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Abstract

Primary immunodeficiency diseases (PIDs) caused by a single-gene defect generally are 

referred as monogenic autoimmune disorders. For example, mutations in the transcription 

factor autoimmune regulator (AIRE) result in a condition called autoimmune polyendocrinopathy-

candidiasis-ectodermal dystrophy (APECED); mutations in forkhead box P3 (Foxp3) lead to Treg-

deficiency-induced multiorgan inflammation, which in humans is called “immune dysregulation, 

polyendocrinopathy, enteropathy with X-linked inheritance” (or IPEX syndrome). Previous studies 

concluded that monogenic diseases are insensitive to commensal microbial regulation because 

they develop even in germ-free (GF) animals, a conclusion which has limited the number of 

studies determining the role of microbiota in monogenic PIDs. However, emerging evidence shows 

that although the onset of the disease is independent of the microbiota, several monogenic PIDs 

vary in severity in association with the microbiome. In this review, we focus on monogenic 

PIDs associated with Treg-deficiency/dysfunction, summarizing the gut microbial dysbiosis that 

has been shown to be linked to these diseases. From limited studies, we have gleaned several 

mechanistic insights that may prove to be of therapeutic importance in the early stages of life.
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Introduction

Autoimmune diseases (ADs) are a heterogeneous group of disorders in which the immune 

system responds to self-antigens, leading to damage or dysfunction of tissues (1). 

Relatively prevalent autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus 

erythematosus (SLE), type I diabetes (T1D), and inflammatory bowel disease (IBD) are 

polygenic autoimmune disorders, which means that the pathogenesis of the diseases may 

relate simultaneously to the changes of several genes. As an example, in a genome-wide 

association study (GWAS) including European and Asian subjects − 29,880 patients with 

RA and 73,758 control subjects −377 candidate genes were identified in 100 non-MHC RA 

risk loci. Among them, 98 genes were highly related to RA risk (2). GWAS has identified 

more than 50 robust loci associated with SLE susceptibility (3), and more than 200 robust 

loci have been associated with IBD (4).

The primary immunodeficiency diseases (PIDs) are genetic in origin and result in 

autoimmunity that affects different components of the innate and adaptive immune systems. 

Although PIDs can affect both adults and children, they are more common during 

childhood, inasmuch as newborns with PIDs generally do not survive into adolescence. 

The pathophysiological processes of both PIDs and ADs are associated with abnormal T-cell 

development, immune tolerance, signaling, and inflammation, and they share some common 

mechanisms (5). However, there are many monogenic PIDs in which a single highly 

penetrant genetic alteration results in an autoimmune disorder. The role of a single mutated 

gene in the development of autoimmunity helps to elucidate the underlying mechanisms 

associated with autoimmunity. Understanding the mechanisms will benefit the development 

of effective treatments for these diseases. Currently, only bone marrow transplantation 

(BMT) is commonly used to treat these diseases, but this procedure is limited by the 

procurement of a matched donor, expensive, associated with graft-versus-host disease, and 

often lethal (6).

The microbiome comprises the live microorganisms and genomes (bacteria, viruses, 

phage, fungi, and protozoa) that exist in a symbiosis within mammalian tissues. The 

microbiome has the ability to influence different physiological functions, such as immune 

defense, energy metabolism, and social behavior (7). The intestinal microbiota drives host 

immune homeostasis by regulating the differentiation and expansion of immune cells such 

as regulatory T cells (Tregs) (8–11). Intestinal microbial dysbiosis (or imbalance) can 

develop as a consequence of an abnormal diet, severe or chronic infection, body habitus 

(lean or obese) or altered gut immunity (12–15). Many studies have provided evidence 

demonstrating the association between gut dysbiosis with polygenic autoimmune diseases 

such as RA (16, 17), IBD (4), type I diabetes (18, 19), SLE (20), and multiple sclerosis 

(MS) (21–23). As a result, the scientific community is developing optimized probiotics and 

fecal microbial transplantation (FMT) to modify gut microbiota and disease activity for 

many of these conditions. Additionally, microbiota-associated biological metabolites, called 

postbiotics, may facilitate the treatment of autoimmune diseases (24, 25).

However, there is limited information about monogenic PIDs caused by single gene 

mutations and how they interact with the microbiome. Thus, this review will highlight 
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our knowledge of the association of microbiome to monogenic PIDs, focusing on diseases 

related to Treg deficiency/dysregulation.

Monogenic PIDs related to Treg deficiency or dysfunction

Monogenic PIDs are rare, but more than 350 unique PIDs have been identified so far. 

The children typically present with autoimmune phenomena and increased susceptibility to 

infection, eventually developing multi-organ inflammation (26). The main monogenic PIDs 

related to Treg-deficiency/dysfunction are due to a single gene defect, and the mechanisms 

that are implicated are listed in Table 1. The representative clinical phenotypes of some 

diseases listed in Table 1 are cutaneous or onchopathic (fingernail/toenail) manifestations 

(Figure 1). Treg cells maintain immune homeostasis and play a pivotal role in immune 

tolerance. Foxp3 is a major transcription factor associated with Treg cell development and 

function (27). Mutations or deletions of the Foxp3 gene result in IPEX syndrome in humans. 

IPEX syndrome is characteristically associated with eczema (Figure 1A and 1B), severe 

enteropathy, type I diabetes, thyroiditis, hemolytic anemia, and thrombocytopenia (28–30). 

Several other genetic defects that affect the function of Tregs can give rise to IPEX-like 

syndromes. IPEX-like syndromes include loss of function (LOF)-mutations in the α-chain 

of the IL-2 receptor (CD25), itchy E3 ubiquitin protein ligase (ITCH), signal transducer 

and activator of transcription 5B (STAT5B)/BTB domain and CNC homolog 2 (BACH2). 

Recently there are mutations reported in other genes, including LPS responsive beige-like 

anchor protein (LRBA), cytotoxic T-lymphocyte associated protein 4 (CTLA4), dedicator of 

cytokinesis 8 (DOCK8), and mucosa-associated lymphoid tissue lymphoma translocation 1 

(MALT1) (31).

Other monogenic PIDs are not classified as IPEX-like syndromes, but they are 

immunologically associated with Treg deficiency and/or dysfunction and linked to 

gastrointestinal inflammation. These include APECED syndrome (Figure 1C–1F), Omenn 

syndrome (OS) (Figure 1G), DiGeorge syndrome (DGS), chronic granulomatous disease 

(CGD), Wiskott-Aldrich syndrome (WAS) (Figure 1H–1I), and human phosphatidylinositol 

3-kinase-gamma (PI3Kγ) deficiency (Table 1, Figure 1) (31–37).

Traditional concept of the innate-adaptive connection and microbial 

sensitivity at onset of monogenic autoimmunity

Mechanistically, common autoimmune diseases require the innate-adaptive connection for 

their onset, during which process microbes contribute to the initiation of autoimmunity. 

Microbes and microbial peptides activate antigen-presenting cells (APCs) through the 

interaction with innate receptor signaling on APCs. Subsequently, APCs induce effector 

and memory T cell and B cells by antigen presentation and co-stimulation, and ultimately 

tissue target cells are destroyed by self-reactive T cells, antibodies, and/or cytokines (38, 

39). These autoimmune diseases have been designated as Group I diseases. They follow the 

rule of innate–adaptive immunity activation and require a microbial environment (Figure 2) 

(40).
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Because alterations in microbial composition often correlate with the loss of immune 

tolerance, the human microbiome has been proposed to be a major player in autoimmunity. 

IBDs such as CD and UC represent an example of how the alteration of gut microbiome 

can induce disease. Many studies have shown that both CD and UC are associated with a 

reduced complexity of the commensal microbiota and are consistent shifts to a dysbiotic 

state, characterized by the outgrowth of “pathobionts,” such as the phyla proteobacteria, in 

particular the Enterobacteriaceae and Fusobacteriaceae families (41, 42). Adherent-invasive 

E. coli, Yersinia and Clostridium difficile are also much more common in patients with CD 

than in healthy individuals. These bacteria are also key contributors to IBD in animal models 

(43–46).

The separation of monogenic from polygenic autoimmune disorders is based on evidence 

in germ-free (GF) mice that the innate-adaptive connection is not critical for onset of 

monogenic disorders. For example, re-deriving AIRE−/− mice, a mouse model of human 

APECED, into a GF condition does not alter the disease phenotype. The implication 

of these studies was that the loss of central tolerance in the thymus alone can lead to 

autoimmunity that overrides peripheral tolerance mechanisms (47). Additionally, Foxp3 

mutant scurfy (SF) mice, as mentioned a mouse model of human IPEX syndrome, exhibit an 

autoimmune phenotype in the GF condition, due to loss of control of inflammatory effector 

T cells by Tregs (48). These observations were interpreted to prove that monogenic diseases 

related to Treg deficiency e.g. APECED and IPEX are independent of commensal microbial 

regulation. Authors suggested that autoimmune T cells are activated in the absence of the 

innate-adaptive connection (38), leading to the designation of Group II diseases, said to 

result from genetic alterations in lymphocyte development and not from microbial factors 

(Figure 2) (40).

Microbial dysbiosis and Treg-associated monogenic autoimmunity

Chinen et al. proposed that monogenic autoimmunity is not associated with the gut 

microbiome, because innate-adaptive connection is not critical for disease onset (48). 

However, in a Treg-depleted model (Foxp3-DTR), inflammation in the small intestine 

of SPF mice was more severe than in GF mice, as shown by significantly increased 

gut lymphocyte infiltration, decreased body weight, and increased percentage of IFN-γ-

producing T helper cells. That study suggested that Treg-deficiency-induced inflammation is 

indeed modified by gut microbiota (48).

Other experiments provided evidence that the severity of single gene mutation-associated 

autoimmune diseases is modified by the gut microbiota. We observed that development 

of autoimmunity was accompanied by gut microbial dysbiosis during the first 22 days 

of life in SF mice (49), at which time these mice had reduced bacterial diversity and 

composition. Altered gut microbiota has also been found in immunodeficient mice lacking 

B cells (Ighm−/−); T cells (Cd3e−/−); or both B and T cells (Rag1−/−). Furthermore, the 

administration of Foxp3+Treg cells to T-cell-deficient mice restored bacterial diversity 

(50). A study of APECED patients also concluded that the composition of their intestinal 

flora was abnormal (51), and consequently the patients developed early and sustained 

immunological responses to gut microbial antigens (Ags). Additionally, abnormal immune 
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recognition of gut commensals is linked to gut-associated Tregs, indicating that AIRE is 

an important regulator of intestinal homeostasis (52). A detailed study comparing Rag1+/+ 

and Rag1−/− mice of the same genetic background (with the appropriate elimination of cage 

effect) demonstrated that Rag1 status was a source of variation in gut microbiota community 

structure (53).

A related study examining a mouse model of Omenn syndrome with hypomorphic mutations 

in Rag genes found that impaired Treg function played a role in development of intestinal 

inflammation, while mucosal B cell deficiency caused enhanced bacterial translocation 

and altered microbiota composition. Reducing bacterial load by broad-spectrum antibiotics 

ameliorated intestinal and systemic autoimmunity by diminishing the frequency of mucosal 

and circulating gut-tropic CCR9+Th1 and Th17 cells and normalizing very the high levels 

of serum IgE, a hallmark of the disease. These observations indicate that intestinal microbes 

play a critical role in the distinctive immune aberrations seen in OS (54).

Furthermore, studies of children with Wiskott-Aldrich syndrome found aberrant microbial 

community richness and structure in WAS children. WAS children had reduced 

microbial community richness and diversity. The relative abundance of Bacteroidetes and 

Verrucomicrobia in WAS children was significantly reduced, whereas Proteobacteria were at 

markedly higher levels (55). WASp-KO mice modeling human WAS harbored a significantly 

decreased relative abundance of Firmicutes (55). In humans, up to 50% of WAS patients 

develop IBD, often early-onset and severe in phenotype (56). Fecal microbial dysbiosis 

caused by WASp deficiency was quite similar to that observed for polygenic IBD (41, 55, 

57), indicating that WASp may play crucial function in microbial homoeostasis and/or that 

microbial dysbiosis may contribute to WAS-related IBD.

Interestingly, a recent study by using PIK3CG-deficient mice, tried to mimic a monogenic 

condition in humans, PI3Kγ deficiency. This investigation found a lack of spontaneous 

inflammation in lung and gut of PIK3CG-deficient mice when the mice were housed in 

specific pathogen-free environments. However, “dirty” PIK3CG-deficient mice that were 

co-housed with “pet-store mice” shared many of the features of disease witnessed in 

patients with human PI3Kγ deficiency. Specifically, they exhibited elevated IL12 release 

from macrophages, defective immunoglobulin production, increased inflammatory T cell 

infiltration in the intestine, and a reduced frequency of circulating Tregs (37). This natural 

pathogen-dependent mouse model of immunodeficiency and immunopathology indicates a 

crucial role of microbes to contribute to the clinical features of human monogenic PI3Kγ 
deficiency.

In addition to gut microbial dysbiosis in gastrointestinal disorders, children with severe 

atopic dermatitis were found to harbor altered fungal skin microbiomes. Notably, in 

monogenic PIDs such as STAT3, WAS, and DOCK8 deficiency, skin mycobiome has 

been found to differ from that of healthy controls (58). PID skin also displayed altered 

microbial population structures not observed in controls, including colonization with 

Clostridium species, and Serratia marcescens, as well as elevated fungal diversity and 

increased representation of opportunistic fungi such as Candida and Aspergillus. Clinical 

parameters, including markers of disease severity, correlated positively with prevalence of 
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Staphylococcus and Corynebacterium. Further investigation is needed to determine if an 

altered landscape of the human skin microbiome contributes to disease in patients with these 

Treg-related monogenic PIDs.

Increasingly children with IBD are monogenic gene deficiencies (Table 1) that can lead 

to very early onset IBD (VEO-IBD), as defined by disease development before the age 

of 6 years. VEO-IBDs are phenotypically and genetically distinct from older-onset IBD 

(59), even though their discovery indicated a polygenic component (60). It is important to 

remember that the gut microbiota colonizes and develops primarily between birth and 3 

years of life (61), at a time that coincides with the age of onset of VEO-IBD. Advances 

in next-generation sequencing (NGS) methods improves identification of known molecular 

defects in VEO-IBD caused by single gene mutations (62). As mentioned, it is noteworthy 

that CGD caused by the CYBB mutation results in deficiency of NADPH oxidase 2 (Nox2) 

that impairs the production of reactive oxygen species (ROS) in colon. Once patients with 

CGD are infected with encapsulated bacteria, these patients often develop VEO-IBD, with a 

distal colitis and Treg-deficiency (36, 63). Recently rare variants in Nox1 have been found in 

patients with VEO-IBD, showing elevated level of ROS in patient-derived colonic organoid 

cultures, and constitutively generating a high level of ROS in the crypt lumen within colonic 

crypts (64).

A recent report compared fecal microbiota composition of patients with VEO-IBD and 3 

types of PIDs: CGD (11 samples), X-linked inhibitor of apoptosis (XIAP) deficiency (7 

samples), and partial tetratricopeptide repeat domain 7A (TTC7A) deficiency (7 samples), 

comparing their 16S sequences with those patients with non–VEO-IBD (18 samples) and 

healthy subjects (23 samples) (65). Abnormal stool microbiota composition and diversity 

in these PIDs was characterized by disease-specific changes, with a dramatic increase 

in Proteobacteria from the Enterobacteriaceae family in the TTC7A group; an increased 

proportion of bacteria from the Bacteroidetes phylum in CGD; and increased Clostridiaceae 
family in XIAP. Patients with CGD also exhibited an increased abundance of Ruminococcus 
gnavus, an organism that has also been associated with ileal Crohn’s disease in children 

(65). The dysbiosis induced by the host genetic defect might play a role in the PID 

phenotype, such as perpetuating inflammation and intestinal involvement, but it seems 

unlikely that dysbiosis is the cause of IBD. In support of this concept, treatment of the 

primary immunodeficiency may “cure the dysbiosis.” SCID-X1 gene therapy for children 

with severe combined immune deficiency (SCID-X1) caused by mutation of the IL2RG 

gene has been shown to reconstitute T cell repertoire and modulate antibiotic resistance 

gene levels. Interestingly, SCID-X1 gene therapy enabled not only the expression of 

therapeutic IL2RG gene but also cleared microbial pathogens (viruses) and normalized the 

gut microbiome (66).

Microbial modification as a potentially therapeutic strategy

Microbial dysbiosis associated with Treg-related monogenic autoimmunity may be altered 

by targeting the enteric microbiota with the aim of modifying the course of these monogenic 

disorders. The early assembly of a healthy microbiome is heavily influenced by the mode 

of delivery (vaginal or C-section) and feeding type (breast milk or formula) (61). Recently 
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Aagard et al. reported that the placenta contains a unique microbiota, which can affect the 

formation of a child’s microbiome (67). Mothers are key determinants in establishing the 

microbiota in early stages of life. Maternal influences in early life, including gestation, 

birth history, breastfeeding, and toddler exposures, are extremely important in microbiota 

formation, making this period a promising target for bio-therapeutics that may prevent 

diseases later in life (68). Factors such as diet, antibiotic use, and enteric diseases will also 

impact the composition of the microbiota, but the community generally will subsequently 

recover (69).

Current strategies for gut microbiota modulation include prebiotics, probiotics, postbiotics, 

and FMT (68). Prebiotics are foods (containing high dietary fiber and other substrates 

such as polysaccharides and casein-derived amino acids) used by probiotics or commensal 

bacteria for growth. Recent studies showed that a lack of dietary fiber induces a substantial 

loss of microbial community diversity and influences the ability of gut bacteria to be 

transferred from parents to their offspring (70).

Probiotics have been defined as live, natural microorganisms that are given orally to 

confer health benefits to the host (71). Bifidobacterium and Lactobacillus strains are 

the most widely available commercialized probiotics, although there are numerous other 

species with proposed or demonstrated health benefits. The beneficial effects of probiotics 

in treating diseases are strain-specific, which means that different probiotic strains are 

not equally potent. Probiotics interact with the host within a very complex microbiota 

ecosystem. Therefore, it has been challenging to define the crosstalk between individual 

bacterial strains and the host. However, studies suggest that probiotics modulate immune 

responses, ensure homeostasis of the healthy mucosal microbiota, and may ameliorate 

immune-mediated diseases. Their mechanisms of action include enhanced production of 

antimicrobial peptides; maintenance of the gastrointestinal epithelial barrier; and facilitation 

of adequate interactions between the gut microbes, intestinal epithelial cells and mucosal 

immune cells. Finally, probiotics or their associated microbiota produce biologically 

functional metabolites that modulate the immune system and may act as neurotransmitters to 

modulate brain functions (72).

Probiotics have been studied for autoimmune diseases in humans and animal models, 

mostly in polygenic autoimmune disorders including T1D, MS, RA, SLE, and IBD (73). 

Stirsciuglio et al found that a commercial probiotic (Tribif), composed of 3 strains of 

Bifidobacterium (B. longum, B. breve, and B. infantis) improved antigen sampling and 

processing by dendritic cells, ameliorated the impairment of intestinal innate immunity and 

reduced uncontrolled microbial expansion in the intestine of children with CD, but not in 

those with UC (74). The study evaluated how probiotics may be used as potential preventive 

therapy for chronic pediatric inflammatory diseases (CIDs) including celiac disease and IBD 

through altering the balance of Tregs and inflammatory T effector cells in the diseases (75). 

However, high-quality studies of the effect of probiotics in pediatric IBD are limited (75, 

76).

For monogenic PIDs, as exemplified by the IPEX syndrome, we have demonstrated that 

the gut microbial dysbiosis due to Foxp3+ Treg deficiency in SF mice, a mouse model of 
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IPEX syndrome, could be reprogramed by probiotic Lactobacillus reuteri DSM 17938 (L. 
reuteri), a human-derived probiotic, which has been used to treat infantile colic and acute 

infectious diarrhea (77–79). In several studies, we found that L. reuteri prolongs the survival 

and reduces hepatic and lung autoimmunity in SF mice. The L. reuteri mechanism of action 

involved modulating gut microbiota to produce functional metabolites. One key metabolite, 

adenosine-derived inosine we found exerted anti-inflammatory effects that were mediated 

via the adenosine 2A (A2A) receptors. The A2A receptors expressed on T cells once bound 

with A2A agonists result in inhibition of inflammatory Th1 and Th2 differentiation and 

reducing Th1- and Th2- associated cytokines (Figure 3). It is now well-established that one 

of the ways by which Tregs control inflammatory T effector cells (Teffs) (Th1/Th2/Th17) is 

by producing adenosine, generated from ATP/AMP by CD39/CD73 signaling expressed on 

Treg cells (Figure 3A) (80, 81). However, this adenosine-mediated control Treg/Teff balance 

was broken in the setting of Treg-deficiency (Figure 3B).

In our studies, the probiotic L. reuteri increased production adenosine (73, 82) and its 

metabolite inosine (49), which directly interacted with A2A expressed on Teffs (in the 

absence of Tregs) to control inflammation/autoimmunity (Figure 3C) (49, 83). We proved 

the importance of this adenosine-A2A receptor mechanism by (a) blocking A2A receptors 

by a pharmacological blocker (Figure 3C) and (b) genetic knockout of A2A receptors in 

SF mice (Figure 3D). Either manipulation prevented any beneficial effect of L. reuteri in 

ameliorating clinical symptoms (49, 84). The exact mechanism of how L. reuteri produces 

adenosine and inosine, either individually and/or by L. reuteri-modulated commensal 

bacteria requires further characterization. L. reuteri may additionally have a therapeutic 

effect in other monogenic autoimmune disorders that involve reduced numbers and/or 

dysfunction of Tregs, for example in IPEX-like syndromes as listed in Table 1. Currently, 

there are no reports on FMT as a treatment for monogenic PID.

In summary, the metabolic byproducts from probiotics with beneficial biological activity 

in the host, for example adenosine/inosine, short-chain fatty acids (SCFAs acetate, butyrate 

and propionate), and tryptophan have been termed postbiotics (68). The engineering of 

genetically modified probiotics that produce this type of postbiotic, or the choice and dose 

of postbiotic, to benefit host health is a formidable challenge for scientists dedicated to 

improving the outlook of people with autoimmune diseases.

Conclusion

The onset of monogenic PIDs related to Treg deficiency/dysfunction is not linked to 

the composition of the intestinal microbiome. However, current evidence shows that Treg-

associated monogenic autoimmune disorders are clearly associated gut microbial dysbiosis. 

The therapeutic effect of probiotics and the probiotic-derived inosine in a mouse model of 

human IPEX syndrome provides a good example of how modulating gut microbiota can be 

of therapeutic value in treating monogenic PID. The translatability of microbiome-directed 

therapies for the diseases listed in Table 1 will undoubtedly be hindered by the fact that these 

conditions are rare, and clinical trials will initially lack statistical power. To aid in discovery, 

mouse models with a humanized immune system such as mice with humanized Foxp3-gene 

edited mutations (85, 86) and/or with a humanized microbiome may become very useful 
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tools. Thus, translational research will help to assess the impact of prebiotics, probiotics, 

synbiotics, postbiotics, and FMT for children with these disorders.
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Figure 1. 
Clinical autoimmune manifestations of representative monogenic autoimmune diseases. A-

B. Immunodysregulation, polyendocrinopathy, and enteropathy syndrome with X-linked 

inheritance (IPEX syndrome) (30); C-F. Autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy (APECED) (34), G. Omenn syndrome (OS) (35), and H-I. Wiskott-

Aldrich syndrome (WAS) (32).
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Figure 2. Two main groups of autoimmune diseases as defined by innate-adaptive immunity and 
microbial environment.
Group I diseases follow the rules of innate-adaptive immunity activation. They can be 

affected by microbial environment, and/or may result from genetic alterations to PRR 

sensing and signaling, co-stimulation, or cytokine production. Innate PRR expressed on 

APC recognizes pathogenic antigens and presents to naïve T cells, activating naïve T 

cells by several pairs of ligand-receptor interactions to differentiate T cell subsets. This 

results in more inflammatory Teffs and self-reactive T cells than Tregs, and damage to 

self-tissues. Group II diseases are caused by genetic alterations in lymphocyte development 

or regulation. An example shown is a Foxp3 gene mutation in Foxp3+Treg cells in thymus, 

which results in defects in peripheral tolerance due to Treg-deficiency/dysfunction that 

cannot inhibit inflammatory Teffs, yielding high levels of proinflammatory cytokines. Group 

II diseases are independent of innate-adaptive immune activation, and their onset is less 

affected by microbiota.

Ags: antigens; PRR: pattern recognition receptor; PAMPs: pathogen-associated molecular 

patterns; APC: antigen presenting cell; nTreg: natural regulatory T cell; Teff: effector T cell; 

Tem: effector/memory T cell.
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Figure 3. 
The mechanism of probiotic Lactobacillus reuteri DSM 17938 (L. reuteri)-associated 

protection against Treg-deficiency autoimmunity in SF mice.

A. In WT mice, Tregs generate adenosine from ATP/AMP by CD39/CD73 signaling 

expressed on Treg cells. Adenosine interacts with A2A expressed on inflammatory Teffs 

to control Teff s and reduce inflammation. B. In SF mice, inflammatory Teffs lose their 

control by Tregs through loss of the adenosine mechanism, resulting in severe inflammation 

and autoimmunity. C. Gavage feeding of L. reuteri to SF mice modulates gut microbiota, 
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generates the adenosine metabolite inosine, an A2A agonist, which interacts with A2A to 

inhibit Teff cell differentiation and reduce multiorgan inflammation. D. The therapeutic 

effect of L. reuteri and inosine was blocked by genetically knocking out receptor A2A in SF 

mice, indicating that A2A plays a key role in L. reuteri protection.

ATP: adenosine triphosphate; AMP: adenosine monophosphate; A2A: adenosine receptor 

2A; TCR: T cell receptor; SF mice: scurfy mice; Th1: T helper cell; Treg: regulatory T cell; 

Teff: effector T cell.
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Table 1.

Main monogenic PIDs related to Treg-deficiency/dysfunction

Monogenic PID Genetic 
defect

Mechanisms

IPEX syndrome FOXP3 Functional Treg deficiency-defects in peripheral tolerance; increased activation of Th1 and 
Th2, and high pro-inflammatory cytokine production (28, 30,87–90)

IPEX-like syndromes Other single gene mutation/deletion-induced IPEX-like syndromes; Treg-deficiency/
dysfunction-defects in peripheral tolerance, increased activation of T helper cells, and high 
pro-inflammatory cytokine production

CD25 Deficiency IL2RA Combined B and T cell deficiency, defective IL10-expressed Tregs (91–93)

ITCH Deficiency or SMAD ITCH T cell unresponsiveness to APC, defects in induction of T cell activation, differentiation, and 
tolerance (94,95)

BACH2 Haploinsufficiency BACH2 Impaired development of Treg, increased Th1, Th2 and Th17 differentiation, and impaired B 
cell class-switch recombination (96)

LRBA Deficiency and 
CTLA4 Deficiency

LRBA 
CTLA4

Functional dependence of CTLA4 to the LRBA, Treg cell depletion, and impaired Treg-
mediated suppression (97,98)

DOCK8 Deficiency DOCK8 Impaired immune cell migration, function and survival. Also impaired Treg suppression 
function (via STAT3) (32,99,100)

MALT1 Deficiency MALT1 Severe combined immune deficiency (SCID) with impaired Treg function (101, 102)

STAT1 (GOF)
Or STAT3 (GOF)
Or STAT5B (LOF)

STAT1
STAT3
STAT5B

STAT1: Enhanced MHC II expression and activation of Th1 and production high level of 
IFN-γ, but normal Tregs (103–105). STAT3: Increased Th17, reduced the numbers of Tregs 
and impaired Treg function (106–108).
STAT5B: Reduced Treg numbers and altered Treg function (109,110)

Others

APECED AIRE Defects in negative selection of auto-reactive T cells and generation of Tregs in thymus; 
defects in central T cell tolerance (47,111–113)

Omenn syndrome (OS) RAG1 or 
RAG2

Defects in VDJ recombination; oligoclonal survive of self-reactive B- and T-cells escape from 
thymus; low levels of Tregs and reduced Treg suppression function (35,114,115)

DiGeorge syndrome (DGS) BTX1 Disturbances of the central tolerance mechanisms resulting in escape of autoreactive T cells 
and an altered production of Tregs (116–118)

Chronic granulomatous 
disease (CGD)

CYBB Deficiency in NADPH oxidase, which impairs the production of ROS which is considered 
necessary for macrophages to activate Tregs (36,63)

Wiskott–Aldrich syndrome WASp Combined B and T cell dysfunction; reduced antibody production and impaired T cell 
cytoskeleton rearrangements and immune synapse; reduced Treg suppression function and 
high pro-inflammatory cytokine production (32, 33,119,120)

PI3Kgamma deficiency PIK3CG Facilitation of signaling downstream of G protein-coupled receptors on chemokine receptor 
responses in myeloid cells, reduced peripheral blood memory B, memory CD8+T, and Tregs, 
and increased CXCR3+ tissue-homing CD4+ T cells, elevated inflammatory IL12 and IL23 
produced by macrophages (37).
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