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Abstract

Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat
quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed
non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on
the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China’s
most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in
the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum
(LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12).

Results: We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199
mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs
and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment
analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that
target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly
enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate
lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that
included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1,
MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by
regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the
accuracy of the sequencing data by qRT-PCR.

Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid
deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep
genome and provide a working basis for investigating intramuscular fat deposition in sheep.
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Background
High-quality lamb meat is becoming increasingly popu-
lar as living standards improve and dietary patterns
change. Currently, evaluations of the meat quality of
livestock have revealed that the content of intramuscular
fat (IMF) is lower in carcass fats, yet IMF has a critically
important influence on the edibility and flavor of muscle
meat [1]. Indeed, the quantity of IMF has become one of
the most critical parameters of meat quality indicators,
as it is considered to be positively related to meat quality
and texture [2, 3]. When a certain amount of fat is de-
posited between the muscle bundles and muscle fibers,
the marbled section of the meat has a high score, and
the meat is fresh and juicy, which is often considered
ideal [4, 5]. The selective deposition of fat can improve
production efficiency and play a key role in improving
meat quality. This practice is also a major focus and
challenge of modern livestock breeding [6]. Therefore,
ensuring the appropriate deposition of IMF in lean meat
can enhance the future quality of sheep meat.
Studies have shown that intramuscular lipid deposition

is affected by multiple genes and signaling pathways,
such as the FAS, FAM134B, and HSL genes and the Wnt
and AMPK signaling pathways [7–9]. Recently, long
non-coding RNAs (lncRNAs) have received increased at-
tention for their wide-ranging functions. LncRNAs refer
to a class of non-coding RNAs longer than 200 nt in
length [10]. Most lncRNAs have significant temporal
and spatial expression specificity [11, 12] and have low
sequence conservation among species [13–15]. LncRNAs
can be divided into five types based on their positions
relative to neighboring protein-coding genes: intronic
lncRNAs, bidirectional lncRNAs, sense lncRNAs, inter-
genic lncRNAs and antisense lncRNAs [16].
LncRNAs can regulate various life activities of the

body, including epigenetic regulation, transcriptional
regulation and post-transcriptional regulation [17–19].
The most common regulation methods of lncRNAs in-
clude cis-regulation of the transcription of neighboring
protein-coding genes and the trans-regulation of non-
adjacent genes. In addition, lncRNAs can interact with
miRNAs to affect the post-transcriptional translation of
related mRNAs [20–22]. Studies have shown that
lncRNAs can play direct or indirect roles in the process
of lipid accumulation [23]. SRA (steroid receptor RNA
activator) is one of the earliest discovered lncRNAs and
plays an important role in lipid metabolism. SRA can
bind to peroxisome proliferator-activated receptor
gamma (PPAR γ) and enhance PPAR γ activity, thereby
promoting the differentiation of pre-adipocytes [24]. A
study of the expression levels of lncRNAs in the IMF of
Jinhua and Landrace pigs revealed a total of 119 differ-
entially expressed lncRNAs (DELs), six of which were in-
volved in fat deposition and lipid metabolism-related

pathways [25]. Furthermore, an analysis of transcriptome
data from IMF in Inner Mongolia goats revealed that
1472 lncRNAs were involved in adipocyte growth regu-
lation and morphological changes of adipocytes [26].
Another study has shown that lncRNAs can play a key
regulatory role in fat deposition in sheep tails [27]. Over-
all, these findings demonstrate that lncRNAs can regu-
late lipid deposition through a variety of regulatory
mechanisms. However, few studies have assessed the
roles of lncRNAs in intramuscular lipid deposition in
sheep.
Aohan fine-wool sheep (AFWS) is an important meat-

hair, dual-purpose sheep breed in China that grows rap-
idly early in development. The elimination of male lambs
for fat lamb production can increase both hair and meat
gains as well as improve the overall benefits provided by
fine wool sheep [28]. Exploring the developmental char-
acteristics of IMF deposition and selecting candidate
genes for AFWS provide references for future studies
and applications in sheep breeding, improve the quality
of mutton and accelerate the breeding process. The goal
of our study was to systematically identify the profiles of
differentially expressed mRNAs (DEMs) and DELs dur-
ing intramuscular lipid deposition in sheep through
high-throughput sequencing. We hoped that by studying
the relationship between lncRNAs and lipid deposition,
our findings would shed light on the mechanisms under-
lying selective muscle lipid deposition in sheep.

Results
Determination of IMF content
Results for the IMF content of sheep are shown in
Table 1. The IMF content of the Longissimus thoracis et
lumborum (LTL) at 2, 4, 6 and 12 months was 2.202 ±
0.006, 4.566 ± 0.178, 10.685 ± 0.690 and 11.163 ± 0.878,
respectively. We found that the IMF content of LTL at
Mth-4 was significantly higher than that at Mth-2 (P <
0.01) and was significantly lower than that at Mth-6 and
Mth-12 (P < 0.01). The IMF content of LTL in Mth-12
was also significantly higher than that observed in Mth-2
(P < 0.01). No significant differences were detected be-
tween Mth-6 and Mth-12. The same pattern was ob-
served for the biceps femoris muscle (BFM). IMF
content in the LTL was significantly higher than that in
the BFM in the same month (P < 0.01). Thus, Mth-2 and
Mth-12 were selected for RNA sequencing (RNA-seq).

Profiles of lncRNAs and mRNAs in sheep muscle
A total of six RNA expression profiles were generated in
this experiment. The results are shown in Table 2. The
average raw reading was 13.62 G (1G means 1*109 base).
After preprocessing the raw data, the average value of
the filtered data obtained in each library was 12.82 G.
The data obtained from the six expression profiles were
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relatively average with Q20 ≥ 99% and G/C contents ran-
ging from 49 to 53%, indicating that the quality of the
filtered data was reliable. The comparison rate between
the filtered clean reads and the reference genome was
greater than 88% in all six samples, indicating that the
experiment was free of contamination and that the ex-
perimental results were robust.
An average of 24,384 expressed genes was identified in

the six libraries, and a summary of the protein-coding
genes identified is provided in Additional file 1 (Table
S1). An average of 6499 unique lncRNAs was identified
in the libraries. The information associated with all iden-
tified lncRNAs is shown in Additional file 2 (Table S2).
We found that the number of reads was positively re-
lated to the length of the chromosome (Fig. 1a). Based
on the locations of novel lncRNAs in the genome, we
identified 525 antisense lncRNAs, 304 sense lncRNAs,
350 bidirectional lncRNAs, 1710 intronic lncRNAs and
4046 intergenic lncRNAs (Fig. 1b). The sequence infor-
mation for all identified lncRNAs is shown in Add-
itional file 3 (Table S3).
The structural characteristics and the expression levels

of lncRNAs and mRNAs were different. The average
length of lncRNAs was 868 nt, which was shorter than the
average length of mRNAs (2131 nt) (Fig. 1c). LncRNAs

consisted of 1.7 exons on average, while mRNAs had 9.9
exons on average (Fig. 1d), thus, lncRNAs had fewer exons
than mRNAs. Meanwhile, lncRNAs had lower expression
levels relative to mRNAs (Fig. 1e). Moreover, the length of
the open reading frame (ORF) of lncRNAs tended to be
shorter than that of mRNAs (Fig. 1f, g). Overall, lncRNAs
were characterized by shorter lengths, fewer exons, lower
expression levels and shorter ORF length distributions
compared with mRNAs.

Identification of differentially expressed mRNAs and
lncRNAs
A total of 199 DEMs were identified in muscle tissue
(log2 (fold change) ≥ 1 or log2 (fold change) ≤ − 1 and
q < 0.05). Of these differentially expressed genes (DEGs),
70 were up-regulated and 129 were down-regulated
(Fig. 2a, c). A summary of DEGs is provided in Add-
itional file 4 (Table S4A). We identified 61 lncRNAs that
were differentially expressed, of which 25 lncRNAs were
up-regulated and 36 lncRNAs were down-regulated (Fig.
2b, d). Interestingly, 58 DELs were novel lncRNAs, we
will focus on these novel lncRNAs in subsequent re-
search. The list of DELs is provided in Additional file 4
(Table S4B). To illustrate the distribution of DEGs, we
created clustering maps of top 100 DEMs and all the

Table 1 IMF content of sheep (%)

Age Longissimus thoracis et lumborum IMF(%) Biceps femoris IMF(%)

Mth-2 2.202 ± 0.006Aa** 2.012 ± 0.058Aa

Mth-4 4.566 ± 0.178Bb** 3.390 ± 0.149Bb

Mth-6 10.685 ± 0.690Cc** 7.925 ± 0.378Cc

Mth-12 11.163 ± 0.878Cc* 8.867 ± 0.188Cc

IMF content in different parts of muscles among sheep with the same age. ** indicates that means were highly significantly different (P < 0.01); * indicates
significant differences (P < 0.05); different lowercase letters indicate that means differ significantly (P < 0.05) between the same muscles groups of sheep of
different ages; different capital letters indicate that means were highly significantly different (P < 0.01) between the same muscles groups of sheep of
different ages

Table 2 Statistical data derived from RNA Sequencing

Mth-2-1 Mth-2-2 Mth-2-3 Mth-12–1 Mth-12–2 Mth-12–3

Raw reads 90,397,074 89,528,496 88,813,860 90,619,672 95,989,952 89,577,658

(13.59G) (14.40G) (13.44G) (13.56G) (13.43G) (13.32G)

Valid reads 85,098,620 84,675,502 81,473,556 85,252,798 91,240,846 85,201,776

(12.79G) (13.69G) (12.78G) (12.76G) (12.70G) (12.22G)

Valid Ratio(%) 94.14 94.58 91.74 94.08 95.05 95.11

Q20% 99.98 99.98 99.97 99.98 99.98 99.98

Q30% 98.02 97.98 97.83 98.03 98.15 98.17

GC content(%) 49.5 51 53 49 49 49

Mapped reads 76,713,303 74,525,753 69,966,338 77,129,925 83,264,100 77,731,307

(90.15%) (88.01%) (85.88%) (90.47%) (91.26%) (91.23%)

Expressed genes 24,537 24,229 24,295 24,605 24,563 24,077

Unique lncRNAs 6495 6492 6507 6532 6541 6425
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Fig. 1 Characteristics of lncRNAs and mRNAs in the intramuscular fat of sheep. a: Density distribution of lncRNAs. b: Distribution of different
types of lncRNAs. c: Length distribution of lncRNAs and mRNAs. d: Distribution of exon number for lncRNAs and mRNAs. e: Expression levels
(log10FPKM) and numbers of lncRNAs and mRNAs. f and g: Length distribution of ORFs of lncRNAs and coding genes
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DELs (Fig. 2e, f). Red indicates that the gene had a
higher expression level, and blue indicates that the gene
had a lower level of expression.

Among the DEMs, we found many genes that have
been shown to be related to lipid deposition. IGF2,
CAPN6, UCP2 and SOCS2 were highly expressed at

Fig. 2 The differentially expressed mRNAs and lncRNAs in the intramuscular fat of sheep. a and b: The number of up-regulated and down-
regulated differentially expressed mRNAs and lncRNAs. The left red bars represent the number of genes up-regulated; the right blue bars
represent the number of genes down-regulated. c and d: The volcano of expressed mRNAs and lncRNAs. The left blue points represent
significantly decreased mRNAs and lncRNAs; gray points represent mRNAs and lncRNAs without significant changes. The right red points
represent significantly increased mRNAs and lncRNAs. e and f: The clustering maps of top 100 differentially expressed mRNAs and lncRNAs. Red
indicates that the gene had a higher expression level, and blue indicates that the gene had a lower level of expression
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Mth-2. IGF2 and CAPN6 were reported to affect the de-
position of intramuscular fat and play an important role
in meat efficiency [29, 30]. UCP2 and SOCS2 can regu-
late the proliferation and differentiation of preadipocytes
[31, 32]. FOSB, SCD and CMYA5 were highly expressed
at Mth-12. They have all been found to be potential can-
didate gene affecting meat quality [33–35]. Among the
DELs, we found that MSTRG.13347.2, MSTRG.16157.3,
MSTRG.11343.1, MSTRG.11343.4, MSTRG.10678.1
were highly expressed at Mth-2. We speculated that
these novel lncRNAs might inhibit lipid deposition.
Meanwhile, MSTRG.3004.3, MSTRG.21053.3, MSTR
G.14887.1, MSTRG.790.1, MSTRG.10518.3 were highly
expressed at Mth-12. We speculated that these novel
lncRNAs might promote lipid deposition. However, the
regulatory mechanisms underlying these lncRNAs re-
quire further study.

Enrichment analysis of differentially expressed mRNAs
GO functional enrichment analysis of DEGs revealed
that these genes participated in a total of 346 signifi-
cantly enriched functional classifications (P < 0.05), 235
of which were related to biological processes, 30 related
to cellular components and 81 related to molecular
functions (Additional file 5: Table S5A). The top 25 of
biological processes, top 15 of cellular components, top
10 of molecular functions were shown in Fig. 3a. The
most significantly enriched GO terms were: DNA bind-
ing (GO:0003677), extracellular region (GO:0005576),
calcium ion binding (GO:0005509), extracellular space
(GO:0005615), oxidation-reduction process (GO:
0055114), oxidoreductase activity (GO:0016491).
In addition, results of the KEGG pathway analysis

showed that these DEGs were involved in 126 biological
pathways (Additional file 5: Table S5B), 18 pathways of

Fig. 3 GO terms and pathways analysis of differentially expressed mRNAs and target genes. a: The top 25 of biological processes, top 15 of
cellular components, top 10 of molecular functions of differentially expressed mRNAs. b: Top 20 pathways of differentially expressed mRNAs. The
size of the points represents the number of significant differentially expressed mRNAs that matched to a GO term. The color of the points
represents the significance of enrichment. c: The top 25 of biological processes, top 15 of cellular components, top 10 of molecular functions of
differentially expressed target genes
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Table 3 Critical target mRNAs and candidate lncRNAs related to lipid deposition

Critical target
mRNAs

Candidate lncRNAs

EXOC6 MSTRG.8047.1/MSTRG.3581.1/MSTRG.8215.2/MSTRG.2469.2

FZD4 MSTRG.21381.1/MSTRG.8573.1/MSTRG.4051.3/MSTRG.19788.2/MSTRG.1098.2/MSTRG.21622.1/MSTRG.2792.1/MSTRG.792.2/
MSTRG.7213.2/MSTRG.8912.2

NCOA1 MSTRG.3592.2/MSTRG.21238.1

PAQR3 MSTRG.7951.1/MSTRG.792.1/MSTRG.21053.3/MSTRG.21238.1/MSTRG.2792.1/MSTRG.792.2

ULK1 MSTRG.10920.3/MSTRG.7213.2/MSTRG.20109.2/MSTRG.21622.1/MSTRG.1098.2/MSTRG.19788.2/MSTRG.16157.3

FHL1 MSTRG.6483.2/MSTRG.14888.1/MSTRG.6483.2/MSTRG.12097.3/MSTRG.12864.1/MSTRG.3013.3

TPI1 MSTRG.19941.2/MSTRG.21238.1/MSTRG.7951.1/MSTRG.792.1/MSTRG.21053.3

Fig. 4 LncRNA-mRNA co-expression network. The red points represent critical mRNAs involved in lipid deposition. The yellow points represent
candidate lncRNAs, which can regulate target genes
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which were significantly enriched, including arachidonic
acid metabolism (ko00590), linoleic acid metabolism
(ko00591), steroid hormone biosynthesis (ko00140), and
retinol metabolism (ko00830), all of which were related
to lipid metabolism. Moreover, the top 20 signaling
pathways are shown in Fig. 3b. The results indicated that
these pathways may have significantly contributed to the
deposition of IMF.

Comprehensive analysis of candidate lncRNAs and mRNAs
To understand the potential function of novel lncRNAs,
we performed cis-regulation and trans-regulation analyses
on candidate lncRNAs. A total of 61 DELs regulated 49
DEMs, all the lncRNAs that acted on 49 mRNAs through
trans-regulation (Additional file 6: Table S6). GO analysis
of targets of lncRNAs revealed that these genes partici-
pated in a total of 422 GO terms, 180 of which were sig-
nificantly enriched (P < 0.05) (Additional file 7: Table
S7A). In GO annotation, these DEGs primarily played a
role in biological processes. For example, glyceraldehyde-
3-phosphate metabolic process (GO:0019682), positive
regulation of phospholipid translocation (GO:0061092),
glyceraldehyde-3-phosphate biosynthetic process (GO:
0046166), cell-cell junction assembly (GO:0007043),
muscle cell cellular homeostasis (GO:0046716) and actin
filament polymerization (GO:0030041). The top 25 of bio-
logical processes, top 15 of cellular components, top 10 of
molecular functions were shown in Fig. 3c. The KEGG
pathway enrichment analysis of target genes revealed a
total of 47 annotated pathways (Additional file 7: Table
S7B), of these pathways, one was significantly enriched
(P < 0.05), namely Tight junction (ko04530). Although
some pathways were not significantly enriched, such as
Wnt signaling pathway (ko04310), AMPK signaling path-
way (ko04152), mTOR signaling pathway (ko04150), Cell

adhesion molecules (CAMs)(ko04514) and MAPK signal-
ing pathway (ko04010) and Jak-STAT signaling pathway,
these pathways have been reported in the literature to play
an important role in lipid deposition [36–41]. Overall, the
significantly enriched pathways and GO terms involve 49
target genes. Of these, seven target genes are associated
with lipid deposition. There were lncRNAs whose pearson
correlation coefficients ≥0.9 or ≤ − 0.9 associated with
these seven target genes (Table 3). Of these, seven have
high expression levels: MSTRG.16157.3, MSTRG.21053.3,
MSTRG.19941.2, MSTRG.2469.2, MSTRG.4051.3, MSTR
G.21381.1, MSTRG.12864.1. A network describing the
connections between the source genes and lncRNAs
(whose pearson correlation coefficients ≥0.8 or ≤ − 0.8)
was constructed (Fig. 4). However, the regulatory mecha-
nisms underlying these lncRNAs require further study.

Validation of lncRNA and mRNA expression by qRT-PCR
To validate the expression levels of DELs and DEMs, we
randomly selected five DELs and five DEMs and de-
tected their expression levels by qRT-PCR (Fig. 5a). The
results of RNA-seq are shown in Fig. 5b. Comparison of
the two sets of results above revealed consistent regula-
tory trends of genes detected by the two methods, indi-
cating that the RNA-seq data were accurate.

Discussion
IMF content increased gradually with growth, as signifi-
cant differences were detected between Mth-2 and Mth-
12. These findings were consistent with a previous study
showing that the IMF content of sheep increased from 0
to 6 months but remained stable thereafter until 12
months of age [42]. Furthermore, these findings are con-
sistent with the characteristics of muscle growth and the
development of experimental sheep. The sheep switched

Fig. 5 Five differentially expressed mRNAs and five differentially expressed lncRNAs, which were detected by qRT-PCR. a: Expression levels of
genes by qRT-PCR. b: Expression levels of genes by RNA-seq
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to a fattening phase after weaning at 2 months. The
weight of sheep increased rapidly between the ages of 4
to 6 months, after which weight gain stabilized. IMF is
an important feature contributing to meat quality.
Therefore, we selected the LTL samples at Mth-2 (less
lipid deposition) and Mth-12 (more lipid deposition) for
RNA-seq to provide a robust test of gene expression
differences.
Overall, we identified a total of 26,247 genes and 6935

predicted novel lncRNAs in LTL samples of sheep by
RNA-seq. Among these, 199 mRNAs (70 up-regulated
and 129 down-regulated) and 61 lncRNAs (25 up-
regulated and 36 down-regulated) were differentially
expressed. We found many DEMs that have been shown
to be related to lipid deposition. A marker-derived gene
network reveals CAPN6 can regulate intramuscular fat
deposition of beef cattle as modulators of carcass and
meat quality traits [30]. Transcriptome analyses examin-
ing IMF content in the LTL in heavy Iberian Pigs identi-
fied FOSB as a candidate gene and other regulatory
factors [33]. A study examining gene expression differ-
ences in metabolism and function between intramuscu-
lar and subcutaneous adipocytes in cattle found that
SCD was highly expressed in adipocytes and closely as-
sociated with fat formation [34]. Similarly, we found
many factors that affect the differentiation of pre-
adipocytes, such as UCP2 and SOCS2. As the target gene
of miR-132–3p, UCP2 can regulate the differentiation of
sheep precursor fat cells [31]. SOCS2 can also act as a
regulator of adipocyte size [32]. However, there are still
many DEMs whose functions are unknown, and whether
they are related to lipid deposition still needs further
research.
To further characterize the mechanisms underlying

DEGs, we performed GO and KEGG analysis of DEMs.
In GO annotation, these DEGs primarily played a role in
biological processes. These processes were closely re-
lated to fat formation and deposition, such as reverse
cholesterol transport (GO: 0043691), positive regulation
of cholesterol efflux (GO:0010875), glyceraldehyde-3-
phosphate metabolic process (GO:0019682), positive
regulation of phospholipid translocation (GO:0061092),
glyceraldehyde-3-phosphate biosynthetic process (GO:
0046166) and positive regulation of cholesterol esterifi-
cation (GO:0010873) [43–48]. In addition, we found that
many genes were enriched in biological processes, such
as signal transmission, organ development, biosynthesis
and cell proliferation, and these are also important pro-
cesses in muscle development. KEGG pathway analysis
revealed that the DEMs were significantly enriched in
the immune system, inflammatory response and bio-
logical metabolism pathways, demonstrating that signal
transmission between adipocytes and immune cells can
greatly affect the function of adipose tissue [49]. This

result was consistent with the fact that inflammatory cell
infiltration has been documented to commonly occur in
adipose tissue and stimulate the activation of the im-
mune defense system [50]. We also found that many
pathways related to lipid metabolism (Cholesterol me-
tabolism and Arachidonic acid metabolism) were signifi-
cantly enriched for many DEMs, such as HABP2, CST6,
DLK1, PLA2G4E and FOSL1 that have been reported to
participate in lipid metabolism [51–55]. Based on the
GO and KEGG analysis, we obtained DEMs expression
profiles that affected the IMF deposition of sheep.
In our study, 61 DELs participated in the regulation of

target mRNAs, among them, 58 lncRNAs were novel
lncRNAs and all of them acted on 49 target genes through
trans-regulation. The functionality of lncRNA is reflected
through the study of their target genes [56]. We per-
formed GO and KEGG enrichment analysis on these tar-
get genes. We focused on the GO terms related to lipid
deposition. These included terms under biological pro-
cesses, such as glyceraldehyde-3-phosphate metabolic
process (GO:0019682), positive regulation of phospholipid
translocation (GO:0061092), glyceraldehyde-3-phosphate
biosynthetic process (GO:0046166) and cell-cell junction
assembly (GO:0007043), as well as molecular functions,
such as Wnt-protein binding (GO:0017147), Atg1/ULK1
kinase complex (GO:1990316) and eukaryotic translation
initiation factor 2B complex (GO:0005851). We found that
the identified lncRNAs might be related to these GO
terms. However, further research is required to identify
the precise mechanisms.
The KEGG enrichment analysis revealed that target

genes were significantly enriched in one pathway, Tight
junction (ko04530). Tight junctions have been reported
that it has a regulatory effect on the communication of
various substances and conditions between cells [57].
Recently, two novel aspects were found that one was
their involvement in signal transduction and the other
was that tight junctions were considered to be a crucial
component of innate immunity [58]. Autophagosome af-
fects metabolism of various substances the by selectively
degrading lysosomal targets [59]. Although some signal-
ing pathways were not significantly enriched in our
study, such as the “Wnt signaling pathway” “MAPK sig-
naling pathway” and “AMPK signaling pathway”, they
are critically important in the process of lipid deposition.
Myriad studies have demonstrated the crucial role of ca-
nonical Wnt/β-catenin cascade in the development of
organs physiological homeostasis and biological metab-
olism [60]. Wnt/β-catenin signaling pathway is an im-
portant developmental pathway that negatively regulates
adipogenesis [61]. MAPK/ PI3K/Akt signaling pathway
can improve glucose and lipid metabolism via regulation
of the metabolic profiling [40]. The AMPK signaling
pathway coordinates cell growth, autophagy and
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metabolism [62]. The above analysis and KEGG path-
ways might play important roles in lipid deposition and
deserve further study.
To facilitate future studies of the mechanisms under-

lying lncRNAs, we constructed the lncRNA-mRNA co-
expression network contained 41 novel lncRNAs and
seven mRNAs based on analysis of critical target genes.
The seven pairs of lncRNAs-mRNAs included MSTR
G.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-
PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1,
MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1.
Target genes of these lncRNAs have been reported to be in-
volved in lipid deposition. FZD4 is highly expressed during
fat production [63] and ULK1 participates in lipid metabol-
ism [64]. PAQR3 has modulatory roles in obesity, energy
metabolism, and leptin signaling [65]. TPI1 as a glycolytic
enzyme, can catalyze the interconversion of dihydroxy-
acetone phosphate and glyceraldehyde 3-phosphate in the
glycolytic pathway [66]. It was proposed as a potential bio-
marker for IMF [67]. FHL1 regulates gene transcription, cell
proliferation, metabolism and apoptosis, and plays a role in
fat deposition [68]. Exoc6 participates in GLUT4 transloca-
tion in adipocytes thereby affecting glucose transport in fat
and muscle cells [69]. Evidence has shown that the p160
co-activator family, consisting of NCOA1, NCOA2 and
NCOA3, plays a critical role in adipogenesis and might have
a concordant effect on lipid metabolism in mammals [70].
These results provide information for future studies exam-
ining how lncRNAs regulate IMF deposition in sheep. The
specific regulatory mechanisms require further study and
testing.

Conclusions
Our study systematically identified mRNA and lncRNA
expression profiles during intramuscular lipid deposition
in sheep. We obtained a total of 199 DEMs and 61 DELs
and identified some important lncRNAs related to lipid
deposition through GO and KEGG enrichment analysis.
In addition, co-expression network analysis of lncRNAs
and mRNAs involving 41 lncRNAs and seven mRNAs was
conducted based on significant KEGG pathways. Seven
pairs of lncRNA-mRNA, including MSTRG.4051.3-FZD4,
MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTR
G.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-
EXOC6 and MSTRG.21381.1-NCOA1 were selected for
further research. Our study provided a list of the lncRNAs
and mRNAs related to intramuscular lipid deposition and
laid a foundation for future research on the regulatory
mechanisms of lncRNA on sheep muscle lipid deposition.

Methods
Sample preparation
All experimental sheep came from the AFWS Stud Farm
(Chifeng, Inner Mongolia, China). All sheep were fed

under the same feeding and management conditions. A
total of 12 healthy AFWS rams (3 individuals for each
stage) at 2, 4, 6 and 12months of age were killed for the
sample collection. AFWS rams were obtained from 12
ewes of a similar age and weight that were in estrus sim-
ultaneously and were artificially inseminated from the
same ram. The 12 healthy AFWS rams were placed in a
closed chamber and anesthetized with sodium pentobar-
bital at a dose of 25 mg/kg by intravenous injection.
Rams were anesthetized and eventually sacrificed in the
enclosed chamber by having it filled with 20% carbon di-
oxide every minute until the gas concentration had
reached 80%. Experimental animal handling procedures
were performed following published protocols [71, 72].
Samples of the LTL and BFM were collected for RNA
extraction, placed in RNAase-free Eppendorf tubes and
stored immediately in liquid nitrogen. All samples were
then stored at − 80 °C until analysis. Likewise, the sam-
ples for IMF content determination (150 g per muscle)
were packed in plastic bags with ice and stored at −
20 °C in time.

Determination of IMF content
Soxhlet petroleum-ether extraction was used for the de-
termination of IMF content. After removing the white
intermuscular fat from the muscle samples, the samples
were minced thoroughly with a meat grinder, loaded
into glassware and dried at 105 °C until completely dry.
Samples were then weighed after crushing (marked as z),
wrapped with quantitative filter paper and baked at
105 °C until samples were dry and their weight did not
change. Samples were then weighed in paper bags after
drying (marked as x). The dried paper bag was then
placed in the Soxhlet extraction bottle, and the ether re-
flux device was used to reflux the sample at 65 °C until
the drops are transparent. The paper bag was then
placed in a fume hood to fully volatilize the ether,
followed by drying at 105 °C until the weight did not
change (marked as y). The measurement was repeated
three times for each sample. The following formula was
used to calculate the IMF content: IMF content
(%) = (x–y) / z × 100%.

RNA extraction and quality assessment
Total RNA of the LTL was extracted using Trizol re-
agent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. RNA purity was measured
at an OD 260/280 with a NanoDrop ND-2000 instru-
ment (Thermo Fisher Scientific, MA, USA). RNA integ-
rity (RIN) was evaluated by 1% agarose gel
electrophoresis and Agilent 2100 bioanalyzer (Agilent,
Santa Clara, CA, USA). RNA samples with OD260/OD280

ratio greater than 1.8 and RIN value greater than 7.5
were selected for sequencing.
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Library preparation and sequencing
First-strand complementary DNA (cDNA) was synthe-
sized using random hexamer primers and M-MuLV re-
verse transcriptase (RNase H-) [73], with rRNA-depleted
RNA used as a template. Second-strand cDNA was then
synthesized with dNTPs, DNA polymerase I and RNase
H. Next, T4 DNA polymerase and Klenow DNA poly-
merase were used to repair and modify the ends to add
an A base and ligate the sequencing adapter. The cDNA
products were then purified using AMPure XP beads
(Beckman Coulter, Brea, CA, USA). Finally, uracil DNA
glycosylase (NEB, Ipswich, MA, USA) was used to de-
grade the U-containing chain to remove second-strand
cDNA. The purified first-strand cDNA was enriched by
PCR to obtain a cDNA library. The quality of the librar-
ies was assessed using an Agilent 2100 Bioanalyzer, and
sequencing was performed using paired-end sequencing
(2*150 bp) with the Illumina HiSeq 4000 platform (LC
Sciences, Houston, TX, USA).

Mapping of reads and transcriptome assembly
Cutadapt (Version 1.10) was used to remove the reads
that were contaminated by adapters, low-quality bases
and undetermined bases. The clean reads were mapped
to the reference genome Ovis aries Ensembl release 96
(ftp://ftp.ensembl.org/pub/release-96/fasta/ovis_aries/
dna/) using HISAT2(Version 2.0.4) [74]. Mapped reads
of each sample were assembled by StringTie (Version
1.3.0) [75]. Gffcompare (http://ccb.jhu.edu/software/
stringtie/gffcompare.shtml) was used to combine all
transcripts from samples to reconstruct a comprehensive
transcriptome. StringTie was used to determine the ex-
pression level for all transcripts by calculating FPKM
(FPKM = [total exon fragments/mapped reads (mil-
lions) × exon length (kb)]).

Identification of lncRNAs
Known transcripts and transcripts less than 200 bp in
length were removed from the data set. CPC (Coding
Potential Calculator, Version 0.9-r2) and CNCI (Coding-
Non-Coding Index, Version 2.0) were then used to
screen lncRNAs [76, 77]. When the CPC software score
was less than 0.5 and the CNCI software score was less
than 0, a transcript was considered a novel lncRNA. We
used circos (http://www.circos.ca) software to perform
genomic mapping on the lncRNAs obtained by screen-
ing. The P-value was adjusted using the Benjamini &
Hochberg method [78]. A corrected P-value of 0.05 was
set as the threshold for significantly differential expres-
sion. The R package “edge R”(Version 3.4.4) was used
for difference statistics and visual drawing, which was
used to select the differentially expressed transcripts that
satisfied the condition of log2 (fold change) ≥ 1 or log2
(fold change) ≤ − 1 and q < 0.05.

Enrichment analysis of differentially expressed mRNAs
We used the Gene Ontology database (http://www.
geneontology.org) and the Kyoto Encyclopedia of Genes
and Genomes (http://www.kegg.jp/kegg) to annotate DEGs.
The genes were mapped to GO terms and KEGG pathways
based on annotation information and then the hypergeo-
metric test was performed. The clustering map was drawn
by the R package “edge R”. GO terms and KEGG pathways
were defined as significantly enriched when P < 0.05.

Prediction of lncRNA target genes
Based on the cis-and trans-regulation mechanisms of
lncRNA, we identified the protein-coding genes (100-kb
upstream and downstream) located on the same
chromosome as the lncRNA that was a target for cis-
regulation. RIsearch (https://rth.dk/resources/risearch/)
was used to predict the free energy of lncRNA-mRNA
gene combinations on different chromosomes; combina-
tions of lncRNA and mRNA with free energies below −
11 kcal/mol were identified as trans target genes of
lncRNA [79]. The results of the cis and trans-regulation
were used to calculate Pearson correlations between
lncRNA and mRNA expression. Cytoscape was used to
plot the co-expression network.

Verification of sequencing data
We randomly selected five lncRNAs and five mRNAs to
validate their expression using SYBR Green PCR Master
Mix (Takara, Dalian, China). Primer 5 (http://www.
premierbiosoft.com/index.html) was used to design
primers for the candidate genes. The sequences of the
primers used are listed in Additional file 8 (Table S8). A
20-μL PCR mixture consisted of 10 μL SYBR® Premix Ex
Taq II (2×), 0.5 μL forward primer (10 μM/L), 0.5 μL re-
verse primer (10 μM/L), 1 μL cDNA and 8 μL ddH2O.
The PCR parameters were as follows: 95 °C for 30 s; 40
cycles of 95 °C for 5 s; 60 °C for 30 s; 72 °C for 30 s; and
72 °C for 5 min. Three replicates were conducted for
each sample. The 2-ΔΔCt method was used to quantify
relative expression levels [80].

Statistical analysis
Data on IMF content were expressed as means±
standard deviation. One-way analyses of variance in
SPSS 17.0 were used to analyze experimental results.
Independent sample t-tests were used to compare the
IMF content of muscles at the same age. All the data
from the qRT-PCR were obtained using at least three
independent replicates. Differences were deemed statis-
tically significant if P < 0.05.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07385-9.
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Additional file 1 Table S1. The summary of protein-coding genes iden-
tified in the libraries.

Additional file 2 Table S2. The summary of lncRNAs identified in the
libraries.

Additional file 3 Table S3. Sequence information of all expressed
lncRNAs found in the study.

Additional file 4 Table S4(A). The summary of differentially expressed
protein-coding genes. Table S4(B). The summary of differentially
expressed lncRNAs.

Additional file 5 Table S5(A). GO enrichment analysis of the
differentially expressed mRNAs. S gene number: the number of significant
differentially expressed mRNAs which match to a GO term; TS gene
number: the number of significant differentially expressed mRNAs which
have GO annotations; B gene number: the number of detected mRNAs
which match to a GO term; TB gene number: the number of all detected
mRNAs which have GO annotations. Table S5(B). KEGG enrichment
analysis (P < 0.05) of the differentially expressed mRNAs.

Additional file 6 Table S6. The differentially expressed target mRNAs
of the differentially expressed lncRNA in trans- regulatory roles.

Additional file 7 Table S7(A). GO enrichment analysis of differentially
expressed target mRNAs of differentially expressed lncRNAs in the study.
Table S7 (B). KEGG enrichment analysis of differentially expressed target
mRNAs of differentially expressed lncRNAs in the study.

Additional file 8 Table S8. Primers used in the qRT-PCR analysis.
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