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Abstract

This paper proposes a combination of non-local spatial information and quantum-inspired

shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically,

for the first time, the problem of inappropriate filtering degree parameter which commonly

occurs in non-local spatial information and seriously affects the denoising performance in

sonar images, was solved with the method utilizing a novel filtering degree parameter.

Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism

(QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individ-

ual is directly encoded by real numbers, which can greatly simplify the evolution process of

the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function

combining intra-class difference with inter-class difference is adopted to evaluate frog posi-

tions more accurately. On this basis, recurring to an analysis of the quantum-behaved parti-

cle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new

search mechanism is developed to improve the searching ability and detection accuracy. At

the same time, the time complexity is further reduced. Finally, the results of comparative

experiments using the original sonar images, the UCI data sets and the benchmark func-

tions demonstrate the effectiveness and adaptability of the proposed method.

Introduction

Currently, underwater detection technology is used extensively for seabed surveys, salvage

operations, pipe-line inspections, underwater positioning, and numerous other marine appli-

cations. Sonar is one of the most important detection equipment, which can analyze the

underwater objects through acoustic intensity, frequency, and phase. Underwater sonar image

contains three types of regions: object-highlight, shadow and background region. The object-
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highlight region originates from acoustic wave reflection from an object. The shadow region

stems from a lack of acoustic backscatter behind the object. The remaining information con-

sists of the so-called “background region” [1]. Due to the complexity of the underwater envi-

ronment, sand, stones and animals in sea water can cause the gray values of the background

region to be close to those of object-highlight region and the shadow region. Underwater

sonar image contains a large amount of ambient noise and speckle noise from the surface or

sea floor [2]. Therefore, removing these noises is an indispensable step in the process of under-

water sonar image processing.

The spatial information include local spatial information and non-local spatial information,

which are often used to remove image noise. Local spatial information uses only the neighbor-

hood window of every pixel. Songcan Chen et al. [3] who define the mean spatial information

and median spatial information by computing the mean value and median value in the neigh-

borhood window of every pixel. Then, they were integrated into the objective function of the

fuzzy C-means (FCM) clustering algorithm to eliminate the influence of noise in the image. L.

Szilágyi et al. [4] presented the idea of linearly-weighted local spatial information. For each

pixel, the spatial information was obtained from that pixel and its neighboring pixels. Subse-

quently, nonlinearly weighted local spatial information was proposed, which was determined

not only from the original image and the gray values within the neighborhood window around

each pixel but also from the spatial coordinates [5]. On this basis, Stelios Krinidis et al. [6] pro-

posed a novel local spatial information called the local spatial fuzzy factor, which incorporated

both local spatial distance and local gray information in a fuzzy way to balance noise and pre-

serve the image detail. Hui Zhang et al. [7] incorporated local spatial information into the

Gaussian Mixture Model, which greatly reduced the influence of noise during the process of

image segmentation. Meanwhile, Long Thanh Ngo et al. [8] introduced an approach that

exploits local spatial information between a pixel and its neighbors to remove noise from satel-

lite images. However, there are many pixels that have similar neighborhood configuration

with each pixel in an image [9]. Compared with using adjacent pixels, it is more reasonable to

utilize pixels with a similar neighborhood configuration to obtain spatial information for a

given pixel. This type of information is referred to as non-local spatial information. In the pro-

cess of computing non-local spatial information, two windows must be defined: the search

window and the neighborhood window. Using the neighborhood windows of two pixels, the

weighted Euclidean distance between two pixels can be computed, which can describe the sim-

ilarity between those two pixels. By computing the weighted Euclidean distance between every

pixel and the center pixel in the search window, the weight of every pixel in the search window

can be obtained. The greater the distance, the smaller the weight of this pixel. The weighted

average value of all the pixels in the search window is defined as the non-local spatial informa-

tion. Jie Feng et al. [10] proposed a method to remove noise in radar images using non-local

spatial information. Feng Zhao et al. [11, 12] utilized non-local spatial information to reduce

the noise in medical images.

Underwater sonar images have amounts of noise and relatively weak contrast. Although the

non-local spatial information can solve the noise problem effectively, the selection of the filter-

ing degree parameter greatly affects the denoising result when computing non-local spatial

information. The mean value or median value of the weighted Euclidean distance between

each pixel and its center pixel is generally used as the filtering degree parameter [9]. Through

an analysis of comparative experiment results, when the filtering degree parameter is selected

as the mean value or the median value, there are the filtering degree parameter values over a

wide range. When the filtering degree parameter is relatively large, detail information is lost

in the sonar image, especially boundary information. In contrast, when the filtering degree

parameter is relatively small, the noise is not removed effectively in the sonar image. To solve
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this problem that non-local spatial information cannot remove noise effectively in sonar image

because of inappropriate filtering degree parameter, a novel filtering degree parameter is pro-

posed in this paper. Two threshold values are set to remove relatively large and small parame-

ters according to characteristics of sonar image in experiment results. Through two threshold

values, the denosing performance of non-local spatial information is improved to some extent.

The proposed filtering degree parameter is conducive to the subsequent detection of underwa-

ter objects.

The purpose of object detection is to extract the object-highlight region and shadow region

from the complex background region while preserving the original edge information of sonar

image as much as possible [13]. At present, research on image detection technology is very

extensive, but less work has been conducted in the field of object detection from underwater

sonar images [14]. In particularly, the heuristic optimization algorithms are a new important

research field in sonar image detection.

In recent years, heuristic optimization algorithms have gradually attracted more and more

attention both domestically and abroad. Many researches have shown that these algorithms

can solve numerous complicated computing problems. Among them, the genetic algorithm

(GA) [15], the particle swarm optimization (PSO) [16] and the shuffled frog leaping algorithm

(SFLA) [17] are the most commonly used. In 2003, Eusuff and Lansey proposed the SFLA,

which combines the advantages of the Memetic Algorithm (MA) in terms of genetic evolution

and the PSO algorithm in terms of social behavior [18, 19]. SFLA has a few parameters and

good searching ability. Its structure is very simple and easy to implement. Moreover, its perfor-

mance is better than GA and PSO. Therefore, SFLA has promising development and applica-

tion prospects. Xiaodan Zhang et al. [20] developed power control algorithm in cognitive

radio system based on a modified SFLA. Fan Tanghuai et al. [21] proposed a strategy to

improve the learning process of frogs and extend the learning diversity of frog population.

Subsequently, a fast SFLA was developed. The key idea was to improve computational speed

[22]. Roy Priyanka et al. [23] presented a novel SFLA combined with the crossover of genetic

algorithm to avoid falling into local optimum. To enhance the SFLA’s stability and the search-

ing ability, Taher Niknam et al. [24] proposed a chaotic local search algorithm, while Anis

Ladgham et al. [25] used an improved SFLA to complete fast MR image segmentation. S. Safaei

Arshi et al. [26] proposed multi-objective SFLA for in-core fuel management optimization.

Moreover, a multi-phase modified SFLA with external optimization is introduced to solve a

multi-depot vehicle routing problem (MDVRP) more quickly [27]. Although their results

were satisfactory, there are still many improvements in SFLA, such as dividing the frog popula-

tion more legitimately, improving local search process, finding a method to update the local

worst frog, exchanging global information better, and so forth. Currently, one of the most

important improved methods is to combine the SFLA with quantum-inspired theory, which

can increase the population diversity, enhance the searching ability, accelerate the convergence

rate, and avoid premature. The key idea of the quantum-inspired algorithm is to improve

SFLA by a model from quantum computing [28].

The frog population is encoded by the quantum bits in QSFLA. In the processes of local

and global search, the frog population is updated by the rotation angle which changes accord-

ing to local optimum and global optimum. However, there are few researches on QSFLA, and

there is no application on sonar image detection according to the authors’ knowledge. Hon-

gyuan Gao et al. [29] introduced a QSFLA and its application in cognitive radio. Later, Lian-

guo Wang et al. [30] proposed a quantum binary SFLA to solve the 0–1 knapsack problems

successfully. The quantum rotation gate is replaced by the phase angle to update the frog indi-

vidual, which is relatively simple and can avoid premature. To enhance the searching ability,

Weiping Ding et al. [31, 32] proposed a minimum attribute self-adaptive cooperative co-
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evolutionary reduction algorithm based on quantum elitist frogs, in which all frog individuals

in a sub-population participate in the local search. However, this algorithm has very high time

complexity, and it is also difficult to determine the quantum rotation angle. Sonar images have

amounts of noise and relatively weak contrast. Although some noise can be removed by the

proposed denoising method in this paper, it is still difficult to obtain relatively accurate detec-

tion results by QSFLA [31, 32]. For solving the problem that the QSFLA cannot precisely and

quickly detect underwater objects in sonar image because of search mechanism, QSFLA-NSM

is given in this paper. Using the clustering centers to describe the frog population after the pro-

posed denoising method in this paper, each frog individual can be directly encoded by real

numbers to greatly simplify the evolution process of QSFLA. Meanwhile, to evaluate the frog

positions more accurately, a fitness function combining intra-class difference with inter-class

difference is adopted. In the process of search, a new search mechanism that combines the

quantum search mechanism of QPSO with SFLA is proposed to improve the searching ability

and detection accuracy. Simultaneously, the time complexity can also be further reduced. Spe-

cifically, the local attractor point is obtained by the local best frog in the sub-population and

the global best frog in the whole population. Moreover, the new search mechanism does not

need to calculate the average best position of the whole population to update the frog individ-

ual, on the contrary, it utilizes the local best frog to update the worst frog in the sub-popula-

tion. If the worst frog in the sub-population is not improved, the local best frog is replaced

by the global best frog in the whole population, and the worst frog in the sub-population is

updated again. If the worst frog in the sub-population still is not improved, the new frog indi-

vidual is randomly generated to replace the worst frog in the sub-population.

The proposed underwater sonar image detection method is applied to original sonar

images, the simulation results show the good effectiveness and a powerful searching ability.

Compared with the results of QSFLA, SFLA, QPSO, PSO, the quantum genetic algorithm

(QGA) and GA, the better adaptability of the proposed method is further demonstrated by the

UCI data sets and the benchmark functions. The proposed method has important theoretical

and practical value.

Non-local spatial information denoising method with a novel

filtering degree parameter

Non-local spatial information

The search window and the neighborhood window are defined in non-local spatial informa-

tion. Suppose the search window radius is 2, and the neighborhood window radius is 1. The

schematic diagram is shown in Fig 1.

As depicted in Fig 1, {f1,f2,� � �,f25} is a search window, and f13 is the center pixel of the search

window. There is a neighborhood window for every pixel in the search window. For example,

{f3,f4,f5,f8,f9,f10,f13,f14,f15} is the neighborhood window of f9.

A sonar image is defined as X = {x1,x2,� � �,xn}, which contains n pixels. xj is the j-th pixel in

sonar image, and its non-local spatial information xj is expressed as follows [11]:

xj ¼
X

p2Wr
j

wjpxp; ð1Þ

whereWr
j is the search window, its center is the j-th pixel xj and the radius is r. The weight wjp

represents the similarity of neighborhood configuration between the center pixel xj and the p-

th pixel xp, 0�wjp�1,
X

p2Wr
j

wjp ¼ 1.
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wjp is expressed as follows:

wjp ¼
1

Zj
exp � xðNjÞ � xðNpÞ
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=h
� �
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where Nj represents the neighborhood window whose center is the j-th pixel xj and the radius

is s. Similarly, Np represents the neighborhood window whose center is the p-th pixel xp
and the radius is s. Then, x(Nj) is the vector that contains all the pixels in the neighborhood

window Nj. Meanwhile, x(Np) is the vector that contains all the pixels in the neighborhood

window Np. The filtering degree parameter h controls the decay of the exponential function,

and kxðNjÞ � xðNpÞk
2

2;r
is the weighted Euclidean distance.

kxðNjÞ � xðNpÞk
2

2;r
is expressed as follows [10]:

xðNjÞ � xðNpÞ














2

2;r

¼
Xð2sþ1Þ2

q¼1

rðqÞðxðqÞðNjÞ � x
ðqÞðNpÞÞ

2
; ð4Þ

where x(q)(Nj) is the pixel in the q-th dimension of the vector x(Nj).
ρ(q) is defined as

rðqÞ ¼
Xs

t¼maxðd;1Þ

1

ð2t þ 1Þ
2s
; ð5Þ

d ¼ max yq � s � 1

�
�
�

�
�
�; zq � s � 1

�
�
�

�
�
�

� �
; ð6Þ

Fig 1. Schematic diagram of search window and neighborhood window.

https://doi.org/10.1371/journal.pone.0177666.g001
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Where yq = mod(q,(2s+1)), zq = floor(q,(2s + 1)) + 1. (yq,zq) is the coordinates of neighborhood

window in the dimension q-th.

A novel filtering degree parameter

The filtering degree parameter h is a very important parameter. Its value can powerfully impact

on the weight of neighborhood configuration in the Eqs (2) and (3). Therefore, the filtering

degree parameter h is closely related to denoising result in non-local spatial information

denoising method. Through an analysis of comparative experiment results, when the filtering

degree parameter is selected as the mean value or median value, there are the filtering degree

parameter values over a wide range. When the filtering degree parameter is relatively large,

detail information is lost in the sonar image, especially boundary information. In contrast,

when the filtering degree parameter is relatively small, the noise of sonar image cannot be

removed effectively.

Fig 2 shows the denoising results of an original sonar image with floating objects when the

selected filtering degree parameter is the mean value or the median value.

As can be seen from Fig 2(d) and 2(e), most of the filtering degree parameter values are less

than 0.05. But there are still many abnormal parameter values, some of which are greater than

0.1 and some of which are significantly less than 0.01. The abnormally large parameter values

lead to a loss of detail information in sonar image, especially boundary information. This result

causes some noisy regions to be incorrectly detected as underwater objects. At the same time,

to effectively remove the noise, the filtering degree parameter cannot be relatively too small.

FCM is a simple, fast and relatively effective algorithm [14]. Therefore, to verify the influ-

ence of different filtering degree parameter values on the detection results for sonar image, Fig

3 shows the detection results of FCM on the image shown in Fig 2(a).

As depicted in Fig 3, the large white regions are the object-highlight regions, the large black

regions are the shadow regions and the grey region is the background region. The remaining

small regions are the isolated regions of detection result, which is caused by the noise. When

h = 0.01, the detection result is not ideal, and when h>0.05, all detection results are getting

worse. Therefore, the filtering degree parameter should be neither relatively large nor small.

To effectively remove the noise, a novel filtering degree parameter is proposed in this paper.

Two threshold values defined as hmax and hmin respectively are set to remove relatively large

and small parameter values. This can improve the denoising performance of non-local spatial

information to some extent and is also conducive to the subsequent detection of underwater

objects.

For every pixel xj in sonar image, its filtering degree parameter h is defined as

hm ¼ mean
p2Wr

j

xðNjÞ � xðNpÞ














2

2;r

� �

; ð7Þ

h ¼

hmax hm > hmax

hm hmin � hm � hmax

hmin hm < hmin

;

8
><

>:
ð8Þ

where hmax = 0.05 and hmin = 0.01 according to characteristics of sonar image.

Fig 4 shows the denoising results of non-local spatial information with this novel filtering

degree parameter on the image shown in Fig 2(a).

As shown in comparative results, the proposed novel filtering degree parameter is relatively

stable, and its values are mainly distributed in the interval [0.01, 0.05].
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Effective evaluation of the proposed denoising method

The normalized mean squared error (NMSE) [33], the quality factor (QF) [34] and the mean

structural similarity (MSSIM) [35] are used to objectively and quantitatively evaluate the

denoising result of sonar image in this paper.

Table 1 shows the evaluation analysis results for Figs 2(b), 2(c) and 4(a).

Fig 2. Denoising results of original sonar image using the mean value or the median value (image

size: 153×158). (a) original sonar image, (b) and (d) are the denoising result and filtering degree parameter

respectively when h is the mean value (r = 5, s = 2), (c) and (e) are the denoising result and filtering degree

parameter respectively when h is the median value (r = 5, s = 2).

https://doi.org/10.1371/journal.pone.0177666.g002
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As listed in Table 1, NMSE is the smallest, QF and MSSIM are the largest in Fig 4(a). There-

fore, the proposed denoising method can obtain better denoising result of sonar image in this

paper.

To verify the adaptability of the proposed denoising method, Fig 5 shows the denoising

results of the original sonar image with underwater stones on the bottom, which has relatively

weak contrast.

Table 2 shows the evaluation analysis results for Fig 5(b), 5(c) and 5(d).

Fig 6 shows the denoising results of structured seabed, which is an object in sand ripples.

Table 3 shows the evaluation analysis results for Fig 6(b), 6(c) and 6(d).

The following conclusions can be drawn by the preceding comparative experiments, NMSE

is the smallest, QF and MSSIM are the largest in Figs 5(d) and 6(d). Therefore, the proposed

denoising method can avoid the disadvantages of filtering degree parameter in non-local spa-

tial information, which can effectively remove noise, and has a certain adaptability. Mean-

while, the object-highlight and shadow regions are more prominent compared with the

background region, so these results are conducive to the subsequent detection of underwater

objects.

QSFLA-NSM

In QSFLA, the frog population is usually encoded by the quantum bits and updated by quan-

tum rotation gate. However, the time complexity of this search mechanism is very high, and it

is also difficult to determine the quantum rotation angle. Compared with QSFLA, the search

Fig 3. Detection results of FCM: Different filtering degree parameter values.

https://doi.org/10.1371/journal.pone.0177666.g003
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Fig 4. Denoising results of original sonar image with a novel filtering degree parameter (image size:

153×158). (a) denoising result of the proposed denoising method in this paper, (b) filtering degree parameter

when h is selected according to Eq (8).

https://doi.org/10.1371/journal.pone.0177666.g004

Table 1. Objective and quantitative evaluation values.

Figure h NMSE QF MSSIM

Fig 2(b) mean value 0.0572 0.6873 0.2795

Fig 2(c) median value 0.0557 0.7034 0.2968

Fig 4(a) novel value 0.0533 0.7162 0.3055

https://doi.org/10.1371/journal.pone.0177666.t001
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mechanism of QPSO needs fewer parameters [36], and each particle can be directly encoded

by real numbers to greatly simplify the evolution process. Meanwhile, particles move in delta

potential well of the search space [37]. The congregation of the particle swarm doesn’t lose the

randomness and particles can appear on any position of the whole space which is searched in a

certain probability. When one particle finds an optimal state, the others quickly converge to it

Fig 5. Denoising results of original sonar image (image size: 112×117). (a) original sonar image, (b)

denoising result when h is the mean value (r = 5, s = 2), (c) denoising result when h is the median value (r = 5,

s = 2), (d) denoising result of the proposed denoising method in this paper.

https://doi.org/10.1371/journal.pone.0177666.g005

Table 2. Objective and quantitative evaluation values in Fig 5.

Figure h NMSE QF MSSIM

Fig 5(b) mean value 0.1253 0.6856 0.2441

Fig 5(c) median value 0.1251 0.6846 0.2531

Fig 5(d) novel value 0.1001 0.7741 0.2702

https://doi.org/10.1371/journal.pone.0177666.t002
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[38, 39]. Therefore, QPSO has relatively good searching ability. But many studies showed that

the algorithm structure of QPSO and PSO is not as good as that of QSFLA and SFLA. SFLA

combines the advantages of Memetic Algorithm (MA) in terms of genetic evolution and PSO

algorithm in terms of social behavior, which balances global exploration ability and local devel-

opment ability [18, 19]. Therefore, a new search mechanism that combines the quantum

search mechanism of QPSO with SFLA is proposed to precisely and quickly detect underwater

objects in sonar images. Specifically, the local attractor point is obtained by the local best frog

in the sub-population and the global best frog in the whole population. Moreover, the new

search mechanism does not need to calculate the average best position of the whole population

to update the frog individual, on the contrary, it utilizes the local best frog to update the worst

frog in the sub-population. If the worst frog in the sub-population is not improved, the local

best frog is replaced by the global best frog in the whole population, and the worst frog in the

sub-population is updated again. If the worst frog in the sub-population still is not improved,

the new frog individual is randomly generated to replace the worst frog in the sub-population.

Fig 6. Denoising results of original sonar image (image size: 259×368). (a) original sonar image, (b)

denoising result when h is the mean value (r = 5, s = 2), (c) denoising result when h is the median value (r = 5,

s = 2), (d) denoising result of the proposed denoising method in this paper.

https://doi.org/10.1371/journal.pone.0177666.g006

Table 3. Objective and quantitative evaluation values in Fig 6.

Figure h NMSE QF MSSIM

Fig 6(b) mean value 0.0622 0.9076 0.4851

Fig 6(c) median value 0.0582 0.9202 0.5275

Fig 6(d) novel value 0.0334 0.9549 0.5882

https://doi.org/10.1371/journal.pone.0177666.t003
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Population initialization

In QSFLA-NSM, each frog individual is directly encoded by real numbers, which greatly sim-

plifies the evolution process. Meanwhile, the proposed algorithm is based on a clustering

model in this paper, the object-highlight region, shadow region and background region in

sonar image are detected by clustering centers. Therefore, the frog population is described by

the clustering centers. Assuming that the number of clusters is k, the population size is N, the

whole population can be expressed as follows:

M ¼

c11 . . . c1k

..

. . .
. ..

.

cN1 � � � cNk

0

B
B
@

1

C
C
A; ð9Þ

where cij(1�i�N,1�j�k) is the j-th clustering center of the i-th frog individual.

Fitness function

The fitness function is mainly used to evaluate the frog positions. The frog population is

described by the clustering centers which divide the pixels into different classes in sonar

image. The pixels with similar characteristics are divided into the same class, while the pixels

with different characteristics are divided into different classes. Generally, when the intra-

class difference is minimum and the inter-class difference is maximum simultaneously, the

clustering method is ideal. Therefore, a fitness function combining intra-class difference

with inter-class difference is used in this paper to evaluate the frog positions more accurately

[40].

Assuming that C = (c1,c2,� � �,ck) represents clustering centers and the pixels in sonar image

are expressed as v, the intra-class difference Ui is given by

Ui ¼
1

Ni

X

v2Gi

kv � cik: ð10Þ

The inter-class difference between the i-th and j-th clustering center is given by

Disði; jÞ ¼ kci � cjk; ð11Þ

where Gi is the set of pixels belonging to the i-th clustering center, i = 1,2,� � �,k, Ni represents

the cardinality of the set.

According to the Eqs (10) and (11), the maximum ratio of the intra-class difference and

inter-class difference is expressed as follows:

Fi ¼ maxj;j6¼i
Ui þ Uj
Disði; jÞ

� �

; ð12Þ

The average value of Fi(i = 1,2,� � �,k) is given by

EV ¼
1

k

Xk

i¼1

Fi; ð13Þ

where less EV value indicates the better clustering effect.
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The fitness function is expressed as follows:

fitness ¼
1

EV
¼

k
Xk

i¼1

maxj;j6¼i
Ui þ Uj
Disði; jÞ

� � : ð14Þ

New search mechanism

The initial frog population is generated randomly from the solution space in QSFLA-NSM.

Then, the whole population is sorted and divided into several sub-populations. A local search

is carried out in every sub-population. Then, global information exchange is completed by

mixing all the frog individuals again.

Assuming that the whole population contains N frog individuals, the frog population is

defined asM = [M1,M2,� � �,MN], where the i-th frog individual isM = [Mi1,Mi2,� � �,MiD] and D
is the dimension of a frog individual. According to the fitness function values, the frog popula-

tion is sorted in descending order. Then, the frog population is divided into a sub-populations,

in which every sub-population contains b frog individuals (N = a×b). The first frog is assigned

to the first sub-population, the second frog is assigned to the second sub-population, . . ., the a-

th frog is assigned to the a-th sub-population, the (a+1)-th frog is assigned to the first sub-pop-

ulation, and so on. This process continues until all the frogs have been assigned to the sub-

populations.

The local worst frog is updated, which is called the local search in every sub-population. In

the searching process, a new search mechanism that combines the quantum search mechanism

of QPSO with SFLA is proposed to improve the searching ability and detection accuracy.

Meanwhile, the time complexity can also be further reduced.

The local attractor point is obtained by the local best frog in the sub-population and the

global best frog in the whole population. For every sub-population, the local worst frog is

defined asMw, and the local best frog is defined asMb. The global best frog of whole popula-

tion is defined asMg. The local attractor point of the sub-population can be expressed as fol-

lows:

P ¼
randu1 �Mb þ randu2 �Mg

randu1 þ randu2

; ð15Þ

where randu1 and randu2 are two random numbers of uniform distribution in the interval

[0, 1].

When the local worst frog evolves towards the local best frog in sub-population, a new frog

individual is generated, which is defined as newMw. The specific updating formulas are as fol-

lows:

newMw ¼ P � b� jMb � Mwj � lnð1=randu3Þ randu4 � 0:5 ; ð16Þ

newMw ¼ P þ b� jMb � Mwj � lnð1=randu3Þ randu4 < 0:5 ; ð17Þ

where randu3 and randu4 are two random numbers of uniform distribution in the interval

[0, 1]. β is the contraction–expansion coefficient, which can control the convergence speed of

the algorithm and linearly decreases with the iterative times. The specific expression is

b ¼ Mmax � ðMmax � MminÞ �
t
tmax

; ð18Þ
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where t is the current iterative times. tmax is local maximum number of iterations.Mmax and

Mmin are the upper bound and lower bound of β respectively.

The fitness function value of newMw is computed and compared with the local worst frog

Mw. If the fitness function value is larger thanMw, newMw will replaceMw. Otherwise, the

local best frog individualMb in Eqs (16) and (17) is replaced by the global best frogMg, and the

local worst frog individualMw is updated again. If there is still no improvement, a new frog

individual is randomly generated within the feasible solution space to replaceMw. This updat-

ing process of local search continues until the local maximum number of iterations is reached.

After the local search, all the frog individuals in the whole population are mixed and sorted

again, which is called the global information exchange. Then, the frog population is divided

into sub-populations again and the local search in every sub-population is carried out. This

cycle continues until the global maximum number of iterations is reached.

Experimental results and analysis

This section shows numerical examples to validate the generality and effectiveness of the pro-

posed models for sonar image detection. These results were obtained using Matlab 2011B with

a 2.5 GHz Pentium processor and 4 GB of RAM. The relevant parameters are as follows: the

number of clustering centers is 3, the global maximum number of iterations is 10, the local

maximum number of iterations is 5, the population size is 12, and the number of sub-popula-

tions is 6.

An example of the detection results is shown in Fig 7.

As depicted in Fig 7, the non-local spatial information denoising method with a novel filter-

ing degree parameter demonstrates that it can remove noise effectively in this paper, and the

result is conducive to the subsequent detection of underwater objects.

In order to compare QSFLA-NSM with other intelligent optimization algorithms, Fig 8

shows the comparative results on the denoised image shown in Fig 4(a), which includes

QSFLA [31, 32], SFLA [17], QPSO [36], PSO [36], QGA [41], and GA [42].

As shown by the comparison of experimental results, Fig 7(a) contains relatively less noise

than Fig 8. Although Fig 8(e) also has less noise, the integrity of the underwater object is

Fig 7. Detection results of original sonar image (image size: 153×158). (a) detection result of

QSFLA-NSM on the image shown in Fig 4(a), and (b) detection result of QSFLA-NSM on the image shown in

Fig 2(a).

https://doi.org/10.1371/journal.pone.0177666.g007
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Fig 8. Detection results of original sonar image with other intelligent optimization algorithms (image

size: 153×158). (a) detection result of QSFLA, (b) detection result of SFLA, (c) detection result of QPSO, (d)

detection result of PSO, (e) detection result of QGA, and (f) detection result of GA.

https://doi.org/10.1371/journal.pone.0177666.g008
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seriously weak. Meanwhile, comparing the time complexity of QSFLA-NSM in Fig 7(a) with

QSFLA in Fig 8(a), the running time of QSFLA-NSM is 3.71 seconds, while the running time

of QSFLA is 6.24 seconds after the same 10 iterations. Therefore, the proposed QSFLA-NSM

in this paper also improves on QSFLA with respected to the time complexity.

To demonstrate the advantages of QSFLA-NSM more clearly, Table 4 shows the variation of

best fitness function values after 10 iterations in Figs 7(a) and 8. To obtain a clearer and more

intuitive comparison, Fig 9 shows the graph corresponding to the values listed in Table 4.

It can be seen from Table 4 and Fig 9 that the best fitness value of QSFLA-NSM is the largest

after 10 iterations, which demonstrates the detection result of QSFLA-NSM is closer to the

global optimal solution in this paper.

Figs 10 and 11 show the detection results on the image shown in Figs 5 and 6 respectively,

which further verifies the effectiveness of the proposed models for sonar image detection.

As can be seen from Figs 10 and 11, the comparative experiments further demonstrate that

the non-local spatial information denoising method with a novel filtering degree parameter is

necessary and plays a vital role in whole detection process.

Table 4. Variation of best fitness function values in Figs 7(a) and 8.

Iterative times 1 2 3 4 5 6 7 8 9 10

QSFLA-NSM 1.717 2.265 2.265 2.287 2.291 2.439 2.463 2.477 2.494 2.500

QSFLA 1.901 2.428 2.428 2.428 2.428 2.428 2.428 2.428 2.474 2.474

SFLA 1.717 1.717 2.025 2.025 2.301 2.409 2.409 2.415 2.417 2.419

QPSO 1.717 1.717 2.004 2.051 2.102 2.369 2.369 2.382 2.461 2.461

PSO 1.774 2.242 2.242 2.242 2.242 2.285 2.347 2.347 2.347 2.347

QGA 1.712 1.712 2.244 2.263 2.263 2.263 2.263 2.263 2.263 2.389

GA 1.860 1.860 2.211 2.211 2.211 2.211 2.211 2.302 2.302 2.321

https://doi.org/10.1371/journal.pone.0177666.t004

Fig 9. The graph of the best fitness function values in Table 4.

https://doi.org/10.1371/journal.pone.0177666.g009
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Similarly, in order to compare QSFLA-NSM with other intelligent optimization algorithms,

Figs 12 and 13 show the comparative results on the denoised image shown in Figs 5(d) and

6(d) respectively, which includes QSFLA [31, 32], SFLA [17], QPSO [36], PSO [36], QGA [41],

and GA [42].

In contrast to the detection results of other intelligent optimization algorithms, only the

proposed QSFLA-NSM can detect the object high-light region and the shadow region better

and basically eliminate the influence of noise. Meanwhile, comparing the time complexity of

QSFLA-NSM in Figs 10(a) and 11(a) with that of QSFLA in Figs 12(a) and 13(a) respectively,

the running time of QSFLA-NSM is 2.07 and 14.949 seconds respectively, while the running

time of QSFLA is 3.39 and 23.715 seconds after the same 10 iterations. Therefore, the proposed

QSFLA-NSM has lower time complexity in this paper.

To demonstrate the advantages of QSFLA-NSM more clearly again, Tables 5 and 6 show

the variation of best fitness function values after 10 iterations for QSFLA-NSM and other

Fig 10. Detection results of original sonar image (image size: 112×117). (a) detection result of

QSFLA-NSM on the image shown in Fig 5(d), (b) detection result of QSFLA-NSM on the image shown in Fig

5(a).

https://doi.org/10.1371/journal.pone.0177666.g010

Fig 11. Detection results of original sonar image (image size: 259×368). (a) detection result of

QSFLA-NSM on the image shown in Fig 6(d), (b) detection result of QSFLA-NSM on the image shown in Fig 6

(a).

https://doi.org/10.1371/journal.pone.0177666.g011
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intelligent optimization algorithms. To obtain a clearer and more intuitive comparison, Fig 14

shows the graph of the values listed in Table 5, and Fig 15 shows the graph of the values listed

in Table 6.

As can be seen from Tables 5 and 6, Figs 14 and 15, the best fitness value of QSFLA-NSM is

also the largest after 10 iterations. Therefore, the proposed QSFLA-NSM has a certain effec-

tiveness and adaptability.

Fig 12. Detection results of original sonar image with other intelligent optimization algorithms (image

size: 112×117). (a) detection result of QSFLA, (b) detection result of SFLA, (c) detection result of QPSO, (d)

detection result of PSO, (e) detection result of QGA, and (f) detection result of GA.

https://doi.org/10.1371/journal.pone.0177666.g012
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To further verify the adaptability of the proposed denoising method and QSFLA-NSM in

this paper, Fig 16 shows the detection results of an original sonar image with underwater tire

on the bottom. Fig 17 shows the detection results of larboard original sonar image including

rocks, which are buried partly in the sand. Fig 18 shows the detection results of another origi-

nal sonar image with floating objects.

From the results shown in Figs 16(b), 17(b) and 18(b), the non-local spatial information

denoising method with a novel filtering degree parameter can remove noise effectively. It is

adaptable for complex underwater sonar images to some extent. The proposed QSFLA-NSM

in this paper can detect underwater objects with more accuracy in Figs 16(c), 17(c) and 18(c),

Fig 13. Detection results of original sonar image with other intelligent optimization algorithms (image

size: 259×368). (a) detection result of QSFLA, (b) detection result of SFLA, (c) detection result of QPSO, (d)

detection result of PSO, (e) detection result of QGA, and (f) detection result of GA.

https://doi.org/10.1371/journal.pone.0177666.g013
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and the object-highlight and shadow boundary contours are successfully extracted and

detected. The proposed model has a certain effectiveness and adaptability, which can detect

original sonar image with floating objects, partly buried objects and objects on the bottom as

shown in Figs 16–18. Moreover, it provides better preconditions for the subsequent feature

extraction and underwater object recognition.

Table 5. Variation of best fitness function value in Figs 10(a) and 12.

Iterative times 1 2 3 4 5 6 7 8 9 10

QSFLA-NSM 1.972 2.097 2.115 2.377 2.377 2.379 2.379 2.391 2.391 2.391

QSFLA 1.800 2.199 2.199 2.258 2.258 2.258 2.258 2.258 2.258 2.258

SFLA 1.972 1.972 2.022 2.022 2.046 2.126 2.220 2.238 2.284 2.285

QPSO 1.972 2.010 2.010 2.010 2.218 2.223 2.236 2.250 2.250 2.259

PSO 1.972 1.972 2.004 2.079 2.163 2.163 2.240 2.240 2.240 2.240

QGA 1.704 1.704 2.105 2.105 2.105 2.105 2.105 2.105 2.105 2.105

GA 1.897 1.908 1.956 1.989 1.989 1.989 1.989 1.989 2.009 2.047

https://doi.org/10.1371/journal.pone.0177666.t005

Table 6. Variation of best fitness function value in Figs 11(a) and 13.

Iterative times 1 2 3 4 5 6 7 8 9 10

QSFLA-NSM 0.889 2.130 2.130 2.130 2.255 2.263 2.295 2.307 2.307 2.308

QSFLA 1.151 1.648 2.070 2.070 2.070 2.070 2.070 2.080 2.177 2.177

SFLA 0.889 1.4078 2.0052 2.005 2.023 2.023 2.152 2.159 2.175 2.175

QPSO 0.889 1.450 1.4504 1.594 1.594 1.594 1.876 1.881 2.026 2.033

PSO 1.891 1.891 1.8910 1.891 1.891 1.922 1.922 2.021 2.021 2.021

QGA 1.639 1.639 1.639 1.639 1.639 1.887 1.887 1.887 2.011 2.011

GA 1.633 1.642 1.925 1.925 1.925 1.925 1.951 1.999 1.999 1.999

https://doi.org/10.1371/journal.pone.0177666.t006

Fig 14. The graph of the best fitness function values in Table 5.

https://doi.org/10.1371/journal.pone.0177666.g014
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The proposed QSFLA-NSM is based on clustering model, and therefore the clustering

experiments of UCI data sets are carried out to verify the adaptability of QSFLA-NSM, includ-

ing Iris, Heart, Glass, Breast and Sonar [43]. The dimension, quantity of data and number of

classification are shown in Table 7.

Clustering correct rate is generally used to measure the clustering result. It is the ratio of the

number of correctly-clustered samples to the total number. Table 8 shows the clustering cor-

rect rates of the proposed QSFLA-NSM and other intelligent optimization algorithms includ-

ing QSFLA, SFLA, QPSO, PSO, QGA, and GA.

As shown in Table 8, the clustering correct rates of QSFLA-NSM are higher than those of

the other intelligent optimization algorithms in the experiments of Iris, Heart, Glass and

Sonar. For Breast, the clustering correct rate of QSFLA-NSM is slightly lower than that of

QSFLA, but obviously higher than the other five intelligent optimization algorithms.

Fig 15. The graph of the best fitness function values in Table 6.

https://doi.org/10.1371/journal.pone.0177666.g015

Fig 16. Detection results of original sonar image (image size: 197×211). (a) original sonar image, (b)

denoising result of the proposed denoising method in this paper, and (c) detection result of QSFLA-NSM in

this paper.

https://doi.org/10.1371/journal.pone.0177666.g016
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Table 9 shows the time complexity (s) of different intelligent optimization algorithms.

As can be seen from Table 9, the time complexity of QSFLA is obviously the highest among

all the algorithms. The proposed QSFLA-NSM in this paper can reduce the time complexity to

some extent.

Similarly, to further verify the searching ability of QSFLA-NSM, four benchmark functions

are used to test its searching ability. Griewank, Rastrigrin and Ackley are multimodal and

Fig 17. Detection results of original sonar image (image size: 173×167). (a) original sonar image, (b)

denoising result of the proposed denoising method in this paper, and (c) detection result of QSFLA-NSM in

this paper.

https://doi.org/10.1371/journal.pone.0177666.g017

Fig 18. Detection results of original sonar image (image size: 239×205). (a) original sonar image, (b)

denoising result of the proposed denoising method in this paper, and (c) detection result of QSFLA-NSM in

this paper.

https://doi.org/10.1371/journal.pone.0177666.g018

Table 7. UCI data sets.

UCI Dimension Quantity of data Number of classification

Iris 4 150 3

Heart 13 270 2

Glass 9 214 6

Breast 9 699 2

Sonar 60 208 2

https://doi.org/10.1371/journal.pone.0177666.t007

A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0177666 May 18, 2017 22 / 30

https://doi.org/10.1371/journal.pone.0177666.g017
https://doi.org/10.1371/journal.pone.0177666.g018
https://doi.org/10.1371/journal.pone.0177666.t007
https://doi.org/10.1371/journal.pone.0177666


contain many local optima, but only one global optimum. Rosenbrock is unimodal and con-

tains only one global optimum. The function name, search space, optimum value and modality

of the selected benchmark functions are listed in Table 10.

The Griewank function has many local minima that are regularly distributed. It is a contin-

uous, multimodal, scalable, convex, and quadratic test function [44] and can be represented by

f1ðxÞ ¼
XD

i¼1

ð
xi2

4000
Þ �

YD

i¼1

cosð
xiffiffi
i
p Þ þ 1; ð19Þ

where xi2[–600,600], and D represents the dimension of the independent variable x. The sche-

matic diagram is shown in Fig 19 when D = 2.

Obviously, the Griewank function is multimodal, and the optimum value 0 can be obtained

when (x1,x2,� � �,xD) = (0,0,� � �,0).

The Rastrigrin function is a fairly difficult problem due to the large search space and large

number of local optima. The function is multimodal and nonlinear, therefore the locations of

the optima are regularly distributed [44]. It is given by

f2ðxÞ ¼
XD

i¼1

½xi
2 � 10cosð2pxiÞ þ 10�; ð20Þ

where xi2[−5.12,5.12], and D represents the dimension of the independent variable x. The

schematic diagram is shown in Fig 20 when D = 2.

Table 8. Clustering correct rates of UCI data sets.

UCI QSFLA-NSM QSFLA SFLA QPSO PSO QGA GA

Iris 0.9200 0.9067 0.8400 0.8467 0.7600 0.7067 0.6867

Heart 0.6148 0.5963 0.5852 0.5963 0.5815 0.5519 0.5852

Glass 0.4579 0.4439 0.3645 0.3832 0.3178 0.3738 0.3551

Breast 0.9628 0.9642 0.9027 0.9485 0.9399 0.8870 0.9056

Sonar 0.5673 0.5385 0.4856 0.5192 0.5144 0.5192 0.4952

https://doi.org/10.1371/journal.pone.0177666.t008

Table 9. Time complexity of different intelligent optimization algorithms (s).

UCI QSFLA-NSM QSFLA SFLA QPSO PSO QGA GA

Iris 8.34 32.36 6.32 3.47 3.85 4.03 3.42

Heart 10.08 45.15 7.00 4.14 4.11 4.48 4.40

Glass 19.95 89.95 12.96 6.96 7.03 8.00 6.98

Breast 21.85 79.20 16.03 8.27 8.16 8.65 8.51

Sonar 10.03 91.88 6.82 4.31 4.13 5.96 4.07

https://doi.org/10.1371/journal.pone.0177666.t009

Table 10. Information of the benchmark functions.

Function Search space Optimum value Modality

Griewank [−600,600] 0 multimodal

Rastrigrin [−5.12,5.12] 0 multimodal

Ackley [−32.768,32.768] 0 multimodal

Rosenbrock [−2.048,2.048] 0 unimodal

https://doi.org/10.1371/journal.pone.0177666.t010
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As depicted in Fig 20, the Rastrigrin function is multimodal, and the optimum value 0 can

be obtained when (x1,x2,� � �,xD) = (0,0,� � �,0).

The Ackley function is a continuous function that combines exponential function with

moderately enlarged cosine function. The hook face is rolling and has a series of peaks and

troughs [45]. It can be defined as

f3ðxÞ ¼ � 20� e
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi
2

s

� e

1

n

Xn

i¼1

cosð2pxiÞ
þ 20þ e; ð21Þ

where xi2[−32.768,32.768], and D represents the dimension of the independent variable x.

The schematic diagram is shown in Fig 21 when D = 2.

As shown in Fig 21, the Ackley function is multimodal, and the optimum value 0 can be

obtained when (x1,x2,� � �,xD) = (0,0,� � �,0).

The Rosenbrock function has significant interactions between variables. The global mini-

mum is inside a long, narrow, parabolic-shaped flat valley. Although the valley does not have

Fig 19. The schematic diagram of the Griewank function.

https://doi.org/10.1371/journal.pone.0177666.g019

Fig 20. The schematic diagram of the Rastrigrin function.

https://doi.org/10.1371/journal.pone.0177666.g020
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local minima, it is still difficult to find the global optimum. Hence, this function has been

repeatedly used to assess the performance of optimization algorithms [44]. It is represented by

f4ðxÞ ¼
Xn� 1

i¼1

100ðxiþ1 � xi
2Þ

2
þ ðxi � 1Þ

2
� �

; ð22Þ

where xi2[−2.048,2.048], and D represents the dimension of the independent variable x. The

schematic diagram is shown in Fig 22 when D = 2.

From Fig 22, the Rosenbrock function is unimodal, and the optimum value 0 can be

obtained when (x1,x2,� � �,xD) = (0,0,� � �,0).

Table 11 shows the test results of the benchmark functions including the average conver-

gence values of 10 experiments in different population sizes. The relevant parameters are as

follows: the global maximum number of iterations is 200, the local maximum number of itera-

tions is 20, the number of sub-populations is 5, and the dimension is 10.

Fig 21. The schematic diagram of the Ackley function.

https://doi.org/10.1371/journal.pone.0177666.g021

Fig 22. The schematic diagram of the Rosenbrock function.

https://doi.org/10.1371/journal.pone.0177666.g022
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As shown in Table 11, the average convergence values of the proposed QSFLA-NSM are

closer to the optimum value 0. Therefore, the searching ability of the proposed QSFLA-NSM is

better than the other intelligent optimization algorithms.

Table 12 shows the average time complexity (s) for the 10 experiments on the benchmark

functions.

As depicted in Table 12, the average time complexity of QSFLA is the highest in among all

the algorithms. However, the proposed QSFLA-NSM takes much less time to obtain accurate

convergence values.

In fact, the frog population is encoded by quantum bits in QSFLA, which needs to be trans-

formed into binary sequences by a decoding process. Then, the fitness function value of each

frog individual is computed by the resulting decimal numbers. When the dimension of the

solution space is higher, the encoding length of each frog individual is longer. Correspond-

ingly, the time complexity is higher. However, each frog individual is directly encoded by real

numbers in the proposed QSFLA-NSM, so the time complexity is significantly reduced. Mean-

while, because all the frog individuals in each sub-population participate in the local search to

enhance the searching ability in QSFLA, the running time increases exponentially. But the pro-

posed QSFLA-NSM needs to update only the worst frog in the sub-population, so the time

complexity is further reduced to some extent in this paper.

Table 11. Average convergence values of benchmark functions.

Benchmark function Population size QSFLA-NSM QSFLA SFLA QPSO PSO QGA GA

Griewank 10 0.2516 1.3486 0.4904 5.8214 6.2649 3.5945 12.0721

20 0.2571 0.8916 0.5305 0.7781 1.7089 1.6660 12.7720

30 0.2778 0.4473 0.3142 1.2514 1.3703 1.2875 16.1515

Rastrigrin 10 14.9302 16.9191 23.0450 26.5873 38.2349 30.8697 32.1025

20 11.9395 12.8997 12.3715 26.6794 32.7331 24.6563 30.7120

30 10.3476 10.0336 12.8244 12.1873 18.7523 18.4079 31.6816

Ackley 10 0.4954 0.8580 2.3263 11.9030 16.7520 7.4565 5.9343

20 0.2318 0.3894 2.6033 12.2852 7.7931 4.5118 6.7078

30 0.0325 0.0809 2.0629 9.9039 2.8736 3.8106 6.1702

Rosenbrock 10 3.1191 13.5319 8.5369 19.1563 12.2326 22.1763 137.7837

20 2.7361 9.4866 8.3268 15.3731 9.2875 17.0752 138.7428

30 2.8610 9.2017 8.6349 11.3338 8.6008 9.2916 93.6943

https://doi.org/10.1371/journal.pone.0177666.t011

Table 12. Average time complexity of 10 experiments (s).

Benchmark function Population size QSFLA-NSM QSFLA SFLA QPSO PSO QGA GA

Griewank 10 0.65 34.48 0.43 0.03 0.02 0.41 0.03

20 0.74 75.28 0.57 0.05 0.04 0.79 0.05

30 0.81 108.88 0.62 0.07 0.06 1.16 0.08

Rastrigrin 10 0.48 32.93 0.32 0.02 0.02 0.39 0.02

20 0.58 70.32 0.41 0.03 0.03 0.78 0.05

30 0.67 109.34 0.51 0.05 0.04 1.14 0.06

Ackley 10 0.73 39.83 0.74 0.03 0.03 0.55 0.04

20 0.85 87.81 0.83 0.08 0.06 1.09 0.08

30 0.93 131.07 0.97 0.12 0.08 1.59 0.13

Rosenbrock 10 0.62 43.63 0.43 0.02 0.01 0.51 0.02

20 0.77 93.77 0.56 0.04 0.03 1.04 0.05

30 0.91 139.01 0.71 0.12 0.04 1.54 0.08

https://doi.org/10.1371/journal.pone.0177666.t012
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For underwater sonar image detection, the number of clustering centers is 3, which repre-

sents the object-highlight region, the shadow region and the background region. Meanwhile,

each clustering center contains only one property, namely the gray value. Therefore, the

dimension of the solution space is 3. In addition, the population size is 12, and the number of

sub-populations is 6, so there are only two frog individuals in every sub-population. Although

the time complexity becomes higher, the magnitude of increase is not too large. For the experi-

ments on the UCI data sets and the benchmark functions, the dimensions of solution spaces

are both high, which makes the encoding length of QSFLA become very long. Additionally,

there are more frog individuals in every sub-population. Therefore, the time complexity of

QSFLA becomes very high.

From the all comparative experiments above, the proposed novel denoising method avoids

the disadvantages of the filtering degree parameter in non-local spatial information. It can

effectively remove noise and is conducive to the subsequent detection of underwater objects as

shown in Figs 4(a), 5(d), 6(d), 16(b), 17(b) and 18(b). In QSFLA-NSM, each frog individual is

directly encoded by real numbers to greatly simplify the evolution process. Moreover, a new

search mechanism is developed in this paper to improve the searching ability and detection

accuracy of sonar image as shown in Figs 7(a), 10(a), 11(a), 16(c), 17(c), and 18(c). The pro-

posed QSFLA-NSM reduces time complexity and achieves a relatively higher detection accu-

racy than other intelligent optimization algorithms as shown in Figs 7–13. Meanwhile, the

detection results of QSFLA-NSM are also closer to the global optimal solution as shown in

Tables 4–6, Figs 9, 14 and 15. Furthermore, the results on the UCI data sets and the benchmark

functions further demonstrate that the proposed method is more adaptable in Tables 8, 9, 11

and 12. Therefore, the proposed model has a certain effectiveness and adaptability that can

detect original sonar images with floating objects, partly buried objects and objects on the bot-

tom. The proposed method can also provide better preconditions for the further feature

extraction and underwater object recognition.

Conclusions

Detection accuracy and time complexity are both important factors for measuring the quality

of object detection in underwater sonar images. QSFLA is a promising method, but because

serious noise exists in the sonar image, the model performance is significantly reduced and

cannot meet the accuracy requirements in the evolution process. In contrast, a novel denoising

method is proposed to effectively remove noise, which greatly improves the detection perfor-

mance. Then, to greatly simplify the evolution process, each frog individual is directly encoded

by real numbers in the proposed QSFLA-NSM, and a fitness function combining intra-class

difference with inter-class difference is adopted to evaluate the frog positions more accurately.

Finally, a new search mechanism is developed in this paper to improve the searching ability

and detection accuracy of sonar image. Meanwhile, the QSFLA-NSM also further reduces the

time complexity to obtain accurate detection results more quickly.

We applied the proposed method to the original sonar images, the UCI data sets and the

benchmark functions, and results show that the proposed method has better effectiveness and

adaptability.
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