplasm of host cells (Lan et al. 2020).

The Spike S1 domain contains the receptor-
binding sequence responsible for ACE2 binding, 
whereas the S2 domain is crucial for cell mem-
brane fusion (Hoffmann et  al. 2020). High levels 
of Spike protein glycosylation are instrumental 
to immune escape, serving as a safety shield from 
the host’s innate immune system (Bagdonaite and 
Wandall 2018; Watanabe et  al. 2020). Recent evi-
dence demonstrated that Spike binds to additional 
receptors, including neuropilin-1 (NRP1) (Cantuti-
Castelvetri et  al. 2020; Daly et  al. 2020), a multi-
functional receptor for several extracellular ligands 
playing a crucial role in the regulation of myeloid 
cell function (Roy et al. 2017), and toll-like receptor 
(TLR)-4 (Shirato and Kizaki 2021; Choudhury and 
Mukherjee 2020), essential for the innate immune 
response to bacteria, mycobacteria, spirochetes, and 
viruses (Beutler 2009; Lester and Li 2014).

Macrophages (MΦ)—key cells in the innate 
immune response—play a pivotal role in body’s 
defense against viral infections mostly by producing 
inflammatory mediators to kill pathogens and by 
repairing injured tissues (Sica and Mantovani 2012; 
Tarique et al. 2015).

Severe COVID-19 is characterized by an aggres-
sive inflammatory response known as cytokine 
storm (Ye et al. 2020), in which MΦ are implicated 
through an exaggerated release of inflammatory 
cytokines/chemokines, which fuel tissue hyper-
inflammation, further leukocyte recruitment, and 
release of inflammatory mediators, resulting into 
a feed-forward, pathogenic vicious cycle (Schultze 
and Aschenbrenner 2021). The cytokine storm, 
therefore, plays a major role in tissue, especially 
lung, damage and in the onset of the acute respira-
tory distress syndrome (ARDS) (Gustine and Jones 
2021).

Recent studies, aimed at unveiling the molecular 
bases responsible for this MΦ-mediated hypercy-
tokinemia in COVID-19, reported that Spike S1 is a 
key viral component in triggering MΦ inflammation, 
independently of virus infection or replication (Chiok 
et al. 2021). Specifically, SARS-CoV-2 Spike directly 
induces pro-inflammatory cytokine production in 
mouse MΦ (Shirato and Kizaki 2021; Chiok et  al. 
2021), MΦ derived from the human monocytic leuke-
mia cell line THP-1 (Shirato and Kizaki 2021; Chiok 
et  al. 2021; Pantazi et  al. 2021; Khan et  al. 2021), 
and human mononuclear cells (MNCs) (Pantazi et al. 
2021), via nuclear factor-kappa B (NF-κB) activation 
through TLR(s) signaling. To the best of our knowl-
edge, thus far, no studies have assessed the effects of 
Spike glycoprotein on inflammation in human pri-
mary MΦ.

The TLR family is associated with a strong pro-
inflammatory cytokine and chemokine production—
especially TLR4 which can be activated in response 
to LPS, derived from Gram-negative bacteria, and 
to few viral proteins (El-Zayat et al., 2019, Lu et al. 
2008).

Accordingly, LPS is commonly used to induce 
in vitro MΦ polarization to classically activated M1 
(Mantovani et al. 2002), which represent one extreme 
(alternatively activated M2 are the other extreme) of 
a spectrum of macrophage functional phenotypes in 
response to different microenvironmental cues. M1 
macrophages—obtained with LPS and/or IFNγ—are 
responsible for killing intracellular pathogens and 
for releasing pro-inflammatory mediators, through 
TLR4 signaling cascade, which includes the recruit-
ment of IL-1R-associated kinase 1 (IRAK-1) and the 
downstream activation of MAP kinases and NF-κB. 
These pathways eventually end up in enhancing the 
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transcription, among others, of tumor necrosis fac-
tor alpha (TNFα), monocyte chemoattractant pro-
tein-1 (MCP1), interleukin (IL)-6, and IL-1β genes 
(Guzmán-Beltrán et al. 2017).

It is worth noticing that a recent study showed a 
specific molecular interaction between SARS-CoV-2 
Spike and LPS. In that study, Spike, when combined 
with low levels of LPS, boosted NF-κB activation 
via TLR4 in monocytes, and cytokine responses in 
human MNCs (Petruk et al. 2020).

These findings suggest that LPS and Spike are syn-
ergistic in triggering and amplifying the inflamma-
tory response of innate immune cells, with a potential 
dual relevance: (a) a subclinical Gram bacterial infec-
tion or low levels of LPS derived from gut microbi-
ome, e.g., in the obese subject (Cani et al. 2012), may 
synergistically act with Spike during SARS-CoV-2 
infection and significantly affect the clinical course 
of the disease; (b) at a less relevant level, since LPS 
is a quite frequent impurity of recombinant proteins 
derived from E. coli, but also from mammalian cells 
(e.g., CHO, HEK293) (Wakelin et  al. 2006), unde-
tected LPS contamination in recombinant Spike pro-
teins might be a major confounder in experimental 
studies of Spike effects on innate immune cells and/
or endothelium. Based on these premises, we hypoth-
esized that LPS contamination of some commercially 
available recombinant SARS-CoV-2 Spike pro-
teins might be—at least in part—responsible for the 
increased MΦ inflammation reported in the literature 
(Shirato and Kizaki 2021; Chiok et al. 2021; Pantazi 
et al. 2021; Khan et al. 2021).

The present investigation, therefore, was under-
taken with a dual goal: (1) to investigate the in vitro 
effect of Spike in primary human MΦ inflammation, 
and, consequently to some of the evidence provided 
by this study, and (2) to quantify LPS contamination 
of some commercially available recombinant SARS-
CoV-2 Spike proteins, among those reported to be 
pro-inflammatory in previous papers.

Material and methods

Cell isolation and culture

Monocyte-derived MΦ were isolated from healthy 
donors’ buffy coats and cultured as previously 

reported (Derlindati et al. 2015). Briefly, MNCs were 
isolated by density gradient centrifugation on Lym-
phoprep (Euroclone, Milano, Italy) and 2 × 107 cells/
ml were seeded in multiwell plates. Monocytes were 
selected from MNCs by plastic adherence for 1 h and 
cultured for 6  days in RPMI 1640 medium (Euro-
clone) with 10% fetal bovine serum (FBS), 1% L-glu-
tamine, 1% pen/strep, 1% amphotericin B, and 70 ng/
ml macrophage colony-stimulating factor (M-CSF) 
(Miltenyi Biotec, Bergisch Gladbach, Germany) at 
37 °C and 5% CO2.

On day 6, MΦ were stimulated for 16  h with 
SARS-CoV-2 Spike S1 (Spike A, B, C, D, E, F 
purchased from the random listed companies Bio-
Techne, Minneapolis, MN, USA; Arigo Biolaborato-
ries, Hsinchu, Taiwan; Abcam, Cambridge, UK; BPS 
Bioscience, San Diego, CA, USA) at the concentra-
tion of 10 nM (Table 1). This concentration of 10 nM 
(corresponding to ~ 1 µg/ml) of Spike was selected on 
the basis of the literature (Shirato and Kizaki 2021; 
Zhao et al. 2021; Karwaciak et al. 2021).

Where indicated, to neutralize any potential LPS 
interference (Tsubery et al. 2000), polymyxin B (Poly 
B) (2 µg/ml; Merck Life Science S.r.l., Milan, Italy) 
was added in culture.

To define a LPS dose–response curve, MΦ were 
incubated with increasing LPS concentrations 
(0.01—0.05—0.1—0.5—1—10—100  ng/ml; Merck 
Life Science) for 16 h and the effect on cell inflamma-
tion was recorded.

Endotoxin quantification

Endotoxin contamination of recombinant spike pro-
teins was assessed in supernatants of MΦ in the 
different culture conditions by Pierce Chromog-
enic Endotoxin Quant Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA), strictly following manu-
facturer’s instructions. Endotoxin concentration in 
diluted (from 1:10 to 1:100 depending on the degree 
of contamination) cell supernatants was calculated in 
duplicate by using the “high” standard curve provided 
by the kit. The reaction product was photometrically 
measured at 405 nm (Varioskan Lux, Thermo Scien-
tific), and results were expressed as EU/ml.

Of note, as shown in Fig. 1, Spikes A and B were 
highly contaminated, while Spikes C and Spike D 
were uncontaminated compared to control. Spike E 
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showed very low endotoxin level (< 0.4 EU/ml cell 
supernatant) (Fig. 1).

Inflammatory marker gene expression

To quantify MΦ pro-inflammatory response, quan-
titative PCR (qPCR) assays were performed on can-
didate genes. Briefly, cells were lysed by Qiazol and 
total RNA was isolated by miRNeasy mini kit (Qia-
gen Ltd, West Sussex, UK) followed by NanoDrop 
(Thermo Scientific) quantification.

A total of 250  ng of RNA was retro-transcribed 
by using High-Capacity RNA-to-cDNA Kit (Applied 
Biosystem, Life Technologies, Foster City, Califor-
nia, USA), following manufacturer’s instructions.

Interleukin (IL)-6 (Hs00174131_m1), IL-8 
(Hs00174103_m1), IL-1β (Hs01555410_m1), tumor 
necrosis factor (TNF)-α (Hs00174128_m1) gene 
expression was assessed using TaqMan Universal 
Master Mix (Applied Biosystems) with TaqMan prim-
ers and probes (Thermo Scientific) on a CFX Connect 
Real-Time (Bio-Rad, Hercules, CA, USA), as previ-
ously reported (Spigoni et  al. 2020). Thermal cycling 
conditions were as follows: 98° for 30 s, followed by 40 
amplification cycles (95 °C for 15 s; 60 °C for 1 min).

Gene expression values were calculated based on 
the ΔΔCt method (Schmittgen et  al. 2000) and nor-
malized to the geometric mean of RPS18 (ribosomal 
protein S18) (Hs01375212_g1), GAPDH (glyceralde-
hyde 3-phosphodehydrogenase) (Hs99999905_m1), 
ACTB (β-actin) (Hs99999903_m1), and B2M (β-2-
Microglobulin) (Hs00187842_m1) housekeeping 
genes. Each sample was analyzed in triplicate and the 
mean values were used for calculations.

Inflammatory molecule secretion

IL-6, IL-1β, and TNFα levels in cell culture superna-
tants (diluted 1:2) were quantified in duplicate by a 
multiparameter kit based on magnetic beads (Luminex 
Assay, R&D Systems) and analyzed on MagPix instru-
ment (Luminex Corporation, Austin, TX, USA) accord-
ing to kit instructions, as previously reported (Spigoni 
et  al. 2017). IL-8 quantification was performed by 

Table 1   Main characteristics of the SARS-CoV-2 Spike proteins herein used

a None of the Spike proteins contains the cleavage site of furin (residues 685–686)
Val valine, Arg arginine, Met methionine, Cys cysteine, Pro proline, CHO Chinese hamster ovary, HEK human embryonic kidney

Spike protein Amino acid sequence a Expression system Glycosylated

Spike A Val16-Arg685 CHO cells Yes
Spike B Val16-Arg685 CHO cells Yes
Spike C Val16-Arg685 CHO cells Yes
Spike D Val16-Arg685 HEK293 cells Yes
Spike E Met15-Cys671 E. coli No
Spike F Val16-Pro681 HEK293 cells Yes
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Fig. 1   Endotoxin contamination of SARS-CoV-2 recombinant 
Spike proteins. Endotoxins were quantified in cell supernatants 
of Spike-treated MΦ. Supernatants from untreated MΦ were 
used as control. Data expressed as mean ± SEM from 3 inde-
pendent experiments have been reported in the graph
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Human IL-8/CXCL8 Quantikine ELISA Kit (R&D 
Systems) following manufacturer’s instruction. Inter- 
and intra-assay coefficients of variation were 6.7% 
and 4.6%, respectively. IL-8 concentration in diluted 
(1:200) cell supernatants was calculated in duplicate 
by using a standard curve generated by serially diluting 
reconstituted standards and by measuring the absorb-
ance at 450 nm in a microplate reader (Multiskan™ FC 
Microplate Photometer, Thermo Scientific).

Statistical analysis

Normally distributed data are reported as mean ± SE, 
while skewed data are expressed as median ± inter-
quartile range (IQR). Differences were identified using 
Kruskal–Wallis with Dunn’s multiple comparison test. 
Paired t-test was performed to compare protein quanti-
fication data. Statistical significance was set at p < 0.05 
(two-sided). Data were analyzed using GraphPad 
PRISM version 5.0 (GraphPad Software Inc., Califor-
nia, USA).

Results

Effects of SARS‑CoV‑2 Spike proteins on human 
MΦ inflammation

To test the effect of Spike on MΦ inflammation, we 
assessed pro-inflammatory marker (IL-1β, IL-6, 
IL-8, TNFα) gene expression in human primary MΦ 
treated with Spike (A, B, C, D, E) 10 nM for 16 h.

LPS-free Spikes C and D did not increase the gene 
expression of inflammatory biomarkers in MΦ vs 
control (Fig. 2A). Conversely—and in line with data 
on endotoxin contamination (Fig.  1)—Spikes A and 
B caused a significant increase of IL-1β, IL-8, TNFα 
(only Spike B), and IL-6 gene expression compared 
to control. Unexpectedly, Spike E—which was only 
slightly contaminated (0.33 EU/ml of endotoxins)—
significantly boosted IL-1β and IL-8 (but not IL-6 
and TNF α) gene expression compared to untreated 
cells (Fig. 2A).

In some selected culture conditions (Control, 
Spike B, D and E), cytokine release in the medium 
secretion was assessed to possibly confirm qPCR 
data (Fig. 2B). In concordance with gene expression 
data, LPS-free Spike D did not affect cytokine secre-
tion vs control, while Spike B significantly increased 

the secretion of all tested biomarkers, compared to 
untreated control. IL-1β and TNFα secretion was also 
augmented by Spike E.

Thus, we inferred that Spike per se does not affect 
pro-inflammatory cytokine secretion in primary 
human MΦ.

LPS concentration–response curve

We then performed a dose–response curve of human 
MΦ inflammation to scalar LPS concentrations to 
ascertain whether endotoxins are the only triggering 
factor responsible for MΦ inflammation following 
stimulation with LPS-contaminated Spike.

As shown in Fig. 3, LPS at concentrations ≥ 1 ng/
ml activated MΦ, inducing an increase in pro-inflam-
matory marker (IL-1β, IL-6 and IL-8, but not TNFα) 
gene expression (Fig.  3). Lower LPS concentrations 
were devoid of any effect.

Furthermore, these data demonstrate that the 
endotoxin contamination (13 EU/ml corresponding 
to 1.3 ng/ml of LPS) of Spike B is sufficient to drive 
inflammation in cultured human MΦ.

Since LPS alone is effective only at ≥ 1  ng/ml, 
Spike A (showing a contamination of only 3 EU/
ml of endotoxin corresponding to 0.3 ng/ml of LPS) 
strongly stimulates inflammation; the data are con-
sistent with the idea that LPS and Spike are synergis-
tic with each other, even at concentrations which are 
individually ineffective.

The pro-inflammatory effects associated to Spike 
E, however, were unexpectedly evident also at a negli-
gible (0.03 ng/ml) LPS contamination. This prompted 
us to run further experiments with Spike E.

Spike E

Spike E displayed a very low endotoxin contamina-
tion (0.3 EU/ml), but, when compared to Spikes A–D 
used in this study, other factors may be implicated: 
(i) it is shorter than the other Spikes, because it lacks 
the NRP1-binding domain at the C-terminal; (ii) it is 
produced in a prokaryotic expression system (E. coli), 
whereas Spikes A–D are expressed in mammalian 
cells, and all share the same amino acid sequence.

We then hypothesized that inflammation stimu-
lated by Spike E might be attributable to:
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mean ± SEM, and differences were evaluated with paired t-test 
(IL = interleukin; TNF = tumor necrosis factor) (*p < 0.05; 
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a.	 Spike interaction with residual (0.03 ng/ml) LPS 
concentrations

b.	 The lack of the NRP1-binding domain
c.	 The absence of post-translational modifications 

(glycosylation) owing to E. coli expression sys-
tem

To explore the potential interaction between 
Spike and LPS (hypothesis a), we premixed Spike 
E with polymyxin B—which is an antibiotic known 
for its capacity to bind to and neutralize LPS (Tsu-
bery et  al. 2000)—and we tested their combined 
effect on MΦ inflammation. As shown in Fig.  4, 
polymyxin B did not affect Spike E–induced inflam-
mation, showing that its pro-inflammatory effect 
was not due to its minimal LPS contamination.

Next, to investigate whether the lack of NRP1-
binding domain in Spike E affects inflammation 
(hypothesis b), we first investigated whether NRP1 
was present in our cells, and we found that it is 
highly expressed in human MΦ (Supplementary 
Fig.S1).

We then tested another recombinant Spike (Spike 
F) which we found to be completely endotoxin-free 
and which also misses the NRP1-binding sequence 
but, at variance with Spike E, is fully glycosylated. 
Spike F had no effects on MΦ pro-inflammatory 
response compared to control (data not shown), 

thereby effectively ruling out hypothesis b. Hence, 
our data suggest that the inflammatory response 
induced by Spike E should be attributed to its being 
unglycosylated, a feature specific of the prokaryotic 
expression system used to produce it.

Discussion

In the present study, we demonstrate that LPS-free 
recombinant glycosylated SARS-CoV-2 Spike (i.e., 
the Spike which is generated in infected humans) 
exerts no stimulatory effect on inflammation in 
human primary MΦ. Furthermore, we also show that 
the huge cytokine/chemokine production, observed in 
human MΦ tested with several commercially avail-
able recombinant SARS-CoV-2 Spikes, is due pri-
marily to endotoxin (i.e., LPS) contamination of the 
recombinant peptides, and importantly that Spike 
boosts LPS-mediated pro-inflammatory action in 
human MΦ. We also report that a recombinant non-
glycosylated Spike from E. coli triggers inflamma-
tion, even in the absence of endotoxin contamination, 
unlike glycosylated Spike produced in mammalian 
cells. A putative explanation of these latter findings 
is the lack of protein glycosylation, which is a well-
known viral mechanism to elude detection by the host 
innate immune system (macrophages) (Watanabe 
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Fig. 4   Pro-inflammatory effects of Spike E in the presence/
absence of Poly B. Inflammatory marker (IL-1β, IL-8, IL-6, 
TNFα) gene expression was evaluated in human MΦ treated/
untreated with Spike E 10  nM and Poly B 2  µg/ml for 16  h. 

Data are expressed as median ± IQR from at least 3 independ-
ent experiments and differences analyzed by Kruskal–Wallis 
followed by Dunn’s multiple comparison test (IL = interleukin; 
TNF = tumor necrosis factor; Poly B = polymyxin B)
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et al. 2020). Thus, our results shed light on the poten-
tial confounding factors which might have affected 
the flourishing literature about the in vitro effects of 
SARS-CoV-2 Spike protein on macrophage inflam-
mation (Shirato and Kizaki 2021; Chiok et al. 2021; 
Khan et al. 2021; Pantazi et al. 2021).

To the best of our knowledge, this is the first study 
assessing the effects of Spike glycoprotein in mono-
cyte-derived human MΦ, and the absence of any 
Spike-mediated pro-inflammatory effects is in line 
with a very recent study showing that the treatment 
with Spike alone (from 0.1 to 10 µg/ml) had no effect 
on IL-1β secretion in MΦ from SARS-CoV-2-naïve 
individuals (Theobald et al. 2021).

Nevertheless, several very recent in vitro studies dem-
onstrated a pro-inflammatory action of SARS-CoV-2 
spike protein (Olajide et al. 2021; Theobald et al. 2021) 
in mouse (Shirato and Kizaki 2021; Khan et al. 2021) 
or THP-1 (Shirato and Kizaki 2021; Khan et al. 2021; 
Pantazi et al. 2021; Chiok et al. 2021) derived MΦ, by 
TLR(s) signaling activation. Importantly, none of these 
studies investigated a possible endotoxin contamina-
tion of the recombinant protein tested. In our work, the 
endotoxin contamination found in commercially avail-
able Spike casts some doubts on the significance of the 
aforementioned studies regarding the role of Spike in 
immune cell inflammation through TLR(s) activation. 
Indeed, in our hands, glycosylated truly LPS-free Spike 
has no inflammatory effects in human primary MΦ.

Our results militate against a relevant role of Spike 
per se in the cytokine storm of human infection played 
through a direct pro-inflammatory effect on MΦ. Appar-
ently, Spike goes undetected by human MΦ only when 
it is glycosylated. On the other hand, the lack of any 
response at all to glycosylated Spike may imply that 
SARS-CoV-2 can evade detection by the innate immune 
system in the very early phases of infection (Tian et al. 
2020; Kasuga et  al. 2021) and this presumably is an 
important component of its pathogenic potential.

Endotoxin contamination of recombinant pro-
tein is a very common problem when immune cells 
are involved, as they can be activated by minimal 
amounts of LPS, equivalent to the levels of endotoxin 
contamination detected in some commercially avail-
able proteins (Schwarz et al. 2014). Accordingly, here 
we show that also human MΦ are sensitive to low 
(1 ng/ml) LPS concentration, which correspond to the 
levels of endotoxins (10 EU/ml) detected in one of 
the Spike tested (Spike B).

Moreover, it has been reported that recombinant 
peptides could be contaminated even if labelled as 
endotoxin-free or expressed in eukaryotic systems 
(Wakelin et  al. 2006). We confirmed that a broad 
range of endotoxin contamination is found also in 
recombinant Spike produced in mammalian cells.

Of note, despite 1  ng/ml of LPS was identified 
as the concentration threshold for MΦ response, we 
observed that even lower endotoxin levels (i.e., 3 EU/
ml) of Spike were associated to inflammation, sug-
gesting that LPS at very low concentrations did not 
induce inflammation per se, but only when com-
bined to Spike, i.e. Spike can work as a cofactor of 
the inflammatory action of LPS. This is in accordance 
with a recent paper showing that SARS-CoV-2 Spike 
binds to bacterial LPS, leading to changes in LPS 
biophysical state, thus boosting its pro-inflammatory 
activity in monocytes and human MNCs through 
TLR4-NF-κB activation (Petruk et  al. 2020). The 
proven synergy between LPS and Spike is crucial 
in an attempt to explain the increased risk of severe 
COVID-19 in conditions characterized by subclini-
cally increased circulating levels of LPS generated 
by the host gut microbiome, such as metabolic syn-
drome, obesity, and type 2 diabetes (Cani et al. 2012; 
Drucker 2021), as well as provide new therapeutic tar-
gets. In line with this observation, evidence from por-
cine animal models demonstrated that infection with 
the highly prevalent porcine respiratory coronavirus 
increases the lung sensibility to LPS (Van Gucht et al. 
2006).We also explored the effect of a recombinant 
Spike (Spike E), which lacks the binding domain of 
NRP-1 (C-terminal peptide 682Arg-Arg-Ala-Arg685 of 
the S1 subunit), which is a host cell receptor report-
edly able to bind Spike and to promote virus entry 
and infectivity (Cantuti-Castelvetri et  al. 2020; Daly 
et  al. 2020). Although our preliminary data showed 
a high expression of NRP-1 (and NRP-2) genes in 
human MΦ (Supplementary Fig.  S1), we observed 
that the presence/absence of NRP-1-binding domain 
did not affect MΦ susceptibility to Spike, indicat-
ing that NRP-1 is not involved in the Spike-mediated 
activation of MΦ pro-inflammatory pathway.

Commercially available Spikes are produced in 
different expression systems, mainly E. coli, human 
HEK293, and Chinese hamster ovary (CHO) epithe-
lial cell lines. The different expression system implies 
a different degree of glycosylation (null or very low 
in prokaryotic vs extensive in eukaryotic cells) of 
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the final product (Dell et  al. 2010; Brooks 2004). 
We therefore tested a Spike (Spike E) expressed in 
E. coli, with low or absent protein glycosylation, and 
found that it was able to elicit a robust inflammatory 
response in human primary MΦ.

SARS-CoV-2 Spike exhibits both N and O glyco-
sylations (Shajahan et al. 2020; Reis et al., 2021). In 
particular, two N-glycosylation sites—specifically gly-
cosylated by the machinery of the host (mammalian) 
cells (Kornfeld and Kornfeld 1985)—have been iden-
tified in the receptor-binding domain and are recog-
nized as important mediators of SARS-CoV-2 binding 
to host cells via the ACE2 receptor (Reis et al., 2021). 
The different degree of glycosylation may explain the 
increased inflammatory profile induced by Spike E vs 
Spike F, which share the same amino acid sequence 
but are produced in different protein expression sys-
tem (E. coli vs HEK293, respectively).

Of note, the presence of glycans—arranging in 
a shield around the RBD—is a common strategy to 
escape immune surveillance for coronaviruses and 
other viruses with heavy glycosylated spike proteins 
(like HIV-1 Env) (Reis et  al., 2021). In this frame-
work, our data strongly suggest that prokaryotic-
expressed recombinant Spike, naturally lacking post-
translational modification at specific glycosylation 
sites, can be recognized by host immune cells, in pri-
mis MΦ, which build a first-line antiviral response.

In line with our hypothesis, some recent works 
reported a pro-inflammatory effect of prokaryotic-
expressed Spike proteins in immune cells (Shirato 
and Kizaki 2021; Rotoli et al. 2021).

Thus, speculations based on in  vitro studies of 
immune effects of non-glycosylated Spike should be 
avoided, as it does not correspond to that found in 
virions, which is highly glycosylated.

Our studies were limited to MΦ; hence, we cannot 
rule out that the behavior of non-immune cells, like 
epithelial and endothelial cells, which also are very 
sensitive to LPS stimulation (Menden et  al. 2013), 
is different. Future experiments are needed to clarify 
this crucial issue.

Some study limitations must be acknowledged: (1) 
it is uncertain whether the concentration of Spike used 
in the present work (10 nM) is comparable to those 
occurring in infected subjects—of note, the viral load 
of an infected individual varies from 102 to 1013 cop-
ies/ml (Costa et al. 2021) and that the trimeric spike 
copy number per virion is 26 ± 15 (Yao et al. 2020): 

the highest figures should generate in  vivo a Spike 
concentration around 2–7 nM; (2) although our data 
are compatible with a role of Spike glycosylation in 
macrophage inflammation, future ad hoc experiments 
should be performed to prove a causal relationship; 
(3) the extrapolation of our in vitro data to the com-
plex in vivo setting should be made with caution.

Conclusions

In conclusion, this study demonstrates that (a) LPS-
free, glycosylated SARS-CoV-2 Spike proteins do 
not cause inflammation but, rather, Spike protein 
advances LPS-mediated pro-inflammatory action 
in primary human MΦ; and (b) the in  vitro high 
cytokine release, induced by recombinant Spike in 
human MΦ, has to be attributed primarily to LPS 
contamination of the recombinant peptides. More-
over, we observed that non-glycosylated Spike—
which does not represent the protein expressed on 
SARS-CoV-2 virions in infected mammals—is pro-
inflammatory, thereby highlighting the potential 
role of glycosylation in SARS-CoV-2 pathogenicity.

In vitro studies with commercially available 
Spike should be conducted with excruciating atten-
tion to potential LPS contamination.
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