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Abstract

High-density DNA microarrays are useful tools for analyzing sequence changes in DNA samples. Although microarray
analysis provides informative signals from a large number of probes, the analysis and interpretation of these signals have
certain inherent limitations, namely, complex dependency of signals on the probe sequences and the existence of false
signals arising from non-specific binding between probe and target. In this study, we have developed a novel algorithm to
detect the single-base substitutions by using microarray data based on a thermodynamic model of hybridization. We
modified the thermodynamic model by introducing a penalty for mismatches that represent the effects of substitutions on
hybridization affinity. This penalty results in significantly higher detection accuracy than other methods, indicating that the
incorporation of hybridization free energy can improve the analysis of sequence variants by using microarray data.
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Introduction

High-density oligonucleotide microarrays have recently become

widely utilized not only for analysis of gene expression, but also for

analysis of genomic sequences [1,2,3]. For example, microarrays

designed for the detection of single-nucleotide polymorphisms

(SNPs) have been used in the field of medicine to study genomic

sequences and to determine disease susceptibility [4,5,6]. Oligo-

nucleotide probes hybridize more efficiently to DNA targets whose

sequence is exactly complementary than to targets which have

mismatch, i.e., only partially or imperfectly match the probes.

Statistical analyses have been developed to detect the difference of

probe intensity between two strains. Gresham et al., proposed an

algorithm named SNPscanner for high-density tiling microarrays

[7]. It models the decrease of intensity caused by a mismatch due

to a SNP as a function of probe position and bases reference

sequence adjacent to the SNP, and detect SNPs by comparing the

observed intensity with prediction of the models to find the best

likelihood score.

While recent rapid development in the study of next-generation

sequencers has drastically reduced the cost of whole genome

sequencing [8,9], the use of high-density microarrays for genomic

analysis has advantages because of simplicity and cost of the

experiments [10]. Although microarray analysis provides infor-

mative signals from a large number of probes, the analysis and

interpretation of these signals bring with them certain inherent

limitations. First, the complex dependency of signals on the probe

sequences. It is well known, for example, that the hybridization

energy of probes and their target nucleotides is dependent on the

probe sequences to the extent that the signal intensities of probes

are significantly different, even when the concentrations of the

target nucleotide are identical [11,12,13]. Second, the existence of

inappropriate signals because of non-specific binding between the

probe and target, an inevitable phenomenon when a complex

mixture of DNA or RNA fragments are hybridized to millions of

probes simultaneously [14,15]. Several methods have been

proposed to overcome these difficulties and improve the accuracy

and sensitivity of microarrays for expression analysis

[16,17,18,19]. For example, we previously proposed a thermody-

namic model of hybridization that considered non-linear effects of

probe-target interaction, in which the parameters representing the

dependence of hybridization free energy on probe sequences were

obtained by fitting between the expected and observed probe

signals [20]. We also developed an algorithm to estimate non-

specific binding between probe and target by using a similar

thermodynamic model, with which non-specific signals can be

predicted with high accuracy (R2*0:8) [22]. Using these

thermodynamic models, we have been able to significantly

improve the accuracy and dynamic range of mRNA quantifica-

tion. However, so far, similar precise thermodynamic modeling

has not been applied for the detection of sequence substitution,

and the sequence dependence of signal intensities, including the

effect of single or multiple mismatches between probes and target

genomic DNA fragments, remains unclear.

In this study, we have developed a novel algorithm that uses an

appropriate thermodynamic model of hybridization to detect
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single-base substitutions by using microarray data. Into this

thermodynamic model, we introduced a penalty for mismatches,

which represents the effects of substitutions on hybridization

affinity. To evaluate the detection accuracy of sequence substitu-

tions, we used a high-density tiling microarray designed for the E.

coli W3110 strain. To detect differences in the genomic sequences

between the different strains, we applied the genomic DNA of a

previously sequenced E. coli strain DH1 ME8569 [21] to this tiling

microarray, and successfully identified 219 out of 227 known

single-base substitutions. This detection accuracy is significantly

higher than that of other methods as SNPscanner, indicating that

incorporation of hybridization free energy into analysis models can

improve the detection of sequence variants by using microarray

data.

Methods

Design of resequencing microarray
A fine-tuned resequencing array covering the whole genome of

E. coli W3110 strain was newly developed according to the

Affymetrix CustomExpress Arrays. Figure 1 shows the design of

the high-density tiling microarray. First, we designed tiling probes

corresponding to the entire reference genome at 1 base pair (bp)

resolution by using 21-bp-long perfect match (PM) probes. Probes

corresponding to the forward and reverse strand were designed

alternatively. In addition, for each PM probe, we designed all 3

possible mismatch (MM) probes, whose central base was

substituted with other base types. Note that, we define ‘‘probe

position’’ in the genome according to the position of the central

(11th) base.

Because the genome size of E. coli is approximately 4.65 M bp,

18.6 million probes were required to cover the whole genome, in

addition to all possible substitutions described above. All 18.6

million probes were represented on 3 Affymetrix CustomExpress

arrays, each containing 5 million probes per array in 5mm format.

Thermodynamic model of hybridization
For the detection of nucleotide substitution, we developed a

model to estimate the number of target molecules hybridized to

probes based on a Finite Hybridization (FH) model [20,22]. In this

model, the intensity of a probe is estimated as a function of the

probe sequence and the target concentrations. We let the sequence

of the ith PM probe, whose central (11th) base is the ith base in the

genome, be given by bi~(b1
i ,b2

i , . . . ,b21
i ), where (bk

i [fA,C,G,Tg)
represents the base at k-th position of probe. Then, we assumed

that the hybridization free energy DG(bi) between the probe and

the specific target, i.e., the target DNA fragment without mismatch

to the corresponding PM probe, can be estimated by the expanded

position-dependent nearest neighbor model proposed in [20] as

follows:

DG(bi)~
X20

k~2

fw(k)E(bk{1
i ,bk

i ,bkz1
i )g, ð1Þ

where w(k) denotes a position dependent weight that decreases as

it approaches the probe ends, and E(bk{1
i ,bk

i ,bkz1
i ) represents the

local hybridization energy at kth position that depends on the

types of the adjacent 3 base pairs.

Next, we considered the penalty in the hybridization free energy

due to mismatches between the probe sequence and the target.

Here, we assumed that when there is a single base mismatch at the

k-th position of the ith probe, a penalty term

w(k)E’(bk{1
i ,bk

i ,bkz1
i ,b’) is simply subtracted from DG(bi), where

b’ represents the substituted base type at the k-th position, and E’
denotes the energy penalty. We estimated the decrease of

hybridization efficiency in the MM probe by using E’ because

the MM probes we designed contain a single mismatch between

the probe and target, even when there is no base substitution in the

sample genomic DNA. Moreover, when the sample genomic DNA

contains a single-base substitution at a certain position, MM

probes around this substitution have 2 mismatches relative to the

target, and we estimated the hybridization free energy of such MM

probes by subtracting 2 energy penalty terms corresponding to 2

mismatches from DG(bi). We further assumed that the number of

base substitutions in the sample genomic DNA is sufficiently small

to allow us to neglect cases in which multiple substitutions occur

within a probe length (i.e., 21 bp).

We also estimated the hybridization free energy for the non-

specific hybridization, DGns, according to [22]. Here, this free

energy was assumed to be represented by the expanded position-

dependent nearest neighbor model, as follows:

DGns(bi)~
X20

k~2

fw(k)Ens(bk{1
i ,bk

i ,bkz1
i )g, ð2Þ

where Ens(bk{1
i ,bk

i ,bkz1
i ) denotes the local hybridization energy

for non-specific targets at the k-th position. Furthermore, following

the results of our previous study [22], we also considered the effect

of self-folding of probes by computing expected free energy of

folding DGfold using UNAfold [23], which is based on the model

proposed by Zuker and others [24,25].

On the basis of the above free energy terms, the reaction

coefficients for the probe-target hybridization, non-specific

hybridization, and probe folding for the ith probe were calculated

Figure 1. Schematic illustration of the design of the resequen-
cing array. (a) Both forward and reverse strands were tiled
alternatively, in 1 bp resolution. Probes were divided into 3 arrays
cyclically (shown by red, green, and blue). (b) For each perfect match
(PM) probe, the central base in the probe (shown by bold) is
substituted. Three mismatch (MM) probes were designed by substitut-
ing the central base into other bases (shown by small letters).
doi:10.1371/journal.pone.0054571.g001
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as K(bi)~exp(DG(bi)=RT), Kns(bi)~exp(DGns(bi)=RT), and

K fold(bi)~exp(wfoldDGfold(bi)=RT), respectively, where R and

T represent the gas constant and temperature, and wfold is a

scaling constant as an adjustable parameter. Hence, by consider-

ing the finiteness of both probe and target molecules [20,22], the

log-transformed signal intensity of the ith probe is estimated as

follows:

I est(bi)~C(X sp(bi)zX ns(bi))zIbg ð3Þ

X sp(bi)~
1

2
f1=Keff (bi)zAzx ð4Þ

{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=Keff (bi)zAzx)2{4Ax

q
g

Keff (bi)~
K(bi)

1zK fold(bi)zKns(bi)N
ð5Þ

X ns(bi)~
(A{X (bi))K

ns(bi)N

1zK fold(bi)zKns(bi)N
, ð6Þ

where C and A represent the scale coefficient and the total probe

concentration, respectively, x and N give the effective concentra-

tion of specific and non-specific targets assumed to be identical for

all probes, and Ibg denotes the optical background intensity. In

this model, 343 parameters are adjusted to fit the above expected

intensities to the observed data: 43 parameters for the hybridiza-

tion free energy between specific target and PM probes E( � � � ); 43

parameters for the hybridization free energy between non-specific

target and probes Ens( � � � ); 43|3 parameters for the energy

penalty parameter E’( � � � ); 19 for the position dependence of the

weight factors wk; and 4 parameters for the scale constant wfold, C,

A and the optical background constant Ibg.

Parameter estimation
We determined the parameters in the above hybridization mode

by fitting the estimated signal intensities of the probes to those

observed experimentally. For the fitting, we obtained the intensity

signals using the genomic DNA that was used to design the tiling

microarray, and computed the residual sum of squares R(i) at the

ith position in the genome, as follows:

R(i)~
X

j

flog(
IMT(bj)

IWT(bj)
)g2

, ð7Þ

R’(iDb’)~
X

j

flog(
IMT(bj)

IWT(bj)
)

{log(
I est(bjDi,b’)

I est(bj)
)g2 ð8Þ

where IWT(bj) and IMT(bj) represent the observed intensity of the

probe at the jth position on the genome, for the wild-type and

mutant strain, respectively. R(i) denotes the sum of squared log-

intensity ratio of the mutant strain to the wild type, at the i-th
position in the genome. R’(iDb’) denotes the sum of squared error

between the observed and estimated intensity ratio, where I est(bj)

represents the estimated signal intensity for jth probe, assuming no

mismatch, while I est(bjDi,b’) estimates the intensity assuming that

the ith base in the genome is substituted to a different base, b’. We

then summed over all PM and MM probes containing the ith base,

i.e., the PM probes ranging i{10vjviz10 and corresponding

MM probes. Note that, in case of MM probes, a mismatch should

exist at the center of the probe, and in case of Iest(bjDi,b’), another

mismatch exists because of mutation between probe and target

sequence, and therefore, the energy penalty was subtracted from

the hybridization free energy. The parameter values in the model

were determined to minimize the sum of the above residual errors

over all genome positions, by using a simple genetic algorithm

implemented in R software [26].

Detection of nucleotide substitution
To identify nucleotide substitutions in a genomic DNA sample

that was compared to the reference sequence of E. coli W3110, we

first calculated the above residual sum of squares R(i) for all

genome positions by using the parameter values determined by the

above fitting procedure. In theory, when a single-base substitution

exists at the ith genome position in comparison with the reference

genome, the residual sum of squares R(i) becomes significantly

larger than those without substitution, and the residual sums be

used to identify the position of the substitution. In practice,

however, when a substitution exists at the ith position, residual

errors around the substitution, i.e., R(i{1), R(iz1), R(i{2),
R(iz2), � � �, were increased. Therefore, for the initial screening of

nucleotide substitutions in the genome sample, we identified a

candidate region of the genome, in which the running average of

residual errors SR(i)T was larger than a given threshold value t.

Here, we considered only regions equal to or longer than 10 bp

and smaller than 80 bp. When regions smaller than 10 bp

exhibited average large residual errors, this may be due to

experimental errors, while in the case of longer regions, this is not

due to single-base substitution, but due to a structural mutation,

such as deletion. Such cases were neglected, because in this

algorithm, we focused on the detection of single-base substitutions

only.

After the initial screening to identify genomic regions that might

contain nucleotide substitution, we further analyzed the residual

errors between the estimated and observed signal intensity ratios to

determine the precise position and base type of the substitution.

Here, assuming that the relative error between the observed and

estimated intensities follows a normal distribution with a constant

variance, a log likelihood ratio L(iDb’) for testing the hypothesis

that i-th base is the original base in the reference genome versus

substitution to b’[fA,C,G,Tg is given by,

L(iDb’)~C’(R(i){R’(iDb’)), ð9Þ

where C’ is a constant coefficient that can be neglected when we

compare only relative differences of the value of L(iDb’). Because

we assumed a normal distribution of the intensity ratio, the

likelihood ratio is proportional to the difference between R(i) and

R’(iDb’). The value of R(i) may increase because of some signal

noise, but in such cases, the value of R’(iDb’) will not decrease. On

the other hand, where a base in the genome was substituted to

another base b’ by mutation, the value of R(i) will increase, and

that of R’(iDb’) will decrease. A large positive value of L(iDb’)

A Novel Algorithm for SNP Detection by Microarrays
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indicates a greater likelihood that the base type b’ will be detected

at the ith position than the original base type in the reference

genome. To determine the position and base type of the

substitution, we sought the position i and base type b’ that

maximize the likelihood ratio L(iDb’) in the candidate region.

Then, when the maximum likelihood ratio exceeds a given

threshold h, we called the base substitution occur to base type b’ at

ith position. In this detection algorithm, there are 2 parameters t
and h that change the sensitivity and specificity of the detection.

Reference sequences
The reference genome sequences of E. coli W3110 and DH1

ME8569 strain were compared using MUMmer [27,28] and 259

single base substitutions were identified. Substitutions meeting the

following criteria were removed from further evaluation because

these substitutions are difficult to detect using this microarray-

based method: (1) another neighboring substitution occurs within

21 bp; (2) multiple copies of the sequence, i.e., the same sequence

longer than 21 bp, exist in the genome; (3) the GC content of +10
bp is either too low (ƒ1=21) or too high (§20=21), After removal

of these conditions, we used the remaining 227 single-base

substitutions as reference single-base substitutions.

Data acquisition
E. coli W3110 and DH1 [21] were obtained from the National

BioResource Project at the National Institute of Genetics,

Shizuoka, Japan. Genomic DNA of these strains was isolated

and purified using an Wizard Genomic DNA Purification Kit

(Promega) in accordance with the manufacturer’s instructions. For

sample preparation of genomic DNA, standard methods for

fragmentation and end-terminus biotin labeling were carried out

following the Affymetrix protocols with slight modifications.

Hybridization, washing, staining, and scanning were also carried

out according to the Affymetrix protocols. Following washing and

staining, the arrays were scanned using a Gene-Chip Scanner

3000 (Affymetrix). Absolute signal intensities of every probe in

every sample were generated using GCOS 1.0 software (Affyme-

trix). The extracted microarray data were analyzed using custom-

designed scripts in R software [26].

Results and Discussion

Detection of single-nucleotide substitutions by FH model
To evaluate the accuracy of the FH model for detection of

single-nucleotide substitutions, we applied a method, in which we

compared the intensity data obtained from the genomic DNA

samples of E. coli strains DH1 and W3110 as the reference. In

comparison with the reference genome, the genomic DNA of E.

coli DH1 has 227 known single-base substitutions, which are

detectable by this array-based approach. We first determined the

343 parameters in the FH model described in the Materials and

Methods section by minimizing the average residual sum R(i) over

the whole genome that was calculated from the intensity data of

the reference genome. Because the tiling microarray we used

contains large MM probes, we can estimate the mismatch energy

penalty by fitting to the physical model of hybridization while

considering the mismatch. After this parameter fitting using the

reference genome, all parameter values were fixed and used

throughout this study.

Next, by using the parameter values, we screened candidate

genomic regions containing alterations by identifying regions

showing higher values of the residual error R(i) than a threshold t.

Here, we empirically set this parameter t to R(i)z6s, where R(i)
denotes the average of the residual error R(i) over the whole

genome and s represents the standard deviation of R(i). We

identified 2 large regions showing significantly large residual errors

(11 Kbp and 15 Kbp) and we confirmed that these regions

corresponded to gene deletions fixed in DH1 genome sequence in

comparison with the W3110 genome. After removing such gene

deletions from the analysis, 4030 candidate regions showing large

R(i) were left, which might correspond to single-nucleotide

substitution.

To detect single-nucleotide substitutions, we next evaluated the

likelihood of all possible substitutions within each candidate

region. Figure 2(a) shows an example of the intensity ratio

IMT(bj)=IWT(bj) at a candidate region. In this genomic region, the

raw signal intensities of the DH1 sample generally decreased in

comparison with those of the W3110 sample, because of the single-

base substitution at the position indicated by the arrow. On the

other hand, at the position indicated by the arrow, the intensity of

a single MM probe increased compared to that in the wild type,

because the single-base substitution in the DH1 genome made this

MM probe into a PM probe. Figure 2(b) represents the log

likelihood ratio L(iDb’) calculated from the data in Figure 2(a).

Each character represents the central base b’ used for the

calculation of the likelihood ratio. We sought the single-base

substitution that maximizes this likelihood ratio in the candidate

region, e.g., in the case of Figure 2(b), the substitution to base A at

the position indicated by the arrow maximized the likelihood ratio,

which might indicate that substitution to adenine occurred at this

position. However, because this screening might still generate

false-positive calls, we chose candidate substitutions that exhibit

log likelihood ratios larger than a threshold value h for the final

call of the substitution detection. Because in this analysis, the true

position and base type of all single-base substitutions fixed in the

DH1 genome were known, we investigated the dependence of

sensitivity, defined by the number of detected TP divided by the

total number of substitutions, on the parameter h. The black line

in Figure 3 shows the change in sensitivity changes with h, where

the x-axis indicates the number of false positives (FP). The red

arrow in this figure represents the data point that maximizes the

number of true positives (TP) { FP (with the threshold

h~{0:02). With this parameter value of h, 227 substitutions

were called by our algorithm. Of these substitutions, we confirmed

that 219 were located within +2 bases of the true substitutions,

corresponding to the 8 FP calls. Moreover, because the total

number of substitutions we analyzed between DH1 and W3110

genomes was 227, 8 substitutions were not identified (i.e., false

negatives). Among 219 calls that were called close to the true

substitutions, 213 were called at the exact position, while 212 were

identified correctly with respect to both positions and base types. It

should be noted that, of the 8 FP calls, 6 calls corresponded to the

insertion of transposons in the DH1 genome.

Comparison with SNPscanner
To evaluate the detection performance of our method, we

compared the detection sensitivity and specificity with the widely

used detection algorithm ‘‘SNPscanner’’ proposed by Gresham et

al., which is also based on likelihood estimation [7]. The essential

difference between our method and SNPscanner is that the former

considers the physical model of hybridization to represent intensity

changes by mutations, while the latter is based on a linear

regression model of intensity ratio between the control and the

sample strains. It should be noted that SNPscanner can use only

the data of MM probes whose central base is complementary to

that of corresponding PM probes, and that other possible types of

MM probe cannot be included in for this analysis. Accordingly, we

removed intensity data of such non-complementary MM probes
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from both tiling microarray datasets for the comparison of these 2

methods. Moreover, we removed two-thirds of perfect and MM

probes to meet the limit of the number of intensity data in

SNPscanner. After removal of these probes, the resolution of the

tiling array data became 3 bp, while the original data were at 1-bp

resolution.

Figure 3 shows the sensitivities obtained by both methods. As

shown, independently of the threshold values for the substitution

detection, our detection algorithm exhibited higher sensitivity than

SNPscanner, which is likely due to the incorporation of

appropriate physical models to represent probe intensity in our

method.

Effect of tiling resolution on detection sensitivity
Given the existence of various types of tiling microarrays with

different probe resolutions, evaluation of the effect of probe

resolution on the detection performance is important for probe

design. Accordingly, using 1-bp-resolution data from our high-

density tiling microarray, we investigated how the sensitivity of

substitute detection depends on the probe resolution by removing

probe data and reducing the tiling resolution to 3 bp, 5 bp, 7 bp,

9 bp, 11 bp, and 13 bp. In this analysis, we discarded non-

complementary MM probes, and used the intensity data of PM

and complementary MM probes only. Figure 4 shows the

sensitivities obtained using various tiling resolutions and threshold

parameters h. As anticipated, the detection sensitivity decreases

with the decrease of tiling resolution, i.e., the number of probes

covering each base position. For example, 209 (92%) substitutions

were identified in the case of 3 bp resolution, where each base pair

on the genome is covered with 7 different probes. This result

suggested that, for the reliable identification of substitutions (e.g.,

w90% sensitivity), the tiling resolution should be 5 bp or less.

In conclusion, in this paper, we have presented a new method to

identify single-base substitutions based on tiling microarray data

by using a thermodynamic model of hybridization between probes

and target DNA fragments. By introducing an energy penalty for

Figure 2. Detection of substitution. a) Signal intensity ratio of DH1
to W3110 in a candidate region. The horizontal axis represents the
position of the probe in the genome and the vertical axis represents
intensity ratio of the DH1 to the wild type. Black circles represent the
intensity ratio of PM probes, and letters a,c,g,t represent those of MM
probes with corresponding substitutions. The intensity in DH1 drops
around a mutation due to mismatch, but there is a mismatch probe that
shows higher intensity in DH1 than that in W3110 (show by the red
arrow). (b) Log likelihood ratio evaluated from the intensity ratio. The
vertical axis represents the likelihood that there is a mutation at that
position.
doi:10.1371/journal.pone.0054571.g002

Figure 3. Comparison to SNPscanner. Black, green, and red lines
represent sensitivity of our method, our method using a single array,
and SNPscanner, respectively. The horizontal axis shows the number of
false positive (FP) call, while the vertical axis represent the sensitivity
sensitivity defined by the number of detected true positive (TP) divided
by the total number of substitutions. The red arrow corresponds to the
parameter by which TP-FP was maximized (h~{0:02), where 219
substations out of the known 227 ones were correctly detected, while 8
FPs were detected. As shown, the sensitivity of our method (black and
green) is superior to SNPscanner (red) independently of the threshold
values for the substitution detection.
doi:10.1371/journal.pone.0054571.g003
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hybridization free energy due to mismatches between the probe

sequence and the target, our model allows the prediction of

differences in signal intensities between PM probes and probes

with single or double substitutions. Using this model, single-

nucleotide substitutions can be identified by the maximum

likelihood method. We evaluated this method and showed that it

can detect 219 (96.5%) of known substitutions by comparing the

microarray data of 2 different E. coli strains. This detection

performance was significantly higher than that of an existing

method, presumably because of the appropriate modeling of

hybridization process. We also showed that the sensitivity of the

detection depends on the tiling resolution of the microarray, and

found that a resolution of 5 bp or less is necessary for accurate

detection of single-base substitutions. It should be note that, since

this model can predict absolute signal intensities based on the

sequence of probes, we can detect the amplification of a specific

region of genome from the change of signal intensities accurately.

In this study, we use the genomic DNA of E. coli as an example to

evaluate our methods for microarray-based SNP detection. The

results depend only on the physical properties of genomic DNA

and oligo nucleotide probes, while they should be independent of

the sources of genomic DNA including prokaryotes and eukaryotes

after appropriate extraction of genomic DNA. Thus, we expect

that this method will be useful for the other model systems and

genomes for future development of microarray-based SNP

detection.

Due to the recent advances in Next-gen sequencer techniques,

the use of microarray for SNP detection decreased its impact.

However, still it has advantages on the simplicity of experimental

procedure and low costs, and thus even though it is not used for

advanced researches, it can be used for consumer application as

medical device for diagnosis. Therefore, a method to overcome the

disadvantages of this method, as low accuracy and high false

positive rate, is desirable, and we expect that our study contributes

the improvement of the microarray-based SNP detection. We

anticipate that our method will improve the detection performance

of single-nucleotide substitution in tiling microarray data.
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Figure 4. Detection sensitivity using reduced data sets. Lines
represents the relationship between the number of false positive and
the sensitivity as Fig. 3 with different probe resolutions. Since resolution
is limited, we regard substitutions called within +11 bp range of the
true ones as correctly detected. As expected, the sensitivity decreases
with the decrease of the probe resolution. For example, 1*3 bp tiling
resolution is necessary to achieve more than 90% sensitivity.
doi:10.1371/journal.pone.0054571.g004
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