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A B S T R A C T   

In this study, an empirical predictive model was developed based on the quantitative relationships between blend 
properties, critical quality attributes (CQA) and critical process parameters (CPP) related to blending and tab-
leting. The blend uniformity and API concentration in the tablets were used to elucidate challenges related to the 
processability as well as the implementation of PAT tools. Thirty divergent ternary blends were evaluated on a 
continuous direct compression line (ConsiGma™ CDC-50). The trials showed a significant impact of the impeller 
configuration and impeller speed on the blending performance, whereas a limited impact of blend properties was 
observed. In contrast, blend properties played a significant role during compression, where changes in blend 
composition significantly altered the tablet quality. The observed correlations allowed to develop an empirical 
predictive model for the selection of process configurations based on the blend properties, reducing the number 
of trial runs needed to optimize a process and thus reducing development time and costs of new drug products. 
Furthermore, the trials elucidated several challenges related to blend properties that had a significant impact on 
PAT implementation and performance of the CDC-platform, highlighting the importance of further process 
development and optimization in order to solve the remaining challenges.   

1. Introduction 

In recent years the pharmaceutical industry invested a lot in the 
application of continuous manufacturing as the main production tech-
nique to increase the efficiency and flexibility of manufacturing (Lee 
et al., 2015). Improvements in lead-time, in-line process control, process 
understanding and equipment footprint are some of the advantages of 

switching from batch to continuous manufacturing (Ierapetritou et al., 
2016; Nasr et al., 2017; Schaber et al., 2011). Compression, a widely 
used production technique in the pharmaceutical industry, is one of the 
frontrunners in the shift to a fully integrated continuous process. Its 
inherent continuous nature, combined with the potential of the pre-
ceding unit operations (i.e. feeding and blending) to be performed in a 
continuous fashion, were the basis for the development of several 

Abbreviations: #BP, Number of blade passes; #RMB1, Number of radial mixing blades of the main blender; API, Active pharmaceutical ingredient; API_sd, Spray 
dried API; BRT, Bulk residence time; BU, Blend uniformity; C_P, Caffeine anhydrous powder; CDC, Continuous direct compression; CU, Content uniformity; DCP, 
Dicalcium phosphate / Emcompress AN; FD, Fill depth; HM1/HM2, Hold-up mass main blender/Hold-up mass lubricant blender; Imp1, Impeller speed main blender; 
LC, Percentage label claim; MCF, Main compression force; MCH, Main compression height; MgSt, Magnesium stearate/Ligamed MF-2-V; MPT_μ, Metoprolol 
micronized; NIR, Near infrared; P_μ, Paracetamol micronized; P_DP, Paracetamol dense powder; P_P, Paracetamol powder; PAT, Process Analytical Technology; PC, 
Principle component; PCA, Principle component analysis; PCD, Pre-compression displacement; PCF, Pre-compression force; PCH, Pre-compression height; PH101, 
Microcrystalline cellulose / Avicel PH-101; PH200, Microcrystalline cellulose / Avicel PH-200; PLS, Partial least squares; Q2, Goodness of prediction; R2Y, Goodness 
of fit; rpm, Revolutions per minute; RSDTW, Relative standard deviation of tablet weight; RMSEcv, Root mean squared error of cross validation; SD100, Mannitol / 
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continuous direct compression (CDC) – lines. Manual dispensing trans-
formed into loss-in-weight (LIW) feeding, while batch blenders evolved 
into linear convective paddle blenders. These steps resulted in 2014 in 
the development of the first fully integrated continuous direct 
compression (CDC) line by GEA (i.e. ConsiGma® CDC-50), with many 
customized lines being implemented in several companies (e.g. Vertex 
Pharmaceuticals, Janssen, Merck, Pfizer, …). Shortly after, Glatt and 
Fette Compacting combined their expertise in order to develop, in 2017, 
a CM line where a linear continuous Glatt blender was combined with a 
Fette FE35 rotary tablet press (Manufacturing Chemist, 2017). 
Furthermore, L.B. Bohle developed the QbCon® 25 platform, containing 
a direct compression unit, combining Gericke feeders and blenders with 
a Korsch Tablet press (Bohle, 2019). This emergence of equipment for 
continuous manufacturing of solid dosage forms already resulted in the 
FDA approval of seven drug products manufactured in a continuous 
manner. The first ever continuously manufactured product Orkambi®, 
produced by Vertex Pharmaceuticals, saw its approval in July 2015. 
Soon after, Johnson & Johnson successfully switched Prezista® from 
batch to continuous through an intensive collaboration between J&J, 
Rutgers University and the University of Puerto Rico (Pharmaceutical 
Technology, 2016). In 2017, Eli Lilly’s Verzenio® received its approval 
to be manufactured in a continuous way (Eli Lilly, 2018). The following 
year was a very fruitful year for continuous manufacturing with the 
approval of two products manufactured by Pfizer (i.e. Daurismo® and 
Lorbrena®) and the second approved drug product from Vertex Phar-
maceuticals (Portier et al., 2020; U.S. Food and Drug Administration, 
2018a; U.S. Food and Drug Administration, 2018b; U.S. Food and Drug 
Administration, 2018c). Finally, Vertex Pharmaceuticals registered their 
third continuously manufactured drug product Trikafta® (2019) (U.S. 
Food and Drug Administration, 2019). 

Due to the criticality of each unit operation, a growing body of 
literature was developed by several research groups. During the first unit 
operation (i.e. continuous feeding), any occurring deviation or problem 
could be passed down through the line, potentially affecting the final 
product quality. Therefore, extensive experimental work was performed 
where the feeding of raw materials was investigated and optimized 
(Engisch and Muzzio, 2014;Van Snick, 2019; Van Snick et al., 2019; 
Bostijn et al., 2019; Bekaert et al., 2021a, 2021c). For the blending step, 
both experimental and modeling work has been done, investigating the 
influence of material properties, process settings and blender configu-
rations on the blending performance (Pernenkil and Cooney, 2006; 
Portillo et al., 2008; Gao et al., 2011; Osorio and Muzzio, 2016; Bekaert 
et al., 2021b). The final and important compaction step, used both in 
batch and continuous, has been investigated extensively resulting in 
large numbers of literature reports ranging from experimental to con-
ceptual topics (Patel et al., 2006; Peeters et al., 2018; Van Snick et al., 
2018). Furthermore, the implemented Process Analytical Technology 
(PAT) tools could increase process knowledge as well as enable real-time 
release testing through continuous product quality monitoring (i.e. 
blend/content uniformity) (Pawar et al., 2016). Next to the literature 
describing each unit operation separately, a handful of papers reported 
work on an integrated from powder-to-tablet CDC line (Järvinen et al., 
2013a; Järvinen et al., 2013b; Simonaho et al., 2016; Van Snick et al., 
2017a; Van Snick et al., 2017b; García-Muñoz et al., 2017; Roth et al., 
2017; Galbraith et al., 2020; Galbraith et al., 2019). 

Based on the available literature, most of the knowledge regarding 
continuous direct compression comes from research performed on one 
specific unit operation. The studies investigating an integrated from 
powder-to-tablet CDC line most often focused on a specific formulation 
and did not quantify specific correlations between the materials and 
CDC responses. Furthermore, up-to-now no empirical predictive models 
have been developed for a fully integrated CDC line for a wide variety of 
materials. Therefore, 30 ternary blends were processed on a fully inte-
grated CDC line with the aim of finding quantitative relationships be-
tween blend properties, critical quality attributes (CQA) and critical 
process parameters (CPP) related to blending (i.e. hold-up mass, 

residence time, strain, impeller speed, impeller configuration) and tab-
leting (i.e. tablet weight variability, fill depth, tablet press settings) 
performance. Based on Partial Least Squares (PLS) regression, an 
empirical predictive model was developed in order to select process 
configurations for a specific formulation based on the blend properties. 
Furthermore, blend and content uniformity measurements helped to 
determine the processability challenges of divergent blends as well as 
challenges related to the implementation of PAT equipment into a 
continuous line. This study is an extension of the long-term feeding 
paper discussing the data generated during these trials (Bekaert et al., 
2021c). 

2. Materials 

Table 1 gives an overview of the selected materials, including the 
supplier information and references to the abbreviations used in the 
paper. 

3. Equipment 

The study was performed on a ConsiGma® CDC-50 (GEA, Wom-
melgem, Belgium). The fully integrated continuous line consists of ma-
terial handling, loss-in-weight (LIW) feeding, two consecutive 
continuous blenders (i.e. main and lubricant blender), a rotary tablet 
press and in-line NIR equipment (Fig. 1), which has been extensively 
described by Van Snick et al. (2017a, 2017b). 

3.1. Material handling and loss-in-weight feeding 

The ConsiGma® CDC-50 is equipped with Compact Feeders (CF) 
which can be integrated at blender inlet 1 (i.e. main blender) and 
blender inlet 2 (i.e. lubricant blender). Feeders at the main blender inlet 
(i.e. 6 available locations) are used for materials requiring intensive 
mixing, while the lubricant blender inlet (i.e. 2 available feeder loca-
tions) can be used for shear-sensitive materials or materials requiring 
limited mixing. In total, 6 feeders can be active at the same time (e.g. 5 at 
the main blender inlet and 1 at the lubricant blender inlet). 

Each LIW feeder is equipped with a dedicated material handling unit 
consisting of either a conical hopper with a level sensor (3.2 L) or a 
cylindrical feed tube (7 L), used for vacuum or gravity-controlled top- 
ups respectively. The gravity-controlled material handling unit is 
preferred for highly cohesive powders or powders that are sensitive to 
triboelectric charging during the vacuum transport. Furthermore, the 
material handling unit is equipped with a pneumatic vibrator (Volk-
mann, Soest, Germany) to improve the processability of adhesive or 
poorly flowing materials. A rotating bowl-valve with adjustable volumes 
(i.e. 0.4; 0.8; 1.2 or 1.6 L) is installed at the bottom of the material 
handling unit in order to control the hopper refill of the Compact Feeder. 

Table 1 
Overview of selected materials.  

Material Supplier Code 

Paracetamol powder Mallinckrodt P_P 
Paracetamol dense powder Mallinckrodt P_DP 
Paracetamol micronized Mallinckrodt P_μ 
Caffeine anhydrous powder BASF C_P 
Metoprolol tartrate micronized Utag MPT_μ 
Theophylline anhydrous powder Siegfried T_P 
Spray dried API Janssen API_sd 
Pearlitol 100 SD Roquette SD100 
Emcompress AN JRS DCP 
Avicel PH-101 FMC PH101 
Avicel PH-200 FMC PH200 
Tablettose 80 Meggle T80 
Ligamed MF-2-V Peter Greven MgSt  

B. Bekaert et al.                                                                                                                                                                                                                                 



International Journal of Pharmaceutics: X 4 (2022) 100110

3

3.2. Blending unit 

The blending unit consists of two consecutive cylindrical dry powder 
blenders. Both the main and lubricant blender contain a rotating 
impeller positioned in an upwards tilted angle of 15◦. The impeller 
consists of a central shaft with 60 adjustable blades. Depending on the 
position of the blades, they can function as either transport or radial 
mixing blades. Transport blades are oriented at 45◦ along the axis of the 
shaft, while radial mixing blades have an angle of 0◦ along the axis of the 
shaft. The impeller speed can be varied between 45 and 450 rpm. 

3.3. Rotary tablet press 

After blending, the blend moves through a feed tube into the feed 
frame of the tablet press (MODUL™ S, GEA, Halle, Belgium). Inside the 
feed tube a level sensor is installed, maintaining a constant fill level 
during manufacturing. A fiber optic contact probe (Lighthouse™ probe, 
GEA, Wommelgem, Belgium) connected with an NIR spectrometer 
(Tidas P analyzer, J&M Analytik, Essingen, Germany) was integrated 
just above the feed frame inlet, allowing the collection of spectra every 
second. The MODUL™ S tablet press was equipped with moving rollers 
at the pre-compression station and fixed rollers at the main compression 
station. 

4. Methods 

4.1. Blend selection and characterization 

Thirty ternary blends were selected, containing an API (9.93% w/w), 
a filler (89.32% w/w) and magnesium stearate (MgSt) as a lubricant 
(0.75% w/w). The APIs and fillers comprising the blends were picked 
based on the selection as described in a previous paper on long-term 

feeding characterization from our group (Bekaert et al., 2021c). In 
order to challenge the blend uniformity while maintaining NIR sensi-
tivity (i.e. lowest possible API concentration that is still accurately 
measured via NIR), a 10/90 API/filler ratio was chosen. The blend ratio 
for blends containing Pearlitol 100 SD (SD100) was changed in order to 
increase the down-stream tabletability (i.e. 9.93/88.82/1.25 – ratio). An 
overview of the ternary blends is given in Table 2. 

The off-line prepared blends (blending protocol: 25 min at 25 rpm for 
the API/filler-mixture, followed by 5 min at 15 rpm for the API/filler/ 
MgSt mixture, using a tumble blender (Inversina, Bioengineering, Wald, 
Switzerland)), were characterized for a selection of potentially relevant 
descriptors during the blending and tableting step of continuous direct 
compression. The different characterization methods were performed 
using the protocols described by Van Snick et al. (2018). Table 3 displays 
the descriptors, their abbreviation and applied characterization 
methods. 

4.2. CDC-50 trial runs 

4.2.1. Experimental setup 
The impact of varying blend compositions on the processability at 

different main blender configurations (i.e. shear zone in the middle of 
the impeller with 4, 10 or 16 radial mixing blades) and speeds (i.e. 200, 
300 or 400 rpm) was studied. The throughput (i.e. 20 kg/h), lubricant 
blender configuration (i.e. no radial mixing blades) and impeller speed 
(i.e. 200 rpm) remained fixed throughout the study. The MODUL™ S 
tablet press was equipped with 38 flat-face bevel-edge 8 mm EURO B 
punches with breaking line and the turret speed was set at 50 rpm, 
resulting in a target tablet weight of 175 mg. The speed of the paddles in 
the feed frame were kept at a fixed value throughout the experiments (i. 
e. 58 rpm and 70 rpm for paddle 1 and 2, respectively). A pre- 
compression force (PCF) of 1.5kN with minimal displacement (PCD) 

Fig. 1. Flowsheet of the CDC-50. Material handling (purple), loss-in-weight feeding (orange), main blender (light green), lubrication (dark green), feed tube (light 
blue), in-line NIR equipment (yellow) and rotary tablet press (blue). Figure reprinted from Van Snick et al. (2017a) with permission of Elsevier. 
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(i.e. 0.1 mm) and a main compression force (MCF) of 5kN were applied. 
Tablet press control loops were deactivated, hence adjustments to the fill 
depth (FD) and compression roller heights were required to reach the 
setpoints. 

Prior to start-up, the feeders were primed (i.e. filling of the screws for 
5 to 10 s) and the top-up systems filled. During the start-up phase (± 15 
min), tablet press settings (i.e. fill depth, pre-compression and main 
compression height) were adjusted in order to reach the required tablet 
weight and compression forces. Once steady state conditions were 
reached, the process was run for 15 min to obtain sufficient blend uni-
formity measurements. Steady state was achieved when limited feed 
tube level variability was seen, meaning that the blenders reached a 
stable fill level and the feeders and tablet press had a matching flow rate. 

Furthermore during steady state, tablets were collected for 6 min and 40 
s according to a sample plan. The sample plan consisted of 40 grab 
samples, each with 10 s sampling. Afterwards, the steady state process 
was stopped instantaneously and the shut-off valves at the end of each 
blender were closed. The remaining powder in each of the blenders was 
collected pneumatically in order to determine the hold-up mass. Data-
logging was performed by the integrated CDC-50 software (GEA, 
Wommelgem, Belgium) and external NIR software (SentroPAT FO, 
Sentronic, Dresden, Germany). 

4.2.2. CDC-50 responses 
Data was collected from each unit operation with an overview of the 

different unit operations and NIR tools, their corresponding responses 
and abbreviations given in Table 4. 

4.2.2.1. Feeding responses. Every second, feeder data was recorded by 
the data recording system of the GEA compact feeder. The feeder screw 
speed (rpm), net weight (g), mode of operation (volumetric or gravi-
metric), mass flow rate (g/s) and feed factor (g/revolution) were used to 
investigate the gravimetric feeding performance. The results and con-
clusions of the acquired data are discussed in detail in Bekaert et al. 
(2021c). 

4.2.2.2. Blending responses. The CDC line was instantaneously stopped 
during steady state in order to collect the powder present in both 
blenders. Based on the amount of powder in the blenders, the hold-up 
mass for the main and lubricant blender (HM1 and HM2, respectively) 
was determined. Using Eqs. (1) and (2), the bulk residence time (BRT) 
and strain experienced by the powder in the blender (number of blade 
passes; #BP) were calculated: 

BRT (s) =
HM (g)

Throughput
(

g
s

) (1)  

#BP = BRT x
Impeller speed (rpm)

60
(2)  

4.2.2.3. Compression responses. Once the tablet press settings were 
optimized to reach the required tablet weight and compression force, the 
values for fill depth, pre-compression and main compression height 
(PCH and MCH) were collected. During steady state conditions, values 
for the pre-compression displacement, the variability in the 

Table 2 
Overview of the ternary blends.  

Blend API Filler Lubricant 

F1 P_μ SD100 MgSt 
F2 P_P 
F3 P_DP 
F4 C_P 
F5 API_sd 
F6 MPT_μ 
F7 P_μ DCP MgSt 
F8 P_P 
F9 P_DP 
F10 C_P 
F11 API_sd 
F12 MPT_μ 
F13 P_μ PH101 MgSt 
F14 P_P 
F15 P_DP 
F16 C_P 
F17 API_sd 
F18 MPT_μ 
F19 P_μ T80 MgSt 
F20 P_P 
F21 P_DP 
F22 C_P 
F23 API_sd 
F24 MPT_μ 
F25 P_μ PH200 MgSt 
F26 P_P 
F27 P_DP 
F28 C_P 
F29 API_sd 
F30 MPT_μ  

Table 3 
Overview of blend descriptors and their respective abbreviation, adopted from 
Van Snick et al. (2018).  

Characterization 
method 

Descriptor Abbreviation 

Flowpro Flow through an orifice (= Flowrate) FP 
FT4 powder 

rheometer 
Compressibility (at 15 kPa), b from 
Kawakita equation 

C_15kPa, b 

Conditioned bulk density CBD 
Permeability at 15 kPa k_15kPa 
Susceptibility of permeability to 
Compressibility Index (slope) 

k_CI_Sus 

Helium pycnometry True density, porosity ρtrue, ε 
Tapping device Bulk and tapped density ρb, ρt 

Compressibility Index CI 
Ring shear tester Angle of internal friction, angle of internal 

friction steady state flow, effective angle of 
internal friction 

ϕlin, ϕsf, ϕe 

Cohesion τc 
Consolidated density-weighed flow ffρ 
Flow function coefficient, major principal 
stress, unconfined yield stress 

ffc, MPS, 
UYS 

Wall friction angle WFA_S  

Table 4 
Overview of CDC-50 unit operations and NIR tools, their corresponding re-
sponses and used abbreviation.  

Unit operation Response Abbreviation 

LIW feeder Screw speed (rpm) SS 
Powder net weight (g) nw 
Mass flow rate (g/s) MF 
Feed factor (g/revolution) FF 

Main and lubricant 
blender 

Main blender hold-up mass (g), 
lubricant blender hold-up mass (g) 

HM1, HM2 

Bulk residence time main blender (s) BRT1 

Number of blade passes main blender #BP1  

Fill depth (mm) FD 
Compression station Main compression height (mm), pre- 

compression height (mm) 
MCH, PCH 

Main compression force variability 
(%) 

σForce 

Pre-compression displacement 
variability (%) 

σPCD 

Tablet weight variability (%) RSDTW 

Tablet porosity εTablet 

SentroPAT FO probe/ 
Lighthouse™ probe 

Blend uniformity (%), Label claim (%) BU, LC 
Blend uniformity variability (%) RSDBU 

Antaris™ II FT-NIR 
Analyzer 

Content uniformity (%), content 
uniformity variability (%) 

CU, RSDCU  
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displacement value (σPCD) and main compression force variability 
(σForce) were collected via the CDC-50 data-logging system. 

The tablet grab samples taken during steady state were used to 
determine the tablet weight (g), hardness (N), thickness (mm) and 
diameter (mm). 20 tablets were randomly taken from each sample bag 
and analyzed using a semi-automatic tablet tester (SmartTest 50, Sotax, 
Basel, Switzerland). Based on these values, the tablet weight variability 
(RSDTW) (Eq. (3)) and tablet porosity (εTablet) (Eq. (4)) was calculated: 

RSDTW (%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑1

n
(TW − TW)2

20

√

TW
× 100 (3)  

with TW (g) the average tablet weight. 

εTablet = 1 −
ρapp

ρtrue
(4)  

with ρapp the apparent density (i.e. tablet weight divided by its volume) 
and ρtrue the true density of the blend. 

4.2.3. Predictive model 
Empirical predictive models were developed via Partial Least 

Squares (PLS) regression using the SIMCA 16 software (Umetrics, Umeå, 
Sweden). Two separate models were made in order to increase the 
goodness of fit (R2) and predictive ability (Q2). The first model, 
describing the long-term gravimetric feeding responses, was developed 
and discussed in a previous paper (Bekaert et al., 2021c). The second 
model regressed the CDC responses of the remaining unit operations (i.e. 
blending and compression) against the blend properties and process 
configurations for all processed blends. Prior to regression, unit variance 
(UV) scaling and mean centering was performed on the dataset and non- 
normally distributed responses were log transformed. 

The model predictivity was externally validated with four additional 
ternary blends (Table 5). Two blends (i.e. F31 and F32) were composed 
of a new API (i.e. 9.93% theophylline anhydrous powder) combined 
with a cohesive or a dense filler (i.e. 89.32% PH101 or DCP, respec-
tively) and 0.75% MgSt. The new API was chosen in order to investigate 
if the model was able to make predictions for unknown materials. The 
other two additional ternary blends (i.e. F33 and F34) had a known 
blend composition (i.e. P_DP/PH101/MgSt or P_DP/PH200/MgSt), but 
in a different ratio (i.e. 49.625/49.625/0.75%). This ratio was picked to 
challenge the model with blends where the higher API content could 
influence the processability. Prior to processing on the CDC-50, the off- 
line prepared blends were characterized for the same descriptors as the 
trial blends. Based on these values, the developed model predicted the 
required process settings and responses for the main blender and rotary 
tablet press. Next, the blends were processed at different main blender 
speeds (i.e. 200, 300 or 400 rpm) with a fixed impeller configuration (i. 
e. 10 radial mixing blades). Finally, a comparison between the predicted 
and observed values was made to determine how well the model could 
predict the required process settings and resulting responses. The com-
parison was performed by calculating the absolute and relative differ-
ence between the observed and predicted values (i.e. ErrorAbs and 
ErrorRel, respectively). 

4.3. Blend uniformity 

4.3.1. Blend uniformity measurement 
The blend uniformity (BU) was measured at two separate timepoints 

during continuous direct compression. The Lighthouse™ probe moni-
tored the micro-mixing performance of the blenders in the feed tube at 
the outlet of the lubricant blender. The Lighthouse™ probe collected 
spectra every second in the spectral region from 1091 to 2107 nm with a 
pixel dispersion of 3.97 nm. Each spectrum was the average of 7 scans 
with an integration time of 60 ms. Considering the blend movement in 
the feed tube and estimated penetration depth of 0.5 mm (i.e. average 
measured penetration depth, taking changes in blend movement speed 
and density differences of the blends into consideration), each mea-
surement corresponded with a sample size between 25 and 29 mg. The 
SentroPAT FO probe, integrated at the die filling position in the feed 
frame of the tablet press (i.e. via a fixed external frame with caliper to 
accurately set the 1 mm distance from the paddle wheel fingers) 
determined the blend uniformity just before the blend was compressed 
into tablets. Similar to the Lighthouse™ probe measurement, spectra 
were collected every second in the spectral region from 1091 to 2107 nm 
with a pixel dispersion of 3.97 nm. Each spectrum was the average of 10 
scans with a 7 ms integration time. The fast moving and dense powder 
inside the feed frame, combined with a maximum penetration depth of 
approximately 1 mm, allowed to measure a sample size of approxi-
mately one unit dose (i.e. 175 mg). The collected spectra were loaded 
into the corresponding calibration models in order to get a prediction of 
the API content over time. Based on the predicted API concentrations, 
the label claim (LC) (%) was calculated (Eq. (5)): 

LC (%) =
Predicted API conc.(%)

Target API conc.(%)
× 100 (5)  

4.3.2. Blend uniformity calibration models 
PLS regression models for each processed blend were constructed for 

both implemented NIR probes (i.e. SentroPAT FO and Lighthouse™ 
probe) allowing in-line monitoring of the API concentration during 
continuous direct compression. Five calibration standards for each blend 
(i.e. 4.97; 7.45; 9.93; 12.41; 14.9%) were measured using both probes, 
generating spectra used for the model development via SIMCA 16 soft-
ware (Umetrics AB, Umeå, Sweden). The root mean squared error of 
cross validation (RMSEcv) of the models was used as an indicator for the 
model performance. 

4.3.2.1. Lighthouse™ probe. The calibration standards were measured 
in-line through the addition of the standards to the feed tube above the 
feed frame inlet, mimicking the blend movement in the feed tube. The 
Lighthouse™ probe collected spectra every second in the spectral region 
from 1091 to 2107 nm with a pixel dispersion of 3.97 nm. Each spectra 
was the average of 7 scans with an integration time of 60 ms. The models 
were built by regressing the collected spectra (i.e. 5 calibration stan-
dards x 30 spectra) with the corresponding API concentration. 

4.3.2.2. SentroPAT FO probe. The calibration standards for the Sen-
troPAT FO probe were measured off-line by inserting the probe in bags 
containing the calibration standards. Every second spectra were 
collected in the spectral region from 1091 to 2107 nm with a pixel 
dispersion of 3.97 nm. Each spectrum was the average of 10 scans with a 
7 ms integration time. Approximately 50 spectra, at different spots in the 
bag, were measured for each calibration standard, generating 250 off- 
line collected and pre-processed spectra. The calibration models were 
developed by regressing the measured spectra with their corresponding 
API concentration. 

Table 5 
Ternary blends used for external validation.  

Blend API Filler Lubricant API/filler/lubricant (%) 

F31 T_P PH101 
MgSt 9.93/89.32/0.75 F32 T_P DCP 

F33 P_DP PH101 
MgSt 49.625/49.625/0.75 

F34 P_DP PH200  
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4.4. Content uniformity 

4.4.1. Content uniformity measurement 
The content uniformity (CU) was determined on a subset of sample 

bags collected during the trials (i.e. uneven numbered sample bags). 
Three random tablets from each sample bag (i.e. 3 × 20 sample bags) 
were measured using NIR transmission and loaded into the corre-
sponding calibration models. 

Content uniformity calibration models were developed using the 
calibration standards from the blend uniformity calibration models. The 

calibration standards were tableted using a Modul™ P tablet press (GEA, 
Halle, Wommelgem) at similar tablet press settings (i.e. PCD, PCF and 
MCF) seen during the trials. Each calibration tablet was made in three 
different thicknesses (i.e. based on the minimal, average and maximal 
tablet thickness for each formulation, seen during the CDC-trials) in 
order to take the variability in tablet thickness into consideration. The 
thickness was varied by adjusting FD. Five tablets from each set of 
calibration tablets were measured using NIR transmission (Antaris™ II 
FT-NIR Analyzer, Thermo Fisher Scientific, Waltham, USA) in the 
spectral region from 833.47 to 1333.16 nm with a spacing of 3.86 nm. 

a

F31

F34

F33

F32

b

Fig. 2. PC 1 vs PC 2 scores (a) and loadings (b) plot of the characterized blends. Blends are colored according to their filler. External validation blends are marked 
with a black diamond. 
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Each spectrum was collected using 16 scans without attenuator and a 
detector gain of 100. In total 75 pre-processed spectra (5 calibration 
standards x 5 tablets/calibration standard x 3 thicknesses) were 
regressed with their corresponding concentration via PLS regression 
using SIMCA 16 software (Umetrics AB, Umeå, Sweden). The root mean 
squared error of cross validation (RMSEcv) was used as an indicator for 
the model performance. 

4.4.2. Off-line verification 
Off-line UV-VIS and HPLC analysis was performed on a subset of 

tablets as an analytical reference method to verify the API concentra-
tions determined via in-line NIR (i.e. SentroPAT FO and Lighthouse™ 
probe) and off-line NIR transmission spectroscopy (i.e. Antaris™ II FT- 
NIR Analyzer). The subset of tablets were selected at random from 
both good (i.e. F9 and F15) and poorly (i.e. F7 and F13) flowing blends 
as well as tablets from runs with API_sd (i.e. F5, F11, F17, F23 and F29). 
An in-house HPLC method was applied for the analysis of tablets con-
taining API_sd. Tablets containing a paracetamol grade (i.e. P_P, P_DP, 
P_μ) were analyzed via UV-VIS analysis. One tablet (i.e. 175 mg) was 
homogenized in 50 mL distilled water, diluted 1/50 and measured at a 
wavelength of 243 nm using a UV spectrophotometer with a 1 cm cell 
(Shimadzu UV-1650PC, Shimadzu Corporation, Kyoto, Japan). The API 
concentration was determined via calibration curves which were 
developed through the analysis of the calibration standards of the 
selected blends (cf. 4.3.2 Blend uniformity calibration models). 

5. Results and discussion 

5.1. Blend selection and characterization 

The blend characterization resulted in a principle component anal-
ysis (PCA) model with a goodness of fit (R2X) and prediction (Q2) of 
85.4% and 69.2%, respectively. Based on the blend properties, the 
relationship of the blends to each other is depicted by the scores plot 
(Fig. 2a) and correlations between the blend properties are revealed in 
the loadings plot (Fig. 2b). Both plots can be superimposed, revealing 
that blends with a similar location as properties on the loadings plot 
have high values for that property and low values for those at the 
opposite side of the origin. The clustering of the blends in the scores plot 
suggested a high contribution from the filler properties. In each cluster, 
a separation (i.e. along the x-axis; principle component 1) could be seen 
for the blends containing the highly cohesive and compressible APIs (i.e. 
MPT_μ and P_μ), indicating the impact of highly cohesive and 
compressible APIs on the overall blend. Blends containing DCP as filler 
(i.e. green dots) showed a clear separation from the other blends along 
the y-axis (i.e. principle component 2), suggesting that density was an 
important differentiator. 

Overall, the chosen descriptors could be used to make differentia-
tions between the blends, where principle component 1 (PC1) explained 
the variability in flowability and compressibility, while principle 
component 2 (PC2) showed the effect of the permeability and density of 
a blend. 

5.2. CDC-50 trials 

5.2.1. Blend processability 
The CDC-50 trials revealed some challenges regarding the process-

ability of the materials in different unit operations. During the feeding 
process several difficulties/limitations were observed when the process 
was run for longer periods of time (e.g. bridging, layering…), which had 
a negative impact on the down-stream unit operations. These problems 
were mainly related to the flowability and compressibility of the raw 
materials. These processability issues and their correlations with the 
material properties were described by Bekaert et al. (2021c). 

For the blending step, both the main and lubricant blender exhibited 
limited processability difficulties for most of the selected blends. 

However, layering of the paddles for cohesive materials (i.e. P_μ, MPT_μ, 
C_P and P_P) was observed throughout the process (Fig. 3). The degree of 
layering was dependent on the cohesivity of the materials in the blend, 
where blends containing P_μ and MPT_μ exhibited the highest layering 
potential. This layering could manifest problems related to blend uni-
formity for blends with a low content of the layered material, due to the 
relatively higher API loss on the paddles. 

During the tableting process several problems were observed related 
to the blend composition, which required an adjustment in composition 
or ultimately the removal of several blends from the experimental plan. 
Firstly, the ratio of blends containing Pearlitol 100 SD (SD100) was 
adjusted to a higher lubricant concentration (i.e. from 0.75% to 1.25%) 
in order to reduce the capping potential of the tablets. Capping (Fig. 4a) 
occurred due to the high ejection forces which was caused by the brittle 
fracture nature of mannitol (Mohan, 2012). Brittle particles will break 
up, creating new unlubricated particle surfaces, which can induce higher 
ejection forces. Therefore, an increase in lubricant concentration should 
cover more unlubricated surfaces (Mohan, 2012). Secondly, the cohe-
sive nature of particular blends (i.e. F6 – MPT_μ + SD100; F12 – MPT_μ 
+ DCP; F24 – MPT_μ + T80) led to their removal from the experimental 
plan, since it was not possible to make tablets. Punch-sticking of MPT_μ 
combined with the brittle nature of SD100 and T80 resulted in broken 
tablets at the ejection chute. Furthermore, the low target tablet weight 
(i.e. 175 mg) generated thin tablets when dense fillers (i.e. DCP) were 
used (Fig. 4b). This phenomenon combined with punch-sticking of 
MPT_μ led to tablets that were broken easily during ejection. However, 
the punch-sticking phenomenon of MPT_μ was reduced through the 
addition of plastically deforming fillers (i.e. PH101 and PH200), making 
it possible to produce tablets. 

5.2.2. Predictive model 
The CDC-50 trials generated both blending (i.e. HM1, BRT1 and 

#BP1) and compression (i.e. FD, PCH, MCH, σForce, σPCD and RSDTW) 
responses which were included into one PLS model with three principle 
components (PC) and a goodness of fit (R2Y) and prediction (Q2) of 
78.7% and 77.7%, respectively. Blend and content uniformity responses 
were not included due to their limited goodness of fit and predictive 
performance (i.e. R2Y < 16% and Q2 < 12%). Additionally, data from 
the blends F6, F12 and F24 were excluded due to processability issues. 
The R2Y and Q2 for each response is displayed in Table 6. Any correla-
tion between the blend properties, process settings and process re-
sponses were established through the scores and loadings plots (i.e. PC1 
vs. PC2 and PC1 vs. PC3) depicted in Fig. 5. The scores-plot showed that 
the data corresponding to blend F7 (i.e. P_μ + DCP) were outside the 

Fig. 3. Layering of P_P on the impeller shaft and paddles.  
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95% confidence level. However, these datapoints were not excluded in 
order to increase the predictive performance of the model. Additionally, 
coefficient plots were used to gain a better insight into the significance of 
the correlations using a 95% confidence level. 

5.2.2.1. Blending responses. High R2Y and Q2 values were observed for 
the three collected blending responses (i.e. HM1, BRT1 and #BP1) 
(Table 6), suggesting a high predictive performance of the model. A 
close correlation between the responses was observed (i.e. located close 
to each other on the loadings plot) since the equations for BRT1 (Eq. (1)) 
and #BP1 (Eq. (2)) were both derived from HM1. Looking at the loadings 
plot for PC1 vs PC2 (Fig. 5b), the blending response cluster and process 
settings (i.e. number of radial mixing blades (#RMB1); and impeller 
speed (Imp1)) were located relatively close to the origin and away from 
the blend property descriptors. This indicated that a limited correlation 
with the material properties, which was confirmed by the coefficient 
plot for BRT1 where the density-related descriptors (i.e. ρb, ρt, CBD) and 
porosity exhibited a direct and inverse correlation, respectively. These 
correlations could be explained by the fact that a certain blender fill 
level was required for the impeller blades to transport the material. 
Therefore, dense materials will have a larger hold-up mass for the same 
blender fill level compared to a less dense material. 

The separation between blend properties and process settings was 
clearly visualized by the loadings plot for PC1 vs PC3 (Fig. 5c). The 
blending process was mainly correlated with the number of radial 
mixing blades (#RMB1) and impeller speed (Imp1). The positive corre-
lation with #RMB1 was caused by an increase in radial mixing potential 

due to the higher number of radial mixing blades, while less transport 
blades were available to push the blend forward. Therefore, more ma-
terial was present in the blender at the same time, increasing the hold-up 
mass. Furthermore, the inverse correlation with Imp1 was attributed to 
the increased powder movement at higher impeller speed. A faster 
powder movement resulted in less material in the blender and conse-
quently a lower hold-up mass. 

Overall, these observations elucidated that the blending responses of 
divergent blends in the fully optimized and integrated CDC-50 blender 
setup was mainly dependent on process parameters (i.e. impeller speed) 
and equipment configurations (i.e. number of radial mixing blades). 
Furthermore, only limited blend properties (i.e. density-related de-
scriptors) could be varied in order to change the blending responses. 

5.2.2.2. Compression responses. Based on the location on the loadings 
plot (Fig. 5b), two clusters related to the compression step were found. 
The first comprised the tablet press settings (i.e. FD, PCH and MCH) 
needed to reach a tablet weight of 175 mg, pre-compression force of 1.5 
kN and main compression force of 5 kN at a throughput of 20 kg/h. The 
location of the required fill depth (FD) at the positive side of PC1 (right 
side) indicated a positive correlation with the blend properties 
describing a poorly flowing (i.e. Cohesion, UYS), highly compressible (i. 
e. C_15kPa), friction generating (i.e. ϕe, ϕsf) and porous (ε) blend. The 
irregular flow behavior of such blends resulted in a poor and inconsis-
tent die filling of the narrow die cavities, requiring a larger fill depth in 
order to cope with the variability (Mehrotra et al., 2009; Mendez et al., 
2012; Peeters et al., 2015; Sinka et al., 2004; Sun, 2010; Van Snick et al., 
2017a; Van Snick et al., 2018; Yaginuma et al., 2007). Blends with high 
porosity were also highly compressible, resulting in an inconsistent die 
filling. Therefore, properties describing a consistent die filling (i.e. high 
flowability; ffc, ffp and FR) were located at the opposite side along PC1. 
The density (i.e. ρb, ρt, ρtrue and CBD) of a blend also impacted the fill 
depth: smaller fill depths were sufficient for denser materials to reach 
the specified tablet weight. The positive correlation of permeability (i.e. 
k_15kPa) along PC2 (y-axis) was attributed to the larger volume of 
highly permeable blends, thus requiring a larger fill depth. Furthermore, 
an inverse relationship of wall friction (i.e. WFA) was seen which could 
be attributed to the fact that highly porous materials tended to have a 
lower WFA (i.e. PH101 and PH200). Similar observations were seen for 
the remaining tablet press settings (i.e. MCH and PCH) located close to 
FD, indicating a close correlation with each other. This correlation was 
attributed to the dependency of MCH and PCH to the fill depth, since an 
adjustment in fill depth required a change in PCH and MCH in order to 
reach the required compression forces. Furthermore, no influence from 
the blending process was observed, based on the location of the blending 
descriptors (i.e. #RMB1 and Imp1) close to the origin in the loadings plot 
for PC1 vs PC2 (Fig. 5b) and through their separation in the loadings plot 
for PC1 vs PC3 (Fig. 5c). 

b a 

Fig. 4. (a) Tablets produced with blend F2 (i.e. P_P + SD100) during the CDC-50 trials exhibiting capping. (b) Thin tablets produced with blend F9 (i.e. P_DP + DCP) 
which were prone to breakage. 

Table 6 
Overview of the constructed PLS model. R2Y and Q2 are given for the overall 
model and all responses.  

Overal model 

#PC R2Y Q2 

1 0.307 0.303 
2 0.524 0.512 
3 0.787 0.777  

Blending responses 
Name R2Y Q2 

HM1 0.856 0.842 
BRT1 0.856 0.842 
#BP1 0.827 0.818  

Compression responses 
FD 0.804 0.801 
PCH 0.856 0.848 
MCH 0.601 0.594 
σforce 0.736 0.714 
σPCD 0.811 0.803 
RSDTW 0.729 0.715  
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The second cluster contained the compression (i.e. σForce, σPCD) and 
tablet (i.e. RSDTW) responses (Fig. 5b). These responses described the 
variability introduced by the blends during the compression process 
once the target settings (i.e. tablet weight, PCD, PCF and MCF) were 
achieved. A limited and insignificant impact of the blending descriptors 
(i.e. located close to the origin) was observed, whereas the die filling 
consistency could be seen as the main contributor for the compression 
and tablet responses. Therefore, all responses in the cluster showed 
similar correlations with the blend properties related to die filling: 
flowability (ffc, ffp and FR), cohesion (cohesion, UYS, MPS), friction (ϕe, 
ϕsf), compressibility (C_15kPa), density (ρb, ρt, ρtrue and CBD), porosity 
(ε) and WFA. A lower variability (i.e. inverse correlation; at the opposite 
side of the loadings plot) was observed for good flowing and dense 
blends since these exhibit an easy and consistent die filling potential. On 
the other hand, materials with a high cohesivity, friction and 
compressibility reduced the powder flow. Similar observations were 
made by Van Snick et al. (2018) where batch-wise blending was per-
formed prior to compression instead of continuous blending, thus con-
firming their conclusions on the impact of die filling on the compression 
step. 

Overall, the descriptors for the compression step had a high goodness 
of fit (R2Y) and predictive ability (Q2) (Table 6), which was calculated 
via internal cross validation. These observations elucidated the potential 
to predict the processability of a new blend on the CDC-50. 

5.2.3. Model validation 
The four new ternary blends (Table 5) were characterized for the 

same descriptors as the trial blends and included into the blend char-
acterization PCA model (Fig. 2). The data from the processed validation 
blends on the CDC-50 were compared with the values predicted by the 
model. An overview of the observed and predicted values, combined 
with the calculated prediction errors, is given in Table 7. The table could 
be divided into three sections: process settings (i.e. FD, PCH and MCH), 
blender responses (i.e. HM1, BRT1 and #BP1) and compression (σForce, 

σPCD) and tablet responses (i.e. RSDTW). 
Blend F31 (i.e. T_P + PH101 + MgSt) which was the blend with a 

new API in the same API ratio as the trial blends, exhibited a high pre-
dictive performance (i.e. < 30% ErrorRel) for the process settings and the 
blender responses (i.e. HM1, BRT1 and #BP1). However, an over-
prediction for the compression and tablet responses was seen, resulting 
in a larger predictive error (30% < ErrorRel < 60%). The larger error 
could originate from the variability in tablet weight during compression. 
Theoretically, the tablet weight was fixed at 175 mg, but during steady 
state small changes in powder flow/die filling could result in an altered 
tablet weight. These changes in tablet weight influence the compression 
and tablet responses and are unpredictable, thus reducing the prediction 
of these responses. Blend F32 exhibited larger predictive errors for the 
process settings and blender responses compared to blend F31. Addi-
tionally a very poor predictive performance for the compression and 
tablet responses was observed. These observations could be explained by 
the fact that, compared to the location of F31 inside the overall blend 
cluster, F32 was located between both filler clusters in an untested re-
gion (Fig. 2), hence the developed prediction model does not contain 
sufficient data to make accurate predictions. Therefore, continuous 
model learning has to be applied where the gaps in the model (e.g. 
blends outside of the blend space; blends located inside the blend space, 
but in areas with little to no available data) are filled through the 
addition of new experimental data. The need for continuous model 
learning was also visible for the blends with an altered blend-ratio (i.e. 
F33 and F34) for which similar prediction error values were observed. 

Overall, a good predictability for the process settings and blending 
step was achieved for new blends with the same API ratio located inside 
the PCA cluster. Based on the larger prediction errors for blends in un-
tested areas of the PCA cluster or blends with different ratios, additional 
dedicated experimental trials are required using divergent blend com-
positions. The reduced predictive performance (i.e. larger prediction 
errors) is a typical disadvantage of the empirical models used during this 
study. This could be improved by applying pure mechanistic models. 

Fig. 5. Scores and loadings plots of the overall PLS model with: (a) PC 1 vs PC 2 scores and (b) loadings plot; (c) PC 1 vs PC 3 loadings plot. Blends are colored 
according to their filler. The naming consists of the blend name followed by the #RMB1 and Imp1 (e.g. _10_300 = 10 RMB at 300 rpm). Score plot labels were 
removed to increase visibility. The enlargement of one cluster is a representation of the location for each trial run in a cluster. 
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However, such models make a lot of assumptions (Nestorov et al., 2019). 
An additional disadvantage for both models is the inability to cope with 
non-linear phenomena which could be solved using neural networks 
(Thakur, 1991; Wong et al., 2018). Taking the different modeling 
techniques into consideration combined with continuous model learning 
could further improve the predictive performance for the blending and 
compression step. However, based on the current predictive ability of 
the model, time needed to optimize the CDC-50 process could be 
reduced. 

5.3. Blend uniformity 

Fig. 6 gives an overview of the average blend uniformity label claim 
(LC) for each performed trial run measured by both NIR probes (i.e. 
Lighthouse™ and SentroPAT FO probe). Some datapoints are missing 
due to processability issues such as punch sticking and tablet capping. 
Based on the standard deviation of the measurement (i.e. 1.0 to 15.0%) 

and the relative prediction error of the calibration models (i.e. 2.0 to 
20.0%), most trial runs were able to contain the target concentration 
within their error bars. Furthermore, no statistically significant impact 
from the blender configurations and blender speeds on the label claim 
and its variability was observed, indicating a highly robust setup and 
confirming similar observations by Van Snick et al. (2017a). 

Generally, the error bars of the SentroPAT FO predictions were larger 
compared to the Lighthouse™ probe, which could be attributed to the 
prediction error of the calibration models. Higher prediction errors were 
found for the SentroPAT FO models, since these were developed via off- 
line static measurements compared to the dynamic in-line models of the 
Lighthouse™ probe. Dynamic measurements take the powder flow and 
density changes during sample presentation into consideration, 
enhancing the predictive ability (i.e. lower prediction error) (European 
Pharmacopoeia, 2006). The absence of these phenomena during the 
development of the static calibration models of the SentroPAT FO probe 
could generate a larger variability in the BU measurement as well as 

Fig. 5. (continued). 
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result in under- or overpredictions of the actual blend uniformity. Due to 
the inaccessibility to the blender outlet during the process, no samples 
were taken of the blend. Therefore, under- or overpredictions were 
investigated via CU of the tablets (Fig. 6). Small differences between BU 
and CU could be due to further (de)mixing by the feed frame, but this 
would have a limited influence on the SentroPAT FO values, since BU 
was measured just before die-filling. An example of an underprediction 
can be seen for the blends containing P_DP and DCP where a significant 
difference was observed between the online measured BU and off-line 
measured CU via UV-VIS (Fig. 6c). This phenomenon could be 
explained by the combination of highly dense and good flowing pow-
ders, causing density changes during the BU measurement. 

Furthermore, a formulation-dependent effect on the BU variability 
was observed where an increase in variability was present for blends 
containing a cohesive component (i.e. P_μ, P_P and MPT_μ blends; 
Fig. 6a,b,f). The cohesiveness of such formulations resulted in powder 
adhesion to the probe (i.e. window fouling) which artificially increased 
or decreased the concentration of the blend, resulting in a larger 

variability. Window fouling was visually observed throughout the 
experimental runs and could be resolved through frequent cleaning of 
the probes. 

The phenomena of window fouling and changes in sample presen-
tation (e.g. density changes, flow changes) indicate the need for proper 
implementation of the sensors in order to achieve a consistent and 
representative measurement. Therefore, further dedicated experiments 
are required to optimize the implementation of PAT-tools depending on 
the pharmaceutical process and processed powders. 

5.4. Content uniformity 

Based on the prediction error (i.e. 2.0 to 7.0%) and the standard 
deviation from the measurement (i.e. 1.0 to 14%), the error bars for 
most of the grab samples overlapped with the required content unifor-
mity and could be linked to the blend uniformity measured just before 
die-filling (i.e. SentroPAT FO probe measurements). Due to the absence 
of window fouling, lower prediction errors were achieved. However, as 

Table 7 
Overview of the observed versus predicted values and corresponding prediction error for the model validation.  

Process settings 

Blend Imp1 FD (mm) PCH (mm) MCH (mm) 

Observed Predicted Error (%) Observed Predicted Error (%) Observed Predicted Error (%) 

F31 200 9.80 9.74 0.58 5.67 5.73 0.97 4.77 4.93 3.38 
300 9.94 9.93 0.12 5.67 5.76 1.65 4.75 4.92 3.62 
400 9.80 10.12 3.23 5.63 5.80 3.05 4.75 4.91 3.43 

F32 200 3.99 3.82 4.37 4.37 4.86 11.19 4.11 4.53 10.12 
300 3.96 3.89 1.81 4.40 4.90 11.30 4.13 4.52 9.37 
400 3.92 3.96 1.07 4.37 4.94 12.94 4.11 4.51 9.68 

F33 200 6.52 7.60 16.54 5.59 5.46 2.40 4.95 4.81 2.82 
300 6.61 7.74 17.14 5.57 5.49 1.36 4.93 4.80 2.61 
400 6.67 7.89 18.29 5.59 5.53 1.02 4.94 4.79 2.99 

F34 200 6.05 7.75 28.04 5.61 5.73 2.23 4.94 5.03 1.86 
300 6.05 7.89 30.47 5.61 5.77 2.91 4.94 5.02 1.67 
400 6.12 8.04 31.43 5.58 5.81 4.15 4.92 5.01 1.90   

Blender responses 

Blend Imp1 HM1 (g) BRT1 (s) #BP1 

Observed Predicted Error (%) Observed Predicted Error (%) Observed Predicted Error (%) 

F31 200 332.3 303.1 8.77 59.8 54.6 8.77 199.4 244.8 22.80 
300 241.6 211.5 12.46 43.5 38.1 12.46 217.4 178.5 17.92 
400 182.0 147.6 18.92 32.8 26.6 18.92 218.4 130.1 40.43 

F32 200 1034.0 662.0 35.97 186.1 119.2 35.97 620.4 512.2 17.44 
300 273.4 461.9 68.95 49.2 83.1 68.95 246.1 373.4 51.73 
400 162.8 322.3 97.95 29.3 58.0 97.95 195.4 272.2 39.31 

F33 200 840.0 425.1 49.39 151.2 76.5 49.39 504.0 334.3 33.68 
300 459.2 296.6 35.41 82.7 53.4 35.41 413.3 243.7 41.04 
400 247.1 206.9 16.26 44.5 37.3 16.26 296.5 177.6 40.10 

F34 200 907.3 496.4 45.29 163.3 89.4 45.29 544.4 384.9 29.30 
300 284.2 346.3 21.86 51.2 62.3 21.86 255.8 280.6 9.68 
400 122.1 241.6 97.89 22.0 43.5 97.90 146.5 204.5 39.58   

Compression and tablet responses 

Blend Imp1 σForce (%) σPCD (%) RSDTW (%) 

Observed Predicted Error (%) Observed Predicted Error (%) Observed Predicted Error (%) 

F31 
200 0.50 0.71 41.99 1.44 2.17 50.62 2.23 3.49 56.26 
300 0.54 0.73 34.83 1.65 2.24 35.94 2.33 3.55 52.05 
400 0.55 0.75 35.76 1.65 2.32 40.59 2.26 3.61 59.46 

F32 
200 0.23 0.53 132.45 0.77 1.70 121.18 0.84 2.33 177.40 
300 0.22 0.55 149.22 0.75 1.76 134.83 0.77 2.37 208.10 
400 0.25 0.56 124.91 0.75 1.82 142.85 0.74 2.41 225.05 

F33 
200 0.53 0.68 27.70 1.90 2.12 11.32 2.26 3.24 43.41 
300 0.66 0.69 5.16 1.66 2.19 31.77 2.09 3.29 57.34 
400 0.80 0.71 11.03 2.11 2.26 7.21 2.12 3.35 58.15 

F34 
200 0.13 0.29 119.97 0.40 0.66 65.99 0.55 1.25 128.78 
300 0.13 0.29 125.58 0.35 0.69 96.18 0.57 1.27 124.85 
400 0.18 0.30 67.08 0.34 0.71 108.85 0.55 1.29 133.90  
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Fig. 6. Overview of the average BU label claim measured with the SentroPAT FO (left) and Lighthouse™ (right) probe for the trial runs with blends containing: (a) 
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depicted in Fig. 7a, the content uniformity of tablets containing API_sd 
suggested that their API concentration was too high even though the 
blend uniformity indicated otherwise (Fig. 6e). In order to determine if 
the predictions were correct, off-line HPLC analysis was performed to 
determine the actual concentration in the tablets. Based on the off-line 
analysis (Figs. 6e and 7a), the tablets contained a lower concentration 
(i.e. similar to the BU measurement) than predicted. These observations 
indicated that the calibration model did not accurately predict the API 
concentration and a formulation-dependent CU measurement is needed. 

Tablets containing highly cohesive materials (i.e. P_μ + PH101 and 
MPT_μ blends) exhibited a larger variability in API content (Fig. 7b) 
which could be attributed to punch-sticking (i.e. the cohesive API sticks 
to the punches) and/or inconsistent die-filling where a variable amount 

of cohesive material is filled into the die (Van Snick et al., 2018). The 
effect of inconsistent die-filling was elucidated in Fig. 7b where the runs 
with a high RSD_TW, which is related to inconsistent die-filling, also 
exhibited larger CU variabilities. 

Off-line UV-VIS analysis for tablets with the correct API content, 
confirmed that NIR transmission measurements were capable of pre-
dicting the actual content uniformity (Figs. 6a and 7b). 

6. Conclusion 

Formulations with cohesive/adhesive properties impacted the pro-
cessability during both blending (i.e. impeller paddle layering) and 
compression (i.e. punch sticking) phases, resulting in the need for blend 
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composition changes. In addition, the brittle nature of some blends 
resulted in low quality tablets (i.e. capping). Quantitative relationships 
between blend properties and blending/compression CQAs and CPPs 
were established through PLS regression and were used to develop a 
predictive model. Clear correlations were found between the blending 
responses and blender configuration (i.e. #RMB1 and Imp1), suggesting 
a large freedom in configuration adjustments in order to acquire the 
desired blending responses. On the other hand, only limited correlations 
with the blend properties (i.e. density) were observed, indicating a 
robust blending setup with limited impact of blend properties. The 
compression step exhibited significant correlations with the blend 
properties related to a consistent die-filling process (i.e. flowability, 
compressibility, density and permeability) where an adjustment in blend 
composition could significantly alter the tablet quality. Secondly, 
further model optimization and learning is required in order to allow for 
more accurate predictions of deviating and challenging blends (e.g. 
blends at the edges of the model). Overall, the predictive model could 
reduce the number of trial runs needed to optimize a process (e.g. 
reduction or elimination of trial-and-error runs to determine the tablet 
press settings, such as FD, PCH and MCH, through the correlation be-
tween these parameters and the die-filling properties), this reducing the 
development time and cost of new drug products. Finally, blend and 
content uniformity measurements gave insights into the robustness of 
the process. Larger prediction errors as well as under- and over-
predictions were seen for the BU measurements due to challenges 
regarding the probe implementation (i.e. inconsistent sample presenta-
tion and window fouling), resulting in measurements with a higher 
uncertainty. Furthermore, CU and off-line UV-VIS/HPLC analysis 
elucidated that a higher tablet weight variability (i.e. inconsistent die- 
filling) and the occurrence of punch sticking had a negative impact on 
CU. 
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