
LETTER

The effect of clinical-grade retinal pigment
epithelium derived from human embryonic
stem cells using different transplantation
strategies

Dear Editor,

Many forms of sight-threatening diseases, including retinitis
pigmentosa (RP) and age-related macular degeneration
(AMD), are caused by the dysfunction, degeneration and
loss of the retinal pigment epithelium (RPE) (Strauss, 2005).
RPE cell transplantation may potentially recover or halt dis-
ease progression, in which human embryonic stem cells
(hESCs) could serve as an unlimited donor source for RPE
differentiation, and a few clinical trials have shown the safety
and effective of transplantation of hESCs-derived RPE
(hESC-RPE) for AMD patients (Schwartz et al., 2012;
Schwartz et al., 2015; Song et al., 2015; da Cruz et al., 2018;
Kashani et al., 2018; Liu et al., 2018).

However, a report about vision loss after intravitreal
injection of autologous stem cells for AMD implied strategic
and technical problems remaining with RPE cell therapy
(Kuriyan et al., 2017). The quality control of donor cells is
basical requirement for cell production in clinical trials.
Firstly, the cell treatment products should not be exposed to
animal products to minimize the risk of animal pathogen-
derived infection and immunologic rejection. Besides, stem
cell residues and chromosome number variation during long-
term culture must be tested before clinical use.

In addition to quality control of donor cells, the trans-
plantation methodology is also very important. So far, hESC-
RPE cells were delivered into the subretinal space by means
of RPE cells suspensions and cell sheet. Although both the
two strategies have been proven feasible, safe and effective
in the previous clinical trials (Schwartz et al., 2012; Schwartz
et al., 2015; Song et al., 2015; da Cruz et al., 2018; Kashani
et al., 2018; Liu et al., 2018), the comparison between these
two strategies should be well studied to maximize the effects
of RPE transplantation.

Previously, we have established a clinical-grade hESC
line (Q-CTS-hESC-2) (Gu et al., 2017) RPE (Q-CTS-hESC-
2-RPE) cells from which have been demonstrated safety and
feasibility for wet-AMD (Liu et al., 2018). In the present study,
we standardized the preparation of Q-CTS-hESC-2-RPE

cells under conditions compliant with good manufacturing
practice (GMP) and identified the characterization of Q-CTS-
hESC-2-RPE cells in terms of biosafety, genetic safety and
cellular function. Furthermore, we compared the RPE cells
suspensions and cell sheet transplantation using a well-
known model of dry AMD, Royal College of Surgeons (RCS)
rats. Our study might facilitate the clinical translation of RPE
cells suspensions and cell sheet transplantation for retinal
degeneration diseases.

As shown in Fig. 1A, we differentiated the Q-CTS-hESC-2
cells into RPE cells using spontaneous differentiation pro-
tocol (Maruotti et al., 2013). Adherent Q-CTS-hESC-2 colo-
nies without feeder cells were continuously cultured to
generate pigmented cells (Fig. S1A and S1B), which were
subsequently enriched and passaged until the formation of
typical cobblestone-like RPE cells (Fig. S1C). During the
differentiation process, we collected cells at different stages
for the expression comparison of related genes. Results of
reverse-transcription quantitative polymerase chain reaction
(RT-qPCR) showed a downregulation of OCT4 (pluripotency
marker) and significant expression of OTX2, MITF and
RPE65 (RPE markers) in the Q-CTS-hESC-2-RPE cells
compared to the cells in the stem-cell state and differentiated
state (hESCs on 45 days post differentiation were named as
ES-45) (Fig. S1D). Consistently, flow cytometry of Q-CTS-
hESC-2-RPE cells revealed scarce expression of OCT4 and
ubiquitous expression of BEST1, MITF and RPE65 (Fig. 1B–
E). Transmission electron microscopy demonstrated the
typical ultrastructure of RPE cells, including apical villi (AV),
tight junctions (TJ) and melanin granules (MG) (Fig. 1F).
After a long-time culture, Q-CTS-hESC-2-RPE cells
remained a normal female karyotype (46, XX) (Fig. 1G).
Also, copy number variation (CNV) sequencing indicated
that no chromosome aneuploidy and no DNA loss or repeat
greater than 10 Mbps in the Q-CTS-hESC-2-RPE cells
(Fig. 1H).

To evaluate the biosafety of Q-CTS-hESC-2-RPE cells,
we firstly performed the teratoma formation assays, which
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Figure 1. Characterization of Q-CTS-hESC-2-RPE cells. (A) Timecourse of the differentiation of Q-CTS-hESC-2-RPE cells. Flow

cytometric analysis the expression of OTC4 (B) and key RPE markers BEST1 (C), MITF (D) and RPE65 (E). (F) Ultrastructure of the

Q-CTS-hESC-2-RPE cells. Scale bar = 2 μm. (G) Karyotype analysis of Q-CTS-hESC-2-RPE cells. (H) Whole-genome CNV

detection of Q-CTS-hESC-2-RPE cells. Abbreviations: NIFDC, National Institutes for Food and Drug Control of China.
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indicated no teratomas generation after injecting Q-CTS-
hESC-2-RPE cells into the severe combined immunodefi-
ciency (SCID) mice (Fig. S1E, S1F and Table S1). Further-
more, we performed a serious test according to the
Guidance of Human Somatic Cell Therapies and Quality
Control of Cell-based Products. The results demonstrated
that the Q-CTS-hESC-2-RPE cells were negative for myco-
plasma and free of serious pathogenic microorganisms
(Table S2), which met the requirements of Pharmacopoeia of
the People’s Republic of China, 2010 edition, Volume III.
These results indicated that the Q-CTS-hESC-2-RPE cells
were biologically safe. Importantly, Q-CTS-hESC-2-RPE
cells also met the present clinical cell application standard in
China, and we obtained a qualification (report number
SH201502158) from the National Institutes for Food and
Drug Control of China (Table S3).

For cell suspension transplantation, the Q-CTS-hESC-2-
RPE cells were expanded on a regular culture plate. To
achieve cell sheet transplantation, the donor cells were
cultured on polyethylene terephthalate (PET) membrane,
which has been used as a carrier to deliver monolayers of
RPE cells (Stanzel et al., 2014; da Cruz et al., 2018).
Immunostaining revealed the Q-CTS-hESC-2-RPE cells
expressing RPE markers PAX6, ZO-1 and BEST1 on a
culture plate and PET membrane (Fig. 2A–C and 2A′–C′). To
detect the capacity to phagocytize POS, we cultured Q-CTS-
hESC-2-RPE cells with neural retinas of rats for 48 h. The
immunostaining of RHODOPSIN and F-ACTIN which
labeled POS and cytoskeleton respectively and the orthog-
onal views of stacking images indicated that POS was
internalized by the Q-CTS-hESC-2-RPE cells on culture
plate and PET membrane (Fig. 2D and 2D′). Finally, the
enzyme linked immunosorbent assay (ELISA) confirmed a
robust secretion of pigment epithelium-derived factor (PEDF)
in the Q-CTS-hESC-2-RPE cells on culture plate and PET
membrane, while undifferentiated hESCs could not secrete
PEDF. Notably, Q-CTS-hESC-2-RPE cells on PET mem-
brane secreted more PEDF than that on culture plate
(Fig. S1G).

We next delivered the Q-CTS-hESC-2-RPE cells into the
subretinal space of RCS rats using two approaches: cell
suspension and cell sheet transplantation, while acellular
PET membrane transplantation and untreated RCS rats
served as controls. Intravital examination of fundus pho-
tograph confirmed a successful transplantation of PET/RPE
patch, acellular PET membrane and Q-CTS-hESC-2-RPE
cells suspension (Fig. S2A, S2C and S2E). Consistently,
hematoxylin-eosin (HE) staining showed that the PET/RPE
patch, acellular PET membrane and clumped Q-CTS-hESC-
2-RPE cells suspension were located in the subretinal space
of RCS rats (Fig. S2B, S2D and S2F). Notably, there were
clear distortions of retinal lamination after the transplantation
of PET/RPE and acellular PET patch as the rigidity of PET
membrane mismatch with the soft and curvate retina. Finally,
electroretinogram (ERG) assay was used to evaluate the
function of the retina on 4 and 8 weeks post transplantation.

For both time points, the amplitude of the ERG B wave in
PET/RPE group and the cells suspension group were sig-
nificantly higher than that in the acellular PET and untreated
group (Fig. 2E–H), which suggested that both Q-CTS-hESC-
2-RPE cell sheet and cell suspension transplantation sig-
nificantly rescued retinal degeneration. However, there is no
significant difference between the PET/RPE group and the
RPE cells suspension group.

The present study demonstrates the production and
transplantation of functional RPE cells for clinical application.
To avoid potential infection or contamination, clinical-grade
donor cells and reagents are required. Besides, the prepa-
ration and treatment of donor cells should be under GMP
environments (Andrews et al., 2014). However, in the pre-
vious clinical trials with small samples (Schwartz et al., 2012;
Schwartz et al., 2015; Song et al., 2015), the donor cells are
not strictly clinical grade though the results of the clinical
trials have shown safety of hESC-RPE cells transplantation.
The safety concerns of donor cells deserve more attention in
the following large-scale clinical trials. In this study, we used
the clinical-grade hESC line (Q-CTS-hESC-2) to induce RPE
cells by well-established spontaneous differentiation, which
requires minimal additives to diminish the risk of contami-
nation, infection and pathogen transmission. Notably, all
components of the culture and cryopreservation medium,
and all processes involved, have been described and vali-
dated according to the GMP quality system (Unger et al.,
2008). The CTS (Cell Therapy Systems)-grade reagents
used in this paper were manufactured by state-of-the-art
cGMP- and IOS-certified facilities to ensure the highest
quality and consistency for reproducible results. As expec-
ted, the Q-CTS-hESC-2-RPE cells have passed a series of
strict biosafety tests. Notably, the Q-CTS-hESC-2-RPE cells
also showed capacity to form tight junction, phagocytize
POS and secrete trophic factors in vitro.

RPE suspension transplantation is widely embraced due
to the easy operation, but is disadvantaged by poor cell
survival and widespread apoptosis. Although RPE cell sheet
transplantation is more complicated and limited by the
scaffold and surgical tool, the delivery of RPE patch allows
the anatomic integration and reliable cell survival. However,
only few reports have compared the two transplantation
strategies and shown that hESC-RPE cultured on a syn-
thetic parylene substrate survived longer compared to sus-
pension transplantation according to the histological test
results (Diniz et al., 2013). Our study compared the two
transplantation strategies in terms of visual function which
demonstrated is no significant difference of the two groups
according to the ERG results. However, the quantity of
hESC-RPE cells for suspension transplantation (1 × 105

cells) was about 25 times as compared to cell sheet trans-
plantation (∼4000 cells). Due to the small size of RCS rats’
eyes, the cell patch was limited to 1 mm × 0.5 mm with
∼4000 cells. For clinical practice, a cell patch of ∼ 3 mm × 6
mm with ∼1 × 105 cells is used (da Cruz et al., 2018). As a
result, it is plausible to speculate that cell sheet
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transplantation will be more effective than cell suspension
transplantation under the same condition. In the future, more
comparisons between the two transplantation strategies in
terms of anatomic integration and survival rate of grafted
cells are required.
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