
 International Journal of 

Molecular Sciences

Review

Hepatocellular Carcinoma Immunotherapy and the Potential
Influence of Gut Microbiome

Sally Temraz 1,*, Farah Nassar 1, Firas Kreidieh 1, Deborah Mukherji 1 , Ali Shamseddine 1 and Rihab Nasr 2,*

����������
�������

Citation: Temraz, S.; Nassar, F.;

Kreidieh, F.; Mukherji, D.;

Shamseddine, A.; Nasr, R.

Hepatocellular Carcinoma

Immunotherapy and the Potential

Influence of Gut Microbiome. Int. J.

Mol. Sci. 2021, 22, 7800.

https://doi.org/10.3390/ijms22157800

Academic Editors: Silvia Turroni and

Riccardo Masetti

Received: 6 June 2021

Accepted: 30 June 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Internal Medicine, Hematology/Oncology Division,
American University of Beirut Medical Center, Riad El Solh, Beirut 1107 2020, Lebanon;
fn16@aub.edu.lb (F.N.); fk30@aub.edu.lb (F.K.); dm25@aub.edu.lb (D.M.); as04@aub.edu.lb (A.S.)

2 Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center,
Riad El Solh, Beirut 1107 2020, Lebanon

* Correspondence: st29@aub.edu.lb (S.T.); rn03@aub.edu.lb (R.N.)

Abstract: Disruptions in the human gut microbiome have been associated with a cycle of hepato-
cyte injury and regeneration characteristic of chronic liver disease. Evidence suggests that the gut
microbiota can promote the development of hepatocellular carcinoma through the persistence of this
inflammation by inducing genetic and epigenetic changes leading to cancer. As the gut microbiome
is known for its effect on host metabolism and immune response, it comes as no surprise that the
gut microbiome may have a role in the response to therapeutic strategies such as immunotherapy
and chemotherapy for liver cancer. Gut microbiota may influence the efficacy of immunotherapy by
regulating the responses to immune checkpoint inhibitors in patients with hepatocellular carcinoma.
Here, we review the mechanisms by which gut microbiota influences hepatic carcinogenesis, the
immune checkpoint inhibitors currently being used to treat hepatocellular carcinoma, as well as sum-
marize the current findings to support the potential critical role of gut microbiome in hepatocellular
carcinoma (HCC) immunotherapy.

Keywords: hepatocellular carcinoma; gut microbiome; microbiota; immunotherapy

1. Introduction

Primary liver cancer comprises mainly hepatocellular carcinoma (HCC) in 75–85%
of cases, followed by intrahepatic cholangiocarcinoma in 10–15%, in addition to other
non-common types. In 2018, liver cancer accounted for 841,080 new cases and 781,631
new deaths worldwide, thereby rendering it the sixth most common cancer and the fourth
most common cause of cancer-related death in the world; Ferlay, et al. [1]. Liver cancer
is characterized by a poor prognosis with a 5-year survival of 18% unless discovered
at an early stage where invasive treatment is the only resolution and includes ablation,
surgical resection, or liver transplant. The majority of patients have advanced disease at
diagnosis and, until recently, sorafenib was the only treatment option of systemic therapy
for those patients. Currently, the standard of care in patients with advanced HCC involves
immunotherapy combination of the checkpoint inhibitor atezolizumab and the targeted
antibody bevacizumab.

The gut microbiota, also known as the ‘forgotten organ’, is the largest micro-ecosystem
in the human body, which encompasses more than 1014 microorganisms. It is vital to
the host’s metabolism and immune response, including antitumor response following
immunotherapy and chemotherapy [2]. Although the liver is not in direct contact with the
microbiota, it has a tight bidirectional link to the gut through the biliary tract, hepatic portal
vein, and bile secretions [3,4]. However, dysbiosis, which is defined as qualitative and
quantitative alterations of the gut microbiota, has the potential to destroy the gut barrier
and increase intestinal penetrability. Moreover, the translocation of gut bacteria, bacterial
overgrowth, and dysplasia of the immune system result in a condition known as “leaky
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gut” [5]. Both dysbiosis and the leaky gut are associated with a cycle of hepatocyte injury
and regeneration characteristic of chronic liver disease, thereby encouraging the stepwise
progression from fibrosis to cirrhosis and ultimately HCC.

In this review, we delve into the mechanism through which the gut microbiota impacts
the pathogenesis of various liver diseases leading to HCC and summarize the current
findings to support the potential critical role of gut microbiome in HCC immunotherapy.

2. Role of Gut Microbiota

The liver is supplied with blood from two sources: the hepatic artery, which originates
from the celiac trunk, and the portal vein, which brings blood from the intestines and
spleen. Blood carried through the portal vein is rich in nutrients and bacterial components
like bacterial DNA, lipopolysaccharides (LPS), and peptidoglycan [6]. Kupffer cells, which
are macrophages located in the sinusoids of the liver, eliminate these bacterial components
under normal physiological conditions and prevent their harm to the body [7]. The gut
microbiota also plays an important role in protecting the portal vein from invasion by
pathogens through bacteriocins released by symbiotic bacteria that occupy the intestinal
epithelium [8]. The gut microbiota also participates in gut immune maturation, such as the
maturation of intestinal CD4+ and CD8+ T cells and dendritic cells [9].

Moreover, some metabolites that are produced by the gut microbiota regulate the
physiological functions of the liver. The gut microbiota ferments dietary fibers to produce
short-chain fatty acids, including butyric and propionic acid, which regulate prolifera-
tion and differentiation of liver cells and suppress inflammation in the liver by inducing
regulatory T cells through an epigenetic mechanism [10]. The gut microbiota also break-
downs inulin, cellulose, and starch, which are termed indigestible carbohydrates, the end
result of which is used by the hepatic cell for growth [11]. Another microbial metabolite
resulting from polyphenolics, which are found in berries and pomegranates, is urolithin.
This metabolite thwarts harmful substances from entering the portal vein [12]. Thus, gut
homeostasis is essential for health.

3. Mechanisms by Which Gut Microbiota Induce HCC

There is a close link between dysbiosis and leaky gut; dysbiosis causes the intestinal
barrier to be more permeable, whereas the leaky gut allows bacterial metabolites and
microbiota-associated molecular patterns (MAMPs) to translocate and reach the liver.

Dysbiosis impacts metabolic pathways in the gut microbiota through production
of bacterial metabolites such as bile acids. Gram-positive bacteria have an enhanced
capacity for the conversion of bile acid to secondary bile acids [13]. Bacterially generated
secondary bile acid deoxycholic acid (DCA) regulates liver sinusoidal cells (LSEC)- and
CXCL16-dependent natural killer T cell (NKT) recruitment [14]. DCA was also found to
increase levels of toll-like receptor 2 (TLR2) expression on hepatic stellate cells (HSCs),
which in turn also increase TLR2 agonist lipoteichoic acid (LTA) in tumor promoting
senescence-associated secretory phenotype (SASP) [15]. Moreover, DCA activates the
mammalian target of rapamycin (mTOR) pathway in hepatocytes, ultimately resulting in
HCC development [16]. In dysbiosis, short chain fatty acids specifically butyrate resulting
from digestion of inulin have been found to promote HCC development [17].

MAMPs include LPS, which is a cell wall component of gram-negative bacteria that
triggers inflammation via TLR 4. TLR4 has been shown to mediate hepatic carcinogenesis
via resident liver cells such as HSCs, macrophages, or hepatocytes. In addition to con-
tributing to a chronic inflammatory state, TLR4 promotes the development of liver fibrosis
and upregulates the expression of epiregulin, a potent HCC-promoting hepatomitogen, in
HSCs [18]. Another MAMP is LTA and its receptor is TLR2. TLR2 is essential for the innate
immune response to Gram-positive bacteria, being activated by bacterial lipoproteins and
peptidoglycan. Once activated, TLR2 leads to a SASP, which seemed to be mediated in
collaboration with DCA as well as Cox2 and prostaglandin E in HSCs [15]. In summary,
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the chronically injured liver is subject to increased exposure to a wide range of TLR ligands
as well as other bacterial products and metabolites (Figure 1).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 15 
 

 

lipoproteins and peptidoglycan. Once activated, TLR2 leads to a SASP, which seemed to 

be mediated in collaboration with DCA as well as Cox2 and prostaglandin E in HSCs [15]. 

In summary, the chronically injured liver is subject to increased exposure to a wide range 

of TLR ligands as well as other bacterial products and metabolites (Figure 1). 

 

Figure 1. Mechanisms by which the gut microbiome plays a role in hepatocellular carcinoma. Besides the known risk 

factors for HCC, which include NAFLD, HBV, HCV, and alcohol, dysbiosis and leaky gut resulting from dysfunctional 

microbiota represent two other major factors leading to hepatic carcinogenesis. As such, several pathways are initiated, 

leading to HCC, which are detailed above. HCC: hepatocellular carcinoma; CLD: chronic liver disease; NAFLD: non-

alcoholic fatty liver disease; HCV: hepatitis C virus; HBV: hepatitis B virus; MAMPs: microbiota-associated molecular 

patterns; TLR: toll-like receptor; LPS: lipopolysaccharide; LTA: lipoteichoic acid; SASP: senescence-associated secretory 

phenotype; DCA: deoxycholic acid; NKT: natural killer T cell; LSECs: liver sinusoidal cells; mTOR: mammalian target of 

rapamycin; CXCL-16: CXC motif ligand 16 

4. Changes in Gut Microbiota Associated with Different Liver Diseases 

As the gut microbiome plays a critical role as an intermediary in the gut–liver axis, 

its composition and function evolve as changes in its host take place [19]. For instance, 

under normal physiological conditions, the majority of gut microbiota consists of micro-

organisms from Firmicutes phylum as well as from the Actinobacteria and Verrucomicrobia 

phyla [20]. Their role is to protect the host from overgrowth of pathogenic organisms. 

However, with different underlying chronic liver diseases (CLDs) come distinct changes 

in the gut microbiome profile, characterized mainly by loss of microbial diversity. The 

specific etiologies underlying CLD states have been characterized by unique microbial 

pathogens and loss of beneficial microorganisms, which are explicitly shown in Table 1. 

  

Figure 1. Mechanisms by which the gut microbiome plays a role in hepatocellular carcinoma. Besides the known risk factors
for HCC, which include NAFLD, HBV, HCV, and alcohol, dysbiosis and leaky gut resulting from dysfunctional microbiota
represent two other major factors leading to hepatic carcinogenesis. As such, several pathways are initiated, leading to
HCC, which are detailed above. HCC: hepatocellular carcinoma; CLD: chronic liver disease; NAFLD: non-alcoholic fatty
liver disease; HCV: hepatitis C virus; HBV: hepatitis B virus; MAMPs: microbiota-associated molecular patterns; TLR:
toll-like receptor; LPS: lipopolysaccharide; LTA: lipoteichoic acid; SASP: senescence-associated secretory phenotype; DCA:
deoxycholic acid; NKT: natural killer T cell; LSECs: liver sinusoidal cells; mTOR: mammalian target of rapamycin; CXCL-16:
CXC motif ligand 16.

4. Changes in Gut Microbiota Associated with Different Liver Diseases

As the gut microbiome plays a critical role as an intermediary in the gut–liver axis, its
composition and function evolve as changes in its host take place [19]. For instance, under
normal physiological conditions, the majority of gut microbiota consists of microorganisms
from Firmicutes phylum as well as from the Actinobacteria and Verrucomicrobia phyla [20].
Their role is to protect the host from overgrowth of pathogenic organisms. However,
with different underlying chronic liver diseases (CLDs) come distinct changes in the gut
microbiome profile, characterized mainly by loss of microbial diversity. The specific
etiologies underlying CLD states have been characterized by unique microbial pathogens
and loss of beneficial microorganisms, which are explicitly shown in Table 1.
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Table 1. Human studies involving gut microbial composition in various CLD states.

CLD Type Microorganism Reference

NAFLD

↓ Prevotella
↑ Proteobacteria
↑ Fusobacteria

↑ Erysipelotrichaceae
↑ Enterobacteriaceae
↑ Lachnospiraceae

↑ Escherichia Shigella
↑ Streptococcaceae

[21]

↓ Firmicutes
↑ Bacteroidetes [22]

↓ Prevotella
↑ Bacteroides

↑ Ruminococcus
[23]

↑ Escherichia coli
↑ Bacteroides vulgatus [24]

Cirrhosis

↑ Enterobacteriaceae
↑ Enterococcus [25]

↓ Bacteroidetes
↑ Proteobacteria
↑ Fusobacteria

↑ Enterobacteriaceae
↑ Streptococcaceae
↑ Veillonellaceae

[26]

↓ Bacteroides
↑ Prevotella
↑ Clostridium
↑ Streptococcus
↑ Veillonella

[27]

↓ Akkermansia
↑ Enterobacteriaceae
↑ Streptococcaceae

[28]

HBV

↓ Bifidobacterium
↓ Clostridiaceae
↓ Clostridia

↓ Ruminococcus
↑ Klebsiella

↑ Escherichia coli
↑ Proteus

↑ Enterobacter

[29]

↓ Bacteroidetes
↑ Proteobacteria [30]

Cirrhosis + HCC
↓ Bifidobacterium
↑ Bacteroidetes

↑ Ruminococcaceae
[28]

HBV + HCC ↓ Verrucomicrobia
↑ Actinobacteria [31]

HCC

↓ Faecalibacterium
↓ Ruminococcus

↓ Ruminoclostridium
↑ Escherichia-Shigella

↑ Enterococcus

[32]

↑: increased; ↓: decreased; NAFLD: non-alcoholic fatty liver disease; HBV: hepatitis B virus; HCC:
hepatocellular carcinoma.

Studies of the human gut microbiome and its association with CLDs have shown
some heterogeneous results in terms of the type of abundant microorganisms constituting
the gut microbiome of the same liver disease and in terms of abundance of specific bacteria
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(Table 1). For instance, Bifidobacterium, the gram-positive and non-spore forming bacilli, was
decreased only in HBV patients and in patients with cirrhosis causing HCC. This bacterium
belongs to the Actinobacterium phylum, which has beneficial effects on human health by
acting as probiotic, thereby reducing plasma and intestinal endotoxin levels, changing gut
microbiota contents, enhancing the gut–liver axis, and modulating the immunity [3,33].
On the other hand, the butyrate producing bacteria family Ruminococcus was less abundant
in patients with HBV and HCC, but more abundant in patients with NAFLD and cirrhosis
plus HCC. Another butyrate-producing bacteria family Clostridia was less abundant in
patients with HBV, but more abundant in patients with cirrhosis. Butyrate, a kind of
short chain fatty acid, is the major energy source of the intestinal mucosa and plays an
important role in immunomodulation [34,35]. The phylum Bacteriodetes is composed
of three large classes of gram-negative bacteria. Lower classifications of Bacteroidetes
include Prevotella, Bacteriodales, Flavobactericeae, and so on. Bacteriodetes are abundant in
patients with NAFLD and cirrhosis plus HCC, but decreased in patients with cirrhosis and
HBV. Potentially pathogenic gram-negative bacteria family belonging to the Proteobacteria
phylum such as Enterobacteriaceae comprises Escherichia coli, Shigella, Proteus, Klebsiella, and
Enterobacter, which are increased in NAFLD, cirrhosis, HCC, and HBV. Enterobacteriaceae
are ethanol-producing bacteria capable of causing liver damage and have been associated
with levels of serum interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF)-α [36,37].
Firmicutes phylum consists of gram-positive bacteria and includes both beneficial (Clostridia,
Clostridiaceae, and Ruminococcus) and pathogenic (Enterococcus and Streptococcus) bacteria.
Streptococcus are abundant in patients with cirrhosis and NAFLD, while Enterococcus are
abundant in HCC. It is possible that the differences in microbial taxonomy are related to the
causality of the disease, the geographical area, the target sequencing regions and depths of
16S ribosomal RNA gene, or the database that is selected.

5. Strategies to Manipulate Gut Microbiome for HCC Treatment/Prevention

Evidence suggests that the gut microbiota can promote the development of HCC
through various mechanisms and may influence the efficacy of chemotherapy by modulat-
ing the host response to chemotherapeutic drugs, such as facilitation of drug efficacy, medi-
ation of toxicity and abrogation of anticancer effects [38–40], the efficacy of immunotherapy
by regulating the responses to the ICIs of patients with different cancers, and the efficacy
of targeted therapy by modulating the metabolism and efficacy of some targeted drugs
such as sorafenib and Wnt inhibitors [41–43]. Manipulation of the gut microbiota with
probiotics, prebiotics, and FMT might be a novel, safe, and low-cost strategy to treat or
prevent HCC.

5.1. Probiotics

Probiotics are a general term for active, beneficial microorganisms that colonize the
human intestines and reproductive system. Probiotics have the potential to mitigate
HCC risk by modulating host gut microbiota to promote growth of beneficial microbes
and inhibit the growth of harmful ones [44]. Besides the traditional probiotic genera
Bifidobacterium and Lactobacillus, a new group of probiotic bacteria, the so-called ‘next
generation probiotics’, is currently emerging that mainly belong to butyrate-producing
members of Clostridium clusters IV and XIVa (e.g., Faecalibacterium prausnitzii) or to the
health-promoting mucin degraders Akkermansia muciniphila.

Probiotic bacteria can reduce the risk of HCC pathogenesis through multiple pro-
cesses. For instance, probiotic bacteria promote the growth of beneficial gut microbes that
produce anti-inflammatory metabolites with tumor suppression activity. Prohep, a novel
probiotic mixture of L. rhamnosus, E. coli Nissle 1917, and heat inactivated VSL#3 (1:1:1),
has been shown to shift the gut microbial community toward certain beneficial bacteria,
including the Prevotella and Oscillibacter, which are known producers of anti-inflammatory
metabolites, which subsequently reduced the Th17 polarization and promoted the differ-
entiation of anti-inflammatory Treg/Tr1 cells in the gut [45]. Moreover, supplementation
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with probiotics attenuates HCC pathogenesis by downregulating the expression of TLR-
induced inflammation. In Wistar rats with thioacetamide-induced liver cirrhosis, early
administration of L. plantarum significantly decreased the expression of TLR4, CXCL9, and
PREX-2 together with improvement in liver function [46].

Probiotic bacteria also have the ability to promote the epigenetic modulation of host
gene expression to mitigate the pathogenesis of HCC. The probiotic bacteria L. acidophilus
and B. bifidum reduced the expression of oncomirs (miR-155 and miR-221) and the onco-
genes BCL2-like 2 (Bcl-w) and Kristen rat sarcoma viral oncogene homolog (KRAS) in the
liver of mice treated with the colon carcinogen azoxymethane. Moreover, mice supple-
mented with these probiotics had an overexpression of the tumor suppressor miR-122 and
tumor suppressor gene transcription factor PU.1 [47]. L. paraplantarum probiotic bacteria
can reduce the diabetes-induced DNA damage in the livers of albino Wistar rats [48].
A novel probiotic mixture of S. cerevisiae and L. acidophilus enriched with selenium and
glutathione synergistically prevented carbon tetrachloride (CCl4)-induced liver fibrosis by
the activation of silent information regulator 1 (SIRT1) in hepatocytes. SIRT1 is a member
of class III group of HDAC. Activation of SIRT1 can ameliorate the hepatic oxidative stress,
ER stress, and inflammation induced by CCl4 in the rat livers, as indicated by reduced
serum ALT and AST activities [49].

The antiviral activity of probiotics can be beneficial to mitigate HCC risk by preventing
chronic HBV and HCV infections. Treatment HepG2 cells with extract of B. adolescentis
resulted in a reduction of HBV viral load and cellular degeneration [50]. In HCV subjects,
E. faecalis reduced the serum levels of liver damage markers ALT and AST, but failed to
reduce HCV viral load [51]. Administration of probiotic bacteria increased the response
rate to pegylated IFN-α and ribavirin treatment by 25% [52].

Moreover, probiotics prevent hepatic lipotoxicity by ameliorating obesity. In NAFLD
patients, supplementation with the probiotic bacteria L. acidophilus and B. lactis can ame-
liorate liver damage, as indicated by reduced serum levels of ALT, AST, and total choles-
terol [53]. In obese NAFLD patients, probiotic administration significantly reduced body
weight and total body fat content. Moreover, probiotic administration decreased hepatic
inflammation by downregulating the pro-inflammatory cytokine TNF-α [54,55].

Another method by which probiotics mitigate HCC pathogenesis is by controlling
aflatoxin contamination. Supplementation with the yogurt containing the probiotic bacteria
S. thermophilus, L. rhamnosus, and W. cibaria significantly reduced the urine availability
of aflatoxin metabolites [56]. Finally, probiotic bacteria can biotransform non-nutritional
dietary components such as proanthocyanidin into simpler metabolites with anticancer
effects against HCC. For instance, biotransformed proanthocyanidins inhibit the prolifer-
ation of HepG2 cells by depleting mitochondria. The effective concentration of biotrans-
formed proanthocyanidins is significantly low compared with the non-biotransformed
material [57].

Overall, probiotics represent a new potential therapeutic strategy for HCC. Probiotic
strains not only are a safe and less expensive therapeutic approach, but also can be tailored
to different ages. Many more studies are required to clarify how to choose the specific
probiotics for different sexes, ages, and diets.

5.2. Fecal Microbial Transplantation (FMT)

FMT is a new technique that transplants the functional flora from healthy human feces
into the gastrointestinal tract of patients in order to reconstitute new beneficial intestinal
flora [58]. FMT may repress the development of HCC by modulating the gut microbiome,
reducing the production of some cytotoxic metabolites or inflammatory mediators and
reversing the dysbiosis of the gut flora [59]. FMT is an effective treatment against recur-
rent Clostridium difficile infection. Moreover, it was shown to be a promising therapy for
the management of several non-communicable disorders, including inflammatory bowel
diseases and metabolic disorders [60]. FMT has increased in popularity because of its
efficacy and ease of use and is being evaluated in clinical trials for NASH, NAFD, hepatitis,
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and cirrhosis. However, thus far, there have been few studies on the role of FMT in the
treatment of HCC. More animal studies are required to prove the utility and safety of FMT.
Possible drawback to its usage may include risk of disease transmission between the donor
and recipient, patients’ acceptance, undesirable outcomes, and the uncertain impacts on
the recipient’s immune system [59].

5.3. Prebiotics

Prebiotics are a dietary supplement that can selectively stimulate the growth and
activity of bacteria and have a beneficial effect on the host [61]. Prebiotics can also restore
the stability of the microbial community and reduce proinflammatory pathways that trigger
hepatocarcinogenesis [62]. Among the most researched prebiotics, dietary polyphenols
are of key importance. They include phenolic acids, flavonoids, and lignins found in
nuts, wine, tea, fruits, and vegetables. Polyphenols, among other dietary substances such
as coffee, vanadium, dietary fiber, fruits, and vegetables, show encouraging results in
terms of chemoprevention in HCC [63]. Tea polyphenols possess potent antioxidant and
anti-inflammatory properties and modulate several signaling pathways and provide an
effective and promising alternative for the chemoprevention and treatment of HCC [64].
Moreover, curcumin, a major pigment of turmeric, is a natural antioxidant possessing a
variety of pharmacological activities and therapeutic properties. Curcumin has shown
anti-angiogenic properties in hepatocellular carcinoma cells (HepG2)-implanted nude
mice [65] and induces apoptosis through mitochondrial hyperpolarization and mtDNA
damage in HepG2 cells [66]. Moreover, curcumin effectively inhibits N-diethylnitrosamine
(DEN)-induced murine hepatocarcinogenesis [67]. Resveratrol belongs to the stilbene
group and is a main component of wine. Resveratrol inhibits urokinase-type plasminogen
activator expression and the metastasis of HCC cells and is a powerful chemopreventative
agent. The inhibitory effects were associated with the downregulation of the transcription
factors of SP-1 signaling pathways [68]. Another prebiotic, the flavonoid quercetin, ame-
liorates nitric oxide production and nuclear factor NF-κB activation in IL-1β-activated rat
hepatocytes [69].

6. Immunotherapy for HCC

Immune checkpoint blockade has become a turning point in the treatment of HCC,
whereby it induces its antitumor effect by modulating the immune system [70]. Immune
checkpoint inhibitors (ICIs), including programmed cell death protein-1 (PD-1) antibod-
ies and programmed cell death 1 ligand 1 (PD-L1) antibodies, are potential therapeutic
strategies for the treatment of HCC (Table 2).

Nivolumab is an anti-PD-1 antibody that was assessed primarily in the phase I/II non-
randomized CheckMate 040 trial [71]. The trial included a total of 262 patients; 48 patients
in a dose-escalation phase and 214 patients in a dose-expansion phase. The overall response
rate (ORR) was 20% and the disease control rate was 64% with Nivolumab 3 mg/kg in
the dose-expansion phase compared with 15% and 58% in patients receiving the dose-
escalation phase, respectively [71]. Further analysis from this trial revealed a median
duration of response of 17 months in sorafenib-naïve patients and 19 months in patients
treated previously with sorafenib. Moreover, the 18-month overall survival (OS) rates
were 57% and 44%, respectively [72]. Based on these results, the FDA granted accelerated
approval for nivolumab for patients with HCC who progressed on or after sorafenib. The
Phase III CheckMate 459 trial compared nivolumab to sorafenib in the first-line treatment of
advanced HCC. Median OS was 16.4 months for nivolumab and 14.7 months for sorafenib
(HR 0.85 [95% CI: 0.72–1.02]; p = 0.0752). ORR was 15% for nivolumab (14 patients with
complete response (CR)) and 7% for sorafenib (5 patients with CR) [73].
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Table 2. Trials involving immune checkpoint inhibitors for the treatment of HCC.

Treatment Patients Clinical Phase PFS (Months,
95% CI)

Median OS
(Months, 95%
CI)

RR (%, 95% CI) Reference

Nivolumab Advanced HCC Phase I/II
3.4 (1.6–6.9), for
DS 4.1 (3.7–5.5),
for EX

15.0 (9.6–20.2), for
DS NR, for EX

15% (6–28), for
DS 20% (15–26),
for EX

[71]

Nivolumab

Advanced HCC Phase III

3.7 (3.1–3.9) 16.4 (13.9–18.4) 15%

[73]
Sorafenib 3.8 (3.7–4.5)

14.7 (11.9–17.2)
(HR 0.84,
p = 0.0419)

7%

Nivolumab
plus Ipilumab Advanced HCC Phase I/II 22.8 (95% CI,

9.4 NR)
32% (95% CI,
20–47%) [79]

Pembrolizumab Advanced HCC Phase II 4.8 (3.4–6.6) 12.9 (9.7–15.5) 17% (11–26) [74]

Pembrolizumab

Second-line,
Advanced HCC

Phase III

3.0 (2.8–4.1) 13.9 (11.6–16.0) 18.3
(14.0–23.4)

[75]
Placebo 2.8 (2.5–4.1)

10.6 (8.3–13.5)
(HR 0.781,
p = 0.023)

4.4 (1.6–9.4)

Pembrolizumab
plus Lenvatinib

Unresectable
HCC Phase Ib 9.3 22.0 46.0% (36.0–56.3) [76]

Atezolizumab
plus
bevacizumab

Unresectable
HCC Phase 1b 34% [77]

Atezolizumab
plus
Bevacizumab

Unresectable
HCC

Phase III

6.8 (5.7–8.3) 67.2%
(61.3–73.1)

[78]

Sorafenib
4.3 (4.0–5.6)
(HR 0.59,
p < 0.001)

54.6%
(45.2–64.0)
12 months
response

DS: dose-escalation group; EX: dose-expansion group; NR: not reached; HR: hazard ratio

Pembrolizumab is another anti-PD-1 antibody that was assessed in the non-randomized,
open-label phase II KEYNOTE-224 trial. The trial included 104 patients with advanced
HCC that were intolerant to sorafenib or have progressed on it. An objective response was
seen in 18 (17%; 95% CI 11–26) out of 104 patients. The best overall responses were 1 (1%)
complete and 17 (16%) partial responses; meanwhile, 46 (44%) patients had stable disease,
34 (33%) had progressive disease, and six (6%) patients were not assessable [74]. Based
on these results, the FDA granted accelerated approval for the use of pembrolizumab in
patients progressing on sorafenib. Another phase III trial comparing pembrolizumab to
placebo in the second-line treatment of advanced HCC did not meet its primary endpoints
(OS and PFS) based on the rigorous statistical plan [75]. The combination of lenvantanib,
an inhibitor of vascular endothelial growth factor receptor (VEGFR), of fibroblast growth
factor receptor, of platelet-derived growth factor receptor (PDGFR), and other growth
signaling kinases, and pembrolizumab was assessed in the phase Ib trial of 104 patients
with unresectable HCC [76]. This combination is currently being investigated in a phase III
trial against lenvantanib alone as a front-line therapy for unresectable or metastatic HCC
(NCT03713593).

Atezolizumab is an anti-PD-L1 antibody that has been assessed mainly in combination
with the VEGF inhibitor bevacizumab. This combination showed an ORR of 34% in patients
with metastatic or unresectable HCC in a phase Ib trial [77]. Further analysis from the
phase III IMbrave150 trial showed superior results of this combination over sorafenib in the
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first-line treatment of unresectable HCC [78]. However, prior to initiation of this regimen,
patients should undergo endoscopic evaluation and management of esophageal varices
within 6 months prior to treatment and based on the assessment of bleeding risk.

7. Influence of Gut Microbiome on Cancer Immunotherapy

A number of recent studies suggest that manipulating the microbiota may modu-
late the response to cancer immunotherapy. Oral administration of Bifidobacterium alone
improved tumor control to the same degree as PD-L1 specific antibody therapy, and combi-
nation treatment nearly abolished tumor outgrowth. Augmented dendritic cell function
leading to enhanced CD8+ T cell priming and accumulation in the tumor microenvironment
mediated the effect in melanoma [80]. Another study examining oral and gut microbiota
profiles in melanoma patients receiving PD-1 immunotherapy (n = 112) revealed significant
differences in the diversity and composition of the patient gut microbiome of respon-
ders versus non-responders to immunotherapy. Analysis of 43 patient fecal microbiome
samples by 16S ribosomal RNA gene sequencing showed an enrichment of Clostridiales,
Ruminococcaceae, and Faecalibacterium in responders to anti-PD-1 treatment and Bacteroidales
in non-responders. Twenty-five samples from the same cohort were analyzed by whole
genome shotgun sequencing, confirming the enrichment of Feacalibacterium spp. in respon-
ders [81]. Analysis of baseline stool samples from metastatic melanoma patients before
immunotherapy treatment, through an integration of 16S ribosomal RNA gene sequencing,
metagenomic shotgun sequencing, and quantitative polymerase chain reaction for selected
bacteria, revealed a significant association between commensal microbial composition and
clinical response. Bacterial species more abundant in responders included Bifidobacterium
longum, Collinsella aerofaciens, Enterococcus faecium, Lactobacillus animalis, Parabacteroides
merdae, Roseburia intestinalis, and Veillonella parvula [82]. Moreover, germ-free mice that were
colonized with bacteria were shown to be enriched in murine and human responders to
ICIs, immune responsiveness was augmented via increased T helper 1 response, increased
frequency of tumor-residing Batf3-lineage dendritic cells, and decreased frequency of
colon-derived peripheral regulatory T-cells. Moreover, baseline gut microbiota enriched
with Faecalibacterium and other Firmicutes was associated with beneficial clinical response
to immune checkpoint inhibitor targeting cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) (Ipilimumab) in melanoma patients [83]. In non-small cell lung cancer and renal
cell carcinoma, the commensal that was most significantly associated with a favorable
clinical outcome in both cancer types was Akkermansia muciniphila [84]. In pancreatic ductal
adenocarcinoma, bacterial ablation was associated with immunogenic reprogramming of
the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor
cells and an increase in M1 macrophage differentiation, promoting Th1 differentiation
of CD4+ T cells and CD8+ T cell activation. Bacterial ablation also enabled efficacy for
checkpoint-targeted immunotherapy by upregulating PD-1 expression [85]. These lines of
evidence indicated that specific commensal microbes may shape patients’ responses to ICI
immunotherapy, even though the gut bacteria that were associated with response across
these published studies do not overlap.

Chronic antibiotic therapy is known to lead to gut dysbiosis and may disrupt this asso-
ciation, potentially diminishing the benefit of ICIs. Recently, several groups have reported
a negative correlation between antibiotic exposure and outcomes for patients receiving
treatment with ICIs for advanced solid cancers. In a retrospective study examining the
influence of broad spectrum antibiotics on immunotherapy for advanced cancer, the use of
antibiotics resulted in shorter progression free survival and OS [86]. The results from phase
1 trials in patients with renal cell carcinoma and non-small cell lung cancer showed that
antibiotic use within 30 days of initiating ICI was associated with worse OS [87]. Antibiotic
use in advanced non-squamous non-small cell lung cancer patients receiving ICI as second
or later lines was identified as the only parameter statistically significantly associated with
progression free survival and OS [88]. Moreover, in patients with advanced epithelial tu-
mors, treatment with antibiotics inhibited the clinical benefit from ICIs [84]. Patients treated
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with antibiotics had significantly lower progression-free survival and OS rates compared
with patients who had not received antibiotics. FMT from cancer patients who responded
to ICIs into germ-free or antibiotic-treated mice ameliorated the antitumor effects of PD-1
blockade, whereas FMT from non-responding patients failed to do so. Metagenomics
of patient stool samples at diagnosis revealed correlations between clinical responses to
ICIs and the relative abundance of Akkermansia muciniphila. Oral supplementation with A.
muciniphila after FMT with non-responder feces restored the efficacy of PD-1 blockade in an
interleukin-12-dependent manner by increasing the recruitment of CCR9+CXCR3+CD4+
T lymphocytes into mouse tumor beds [84]. In a phase 1 clinical trial to assess the safety
and feasibility of FMT and reinduction of anti-PD-1 immunotherapy in 10 patients with
anti-PD-1-refractory metastatic melanoma, clinical responses were seen in three patients.
Treatment with FMT was associated with favorable changes in immune cell infiltrates
and gene expression profiles in both the gut lamina propria and the tumor microenviron-
ment [89]>. Moreover, gut microbiota may secrete modulators or generate metabolites to
improve HCC cells’ sensitivity to apoptosis induction and increase the response to ICI in
advanced HCC patients [90].

8. Impact of Gut Microbiome on HCC Immunotherapy and Potential Use of Gut
Microbiome Targeting Approaches

Zheng et al. reported the response to anti-PD-1 antibody immunotherapy in patients
with HCC refractory to sorafenib [91]. Responders included those patients with complete
response, partial response, or stable disease. Fecal samples were collected at intervals. In
this study, non-responders had increased Proteobacteria from the third week, which became
dominant by week twelve. However, responders had enriched Akkermansia muciniphila and
Ruminococcaceae spp. [91]. These results suggest that the gut microbiome could possibly
affect the outcome of anti-PD-1 immunotherapy in HCC patients.

Hepatic cirrhosis is often an underlying condition in HCC patients. Cirrhosis is
associated with an extreme dysbiosis, which, in some circumstances, can contribute to
drug resistance. It is thus reasonable to speculate that modulating the gut microbiome very
likely has an impact on the treatment of HCC. Studies addressing molecular interactions
underlying the effects of the microbiota on HCC development and antitumor immune
responses are currently being pursued by different groups. For instance, a multicenter,
randomized, double-blind, placebo-controlled study of nutritional supplementation with
probiotics to prevent the development of HCC in cirrhosis patients (NCT03853928) will start
recruiting patients. Another trial (NCT02021253) examined the effect of the administration
of probiotics on intestinal barrier function in patients with chronic liver disease (fibrosis
stage F3 or F4) operated on for HCC. A clinical trial combining vancomycin treatment
with immune checkpoint blockade has recently opened at the National Cancer Institute
(NCT03785210). This study will hopefully answer whether combining checkpoint inhibition
with selective manipulation of the microbiota will be beneficial in patients with HCC.

9. Conclusions

Based on the growing body of evidence, it is becoming clear that modulation of the
gut microbiome poses as a potential adjunct to current anti-cancer therapeutic strategies.
Given that patients with HCC and other CLDs are subject to dysbiosis, it is enticing to
speculate that dysbiosis is at the basis of immunotherapy failure in some patients and
modulation of the gut microbiome in a way to overcome the state of dysbiosis may have
a strong therapeutic effect in patients with HCC. For now, it is still not definite whether
the current findings on the role of the gut microbiome in antitumor immune responses
from animal models, as well as from patients with other tumor types, also apply to patients
with HCC. New investigations on the gut microbiome, especially those focusing on fecal
microbiota transplantation/probiotics, are clearly warranted to assist in the development
of new paradigms and personalized treatments to enhance immunotherapy of HCC
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SASP Senescence-associated secretory phenotype
mTOR Mammalian target of rapamycin
CLD Chronic liver disease
NAFLD Non-alcoholic fatty liver disease
HCV Hepatitis C virus
HBV Hepatitis B virus
IL-6 Interleukin-6 (IL-6)
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