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Abstract

This article reviews quantitative methods to estimate the basic reproduction number of pandemic influenza, a key threshold
quantity to help determine the intensity of interventions required to control the disease. Although it is difficult to assess the trans-
mission potential of a probable future pandemic, historical epidemiologic data is readily available from previous pandemics, and as
a reference quantity for future pandemic planning, mathematical and statistical analyses of historical data are crucial. In particular,
because many historical records tend to document only the temporal distribution of cases or deaths (i.e. epidemic curve), our review
focuses on methods to maximize the utility of time-evolution data and to clarify the detailed mechanisms of the spread of influenza.

First, we highlight structured epidemic models and their parameter estimation method which can quantify the detailed disease
dynamics including those we cannot observe directly. Duration-structured epidemic systems are subsequently presented, offering
firm understanding of the definition of the basic and effective reproduction numbers. When the initial growth phase of an epidemic
is investigated, the distribution of the generation time is key statistical information to appropriately estimate the transmission
potential using the intrinsic growth rate. Applications of stochastic processes are also highlighted to estimate the transmission
potential using similar data. Critically important characteristics of influenza data are subsequently summarized, followed by our
conclusions to suggest potential future methodological improvements.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Influenza epidemics are observed around the world during the wintertime and with a strong seasonal compo-
nent in temperate regions [1,2]. Influenza is a disease caused by the influenza virus, an RNA virus belonging to the
Orthomyxoviridae [3]. Many features are common with those of the paramyxovirus infections of the acute upper res-
piratory tract. Typical symptoms of the disease are characterized by fever, myalgia, severe malaise, non-productive
cough, and sore throats. The disease spreads when an infected individual coughs or sneezes and sends the virus into
the air, and other susceptible individuals inhale the virus. The virus is also believed to be transmitted when a person
touches a surface that is contaminated with the virus (e.g., door knob, etc.) and then touches the nose or eyes. Infected
individuals can transmit the virus almost within a day following infection (i.e. latent period). Although it is generally
believed that infected individuals can pass the virus for 3–7 days following symptom onset, there is some uncertainty
on the duration of the infectious period. The generation time (i.e. sum of latent and infectious periods) for influenza,
reported and assumed in the literature, ranges from 3 days [4–6] to about 6 days [7,8].

Individuals that are infected with influenza are believed to become permanently immune against the specific virus
strain. Hence, the virus is able to persist in the human population through relatively minor (single point) mutations in
the virus composition known as drifts. Influenza (sub)types A/H3N2, A/H1N1 and B are currently co-circulating in
the human population [9]. Major changes in the virus composition via recombination or gene reassortment processes
(known as genetic shifts) can lead to the emergence of novel influenza viruses with the potential of generating dramatic
morbidity and mortality levels around the world [3].

The 1918/19 influenza pandemic known as the Spanish influenza caused by the influenza virus A (H1N1) has been
the most devastating in recent history with estimated worldwide mortality ranging from 20 to 100 million deaths
[10,11] with a case fatality of 2–6 percent [12,13]. The worldwide 1918 influenza pandemic spread in three waves
starting from Midwestern United States in the spring of 1918 [14,15]. The deadly second wave began in late August
probably in France while the third wave is generally considered as part of normal more scattered winter outbreaks sim-
ilar to those observed after the 1889/90 pandemic [14]. Subsequent pandemics during the 20th century are attributed
to subtypes A (H2N2) from 1957/58 (Asian influenza) and A (H3N2) in 1968 (Hong Kong influenza) [16].

The ability to quickly detect and institute control efforts at the early stage of an influenza pandemic is directly
linked to the final levels of morbidity and mortality in the population [13]. To appropriately assess the disaster size of
a probable future pandemic, we have to quantify the transmission potential (and its associated uncertainty). Although
it is difficult to directly measure the transmissibility of a future pandemic, historical epidemiologic data is readily
available from previous pandemics, and as a reference quantity for future pandemic planning, mathematical and
statistical analyses of the historical data can offer various insights. In particular, because many historical records
tend to document only the temporal distribution of cases or deaths (i.e. epidemic curve), we modelers have faced
with a difficult need to clarify the mechanisms of the spread of influenza using such time-evolution data alone. In this
paper, we review a number of mathematical and statistical methods for the estimation of the transmission potential
of pandemic influenza, focusing on theoretical techniques to maximize the utility of the temporal distribution of
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influenza cases. The methods that have been incorporated in this review include the applications of epidemiologically
structured epidemic models, explicitly duration-structured epidemic system, and stochastic processes (i.e. branching
and counting processes). Whereas this review does not cover the spread of influenza in space, spatial heterogeneity in
transmission and the growing interest in the role of contact networks are briefly discussed as the future challenge.

2. On the definition of the transmission potential

The basic reproduction number, R0 (pronounced as R nought), is a key quantity used to estimate transmissibility
of infectious diseases. Theoretically, R0 is defined as the average number of secondary cases generated by a single
primary case during its entire period of infectiousness in a completely susceptible population [17]. As the epidemic
progresses, the number of susceptible individuals is decreased due to infection, and the reproduction number decays
following R(t) = R0S(t)/S(0) where S(t) and S(0) are, respectively, the number of susceptible individuals at time t

and before the epidemic starts; the latter is equivalent to the total population size N given that all individuals are
susceptible before the beginning of an epidemic. Clearly, this definition only applies to (novel) emerging infectious
diseases (e.g., the epidemic of severe acute respiratory syndrome (SARS) from 2002–2003) or re-emerging infectious
diseases that had not circulated in the population in question for long enough to allow for residual immunity in the
population to disappear due to births and deaths.

The reproduction number is directly related to the type and intensity of interventions necessary to control an
epidemic since the objective is to make R(t) < 1 as soon as possible. To achieve R(t) < 1, one or a combination of
control strategies may be implemented. For example, one of the best known uses of R0 is in determining the critical
coverage of immunization required to eradicate a disease in a randomly mixing population. That is, when vaccine
is available against a disease in question, it is of interest to estimate the critical proportion of the population that
needs to be vaccinated (i.e. vaccination coverage) in order to attain R < 1 [18,19]. For example, in the U.S. prior
to 1963, a vaccine against measles was not available and hence recurrent epidemics of measles were observed with
approximately 3–4 million cases per year and a mean of 450 deaths. The introduction of the vaccine in the U.S.
reduced the incidence by 98 percent.

The critical vaccination coverage, pc (in a randomly mixing population) can be estimated from the R0 of the
disease in question as follows [20]:

(1)pc >
1

ε

(
1 − 1

R0

)
,

where ε is the efficacy (i.e. direct effectiveness) of vaccination [21]. pc given in (1) suggests that the disease could
be eradicated even when all susceptible individuals are not vaccinated. The protection conferred to the population by
achieving a critical vaccination coverage is known as herd immunity [22,23].

A brief history of the theoretical developments on the basic reproduction number and its analytical computation
via epidemic modeling is given elsewhere [23–25]. The mathematical definition and calculation of R0 using next-
generation arguments was described initially by Odo Diekmann and his colleagues [17,26], where R0 is the dominant
eigenvalue of the resulting next generation matrix. Further elaborations and reviews can be found elsewhere [27–33].
Classically, rather than the threshold phenomena, R0 was used to suggest the severity of an epidemic, because the
proportion of those experiencing infection at the end of an epidemic depends only on R0 [34] (see Section 3).

Statistical methods to quantitatively estimate R0 have been reviewed by Klaus Dietz [35]. Depending on the
characteristics of data and underlying assumptions of the models, R0 can be estimated using various different ap-
proaches [36]. In addition to the final size equation, R0 of an epidemic of newly emerging disease can be estimated
from the intrinsic growth rate [4,6,8,18,37,38], which is also referred to as the rate of natural increase, suggesting
the natural growth rate of infected individuals in a fully susceptible population (discussed in Section 4). Moreover, for
simple epidemic models with relatively few parameters, R0 can be estimated with other unobservable quantities by
rigorous curve fitting of model equations to the observed epidemic data (discussed in Section 3) [38–40]. Not only R0
but also R(t) can be estimated from the temporal distribution of infectious diseases, reconstructing the transmission
network or inferring the time-inhomogeneous number of secondary transmissions [41–44].

To estimate the basic reproduction number of endemic diseases, different approaches are taken. One would need
first to carry out serological surveys to quantify the fraction of the population that is effectively protected against
infection (i.e. age- and/or time-specific proportion of those possessing acquired immunity needs to be estimated).
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Table 1
Reported estimates of R0 for pandemic influenza during the fall wave (2nd wave) from 1918/19

Location Serial interval
(days)

R0 Autonomous system fitted
with entire epidemic curve

Reference

San Francisco, USA 6 3.5 Yes [39]
6 2.4 No [39]

45 cities in the USA 6a 2.7 No [8]
UK (entire England and Wales)b 6 1.6 Yes [58]
Scandinavian cities 6 1.4–1.6 No [62]
Geneva, Switzerland 5.7 3.8 Yes [38]
Sao Paulo, Brazil 4.6 2.7 Yes [59]
Cities in Europe and America 4.0 1.2–3.0 No [63]
83 cities in the UK 3.2, 2.6 1.7–2.0 No [5,57]
45 cities in the USA 2.9 1.7 No [6]
RAF camp in the UK 2.3 2.9 No [64]
Featherston Military 1.6 3.1 Yes [61]
Camp, New Zealandc 1.1 1.8 Yes [61]

0.9 1.3 Yes [61]

a Sensitivity of the R estimates to different assumptions for the serial interval was examined.
b Three pandemic waves were simultaneously fitted.
c The epidemic was observed in a community with closed contact (i.e. military camp).

Through this effort, the force of infection, the rate at which susceptible individuals get infected, is estimated [45]. For
example, this is the case for rubella, mumps and measles (that are still circulating in some regions of the world even
when high effective vaccination coverage is achieved). Although the estimation of R0 for endemic diseases is out of
the scope of this review, methodological details and the applications to estimate the force of infection and R0 can be
found elsewhere [46–52].

In practice, the reproduction number denoted simply by R and defined as the number of secondary cases generated
by a primary infectious cases in a partially protected population might be useful. R can also be estimated from the
initial growth phase of an epidemic in such a partially immunized population. In a randomly mixing population, the
relationship between the basic reproduction number (R0) and the reproduction number (R) is given by R = (1−p)R0
where p is the proportion of the population that is effectively protected against infection (in the beginning of an
epidemic). Besides, for many recurrent infectious diseases including seasonal influenza, estimating the background
immunity p in the population is extremely difficult due to cross-immunity of antigenically-related influenza strains
and vaccination campaigns.

With regard to seasonal influenza, the reproduction number (R) over the last 3 decades has been estimated at 1.3
(SE 0.05) in the United States, France, and Australia with an overall range of 0.9–2.0 [53]. An R estimate of 1.5 has
been reported for a single A/H3N2 season in France [54], and some estimates have been reported in the range 1.4–2.6
for several consecutive influenza seasons in England and Wales [55,56]. A particularly high estimate of R has been
suggested for the 1951 influenza epidemic in England and Canada [57].

Because influenza pandemics such as the Spanish flu from 1918/19 are associated to the emergence of novel
influenza strains to which most of the population is susceptible, it might be reasonable to assume that the reproduction
number R ≈ R0. Previous studies have estimated that R0 of the 1918/19 influenza pandemic ranged between 1.5
and 5.4 [8,38–40,57–64] depending on the specific location and pandemic wave considered, type of data, estimation
method, and level of spatial aggregation, which has ranged from small towns to entire nations with several million
inhabitants. Table 1 lists estimates of R0 in recent studies. The variability of R0 estimates suggests that local factors,
including geographic and demographic conditions, could play an important role in disease spread [65–67]. In the
following sections, we review how these estimates are obtained and how we shall interpret the estimates, starting from
a simple structured epidemic model proposed in 1927.

3. Estimating R0 using a structured epidemic model

Mathematical models provide a unique way to analyze the transmission dynamics and study various different
scenarios associated to the spread of communicable diseases in population(s) [18,68,69]. The history of the mathe-
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matical modeling of infectious diseases greatly remounts to the study of Sir Ronald Ross in 1911 [70] who invented
a classic malaria model and also discovered the mosquito-borne transmission mechanisms of malaria. Employing
a mass action principle for the spread of malaria, Ross explored the effects of controling the mosquito population
using simple mathematical models [71]. Following his effort, Kermack and McKendrick introduced a classical SIR
(susceptible-infectious-removed) epidemic model in 1927, which is most frequently utilized in the present day, given
by the following system of nonlinear ordinary differential equations (ODEs) [72]:

dS(t)

dt
= −βS(t)I (t)

N
,

dI (t)

dt
= βS(t)I (t)

N
− γ I (t),

(2)
dR(t)

dt
= γ I (t),

where S(t) denotes susceptible individuals at time t ; I (t), infected (assumed infectious) individuals at time t ; and
R(t), recovered (assumed permanently immune) individuals at time t ; β is the transmission rate; γ the recovery
rate; and N is the total population size which is assumed constant for a closed population (i.e. a population without
immigration and emmigration). Susceptible individuals in contact with the virus enter the infectious class (I ) at the
rate βI/N . That is, homogeneous mixing between individuals is assumed.

The basic reproduction number, R0, for the epidemic system (2) is given by the product of the transmission rate
and the mean infectious period. That is:

(3)R0 = β

γ
.

Classically, R0 has been known as a quantity to suggest severity of an epidemic [34]. Indeed, analytical expression
of R0 in (3) is derived simply by solving the above system (2). Replacing I (t) in the right-hand side of dS(t)/dt by
(1/γ )dR(t)/dt , we get

(4)
1

S(t)

dS(t)

dt
= − β

γN

dR(t)

dt
.

Integrating both sizes of (4) from 0 to infinity,

(5)ln
S(∞)

S(0)
= − β

γN

(
R(∞) − R(0)

)
.

Since S(∞) = N − R(∞), and because we assume S(0) = N and R(0) = 0, Eq. (5) can be rewritten as

(6)ln
N − R(∞)

N
= −β

γ

R(∞)

N
.

In the above Eq. (6), final size, i.e. the proportion of those experiencing infection among a total number of individuals
in a community following a large scale epidemic, is defined as p := R(∞)/N . That is,

(7)ln(1 − p) = −R0p.

Therefore, the following final size equation of an autonomous SIR (or SEIR) model is obtained:

(8)R̂0 = − ln(1 − p)

p
.

Eq. (8) can be analytically derived using both deterministic (models governed by ODEs or partial differential equations
(PDEs)) [73] and stochastic models [74].

Despite the usefulness of (2), SIR assumptions given by ODEs are not always directly applicable to real data.
One of the reasons include that there is no disease where an infected individual can cause secondary transmission
immediately after his/her infection.

Accordingly, we have used slightly extended compartmental models in the previous studies to describe the trans-
mission dynamics of the 1918/19 influenza pandemic and estimate the reproduction number [38,39]. We now describe
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Fig. 1. Flow chart of the state progression of individuals among the different epidemiological classes as modeled by the complex SEIR model. See
Eqs. (10).

two different SEIR (susceptible-exposed-infectious-removed) models that have been used to estimate the reproduction
number. The first model is the simple SEIR model, and the second model accounts for asymptomatic and hospitalized
individuals.

The simple SEIR model classifies individuals as susceptible (S), exposed (E), infectious (I ), recovered (R), and
dead (D) [18]. Susceptible individuals in contact with the virus enter the exposed class at the rate βI (t)/N , where
β is the transmission rate, I (t) is the number of infectious individuals at time t and N = S(t) + E(t) + I (t) +
R(t) is the total population for any t . The entire population is assumed to be susceptible at the beginning of the
epidemic. Individuals in latent period (E) progress to the infectious class at the rate k (where 1/k suggests the mean
latent period). We assume homogeneous mixing (i.e. random mixing) between individuals and, therefore, the fraction
I (t)/N is the probability of a random contact with an infectious individual in a population of size N . Since we assume
that the time-scale of the epidemic is much faster than characteristic times for demographic processes (natural birth
and death), background demographic processes are not included in the model. Infectious individuals either recover
or die from influenza at the mean rates γ and δ, respectively. Recovered individuals are assumed protected for the
duration of the outbreak. The mortality rate is given by δ = γ [CFP/(1 − CFP)], where CFP is the mean case fatality
proportion. The transmission process can be modeled using the system of nonlinear differential equations:

(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −βS(t)I (t)

N
,

dE(t)

dt
= βS(t)I (t)

N(t)
− kE(t),

dI (t)

dt
= kE(t) − (γ + δ)I (t),

dR(t)

dt
= γ I (t),

dD(t)

dt
= δI (t),

dC(t)

dt
= kE(t),

where C(t) is the cumulative number of infectious individuals. The basic reproduction number of the above system (9)
is given by the product of the mean transmission rate and the mean infectious period, R0 = β/(γ + δ).

A more complex SEIR model (Fig. 1) classifies individuals as susceptible (S), exposed (E), clinically ill and
infectious (I ), asymptomatic and partially infectious (A), diagnosed and reported (J ), recovered (R), and death (D).
The birth and natural death rates are assumed to have a common rate μ (60-year life expectancy as in [38]). The
entire population is assumed susceptible at the beginning of the pandemic wave. Susceptible individuals in contact
with the virus progress to the latent class at the rate β(I (t) + J (t) + qA(t))/N where β is the transmission rate, and
0 < q < 1 is a reduction factor in the transmissibility of the asymptomatic class (A). Since there is no explicit evidence
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estimating and proving the effectiveness of public health interventions, and because a high burden was placed upon
the sanitary and medical sectors, diagnosed/hospitalized individuals (J ) are assumed equally infectious. Although it
is difficult to explicitly evaluate the difference in infectiousness between general community and hospital, we roughly
made this assumption since 78 percent of the nurses of the San Francisco Hospital contracted influenza [75]. A more
rigorous assumption requires either statistical analysis of more detailed time-series data [76] or an epidemiological
comparison of specific groups by contact frequency [77]. The total population size at time t is given by N = S(t) +
E(t) + I (t) + A(t) + J (t) + R(t). We assumed homogeneous mixing of the population and, therefore, the fraction
(I (t)+ J (t)+ qA(t))/N is the probability of a random contact with an infectious individual. A proportion 0 < ρ < 1
of latent individuals progress to the clinically infectious class (I ) at the rate k while the remaining (1 − ρ) progress
to the asymptomatic partially infectious class (A) at the same rate k (fixed to 1/1.9 days−1 [8]). Asymptomatic cases
progress to the recovered class at the rate γ1. Clinically infectious individuals (class I ) are diagnosed (reported) at the
rate α or recover without being diagnosed (e.g., mild infections, hospital refusals) at the rate γ1. Diagnosed individuals
recover at the rate γ2 = 1/(1/γ1 −1/α) or die at rate δ. The mortality rates were adjusted according to the case fatality
proportion (CFP), such that δ = CFP

1−CFP (μ + γ2).
The transmission process can be modeled using the following system of nonlinear differential equations:

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= μN(t) − βS(t)(I (t) + J (t) + qA(t))

N
− μS(t),

dE(t)

dt
= βS(t)(I (t) + J (t) + qA(t))

N
− (k + μ)E(t),

dA(t)

dt
= k(1 − ρ)E − (γ1 + μ)A(t),

dI (t)

dt
= kρE(t) − (α + γ1 + μ)I (t),

dJ (t)

dt
= αI (t) − (γ2 + δ + μ)J (t),

dR(t)

dt
= γ1

(
A(t) + I (t)

) + γ2J (t) − μR(t),

dD(t)

dt
= δJ (t),

dC(t)

dt
= αI (t).

We assume the cumulative number of influenza notifications, our observed epidemic data, is given by C(t). Seven
model parameters (β , γ1, α, q , ρ, E(0), I (0)) are estimated from the epidemic curve by least squares fitting as
explained below. The reproduction number for model (10) is given by (see [38]):

(11)R = βk

k + μ

{
ρ

(
1

γ1 + α + μ
+ α

(γ1 + α + μ)(γ2 + δ + μ)

)
+ (1 − ρ)

(
q

γ1 + μ

)}
and the clinical reporting proportion is given by:

(12)O = α

α + γ1 + μ
.

3.1. Parameter estimation

In the simplest manner, model parameters can be estimated via least-square fitting of the model solution to the
observed data. That is, one looks for the set of parameters Θ̂ whose model solution best fits the epidemic data by
minimizing the sum of the squared differences between the observed data yt and the model solution C(t,Θ). That is,
we minimize:

(13)X(Θ) =
n∑(

yt − C(t,Θ)
)2

.

t=1
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The standard deviation of the parameters can be estimated by computing the asymptotic variance-covariance AV(Θ̂)

matrix of the least-squares estimate by [78]:

(14)AV(Θ̂) = σ 2(∇ΘC(Θ0)∇ΘC(Θ0)
T
)−1

which can be estimated by

(15)σ̂ 2(∇̂
Θ̂

C(Θ̂)∇̂
Θ̂

C(Θ̂)T
)−1

where n is the total number of observations, σ̂ 2 is the estimated variance, and ∇̂C are numerical derivatives of C.
Estimates of R̂0 can be obtained by substituting the corresponding individual parameter estimates into an analytical
formula of R0. Further, using the delta method [79], we can derive an expression for the variance of the estimated
basic reproduction number R̂0. An expression for the variance of R0 for the simple SEIR model (Eqs. (9)) is given by:

V (R̂0) ≈ R̂0
2
{

V (β̂)

β̂2
+ V (γ̂ )

(γ̂ + δ̂)2
+ V (δ̂)

(γ̂ + δ̂)2

(16)−
(

2

β̂(γ̂ + δ̂)

)(
Cov(γ̂ , β̂) − β̂Cov(δ̂, γ̂ )

γ̂ + δ̂
+ Cov(δ̂, β̂)

)}
.

This expression depends on the variance (denoted by V ) of the individual parameter estimates as well as their
covariance (denoted by Cov).

3.2. Bootstrap confidence intervals

Another method to generate uncertainty bounds on the reproduction number is generating bootstrap confidence
intervals by generating sets of realizations of the best-fit curve C(t) [80]. Each realization of the cumulative number
of case notifications Ci(t) (i = 1,2, . . . ,m) is generated as follows: for each observation C(t) for t = 2,3, . . . , n days
generate a new observation C ′

i (t) for t � 2 (C′
i (1) = C(1)) that is sampled from a Poisson distribution with mean:

C(t)−C(t −1) (the daily increment in C(t) from day t −1 to day t ). The corresponding realization of the cumulative
number of influenza notifications is given by Ci(t) = ∑t

j=1 C′
i (t) where t = 1,2,3, . . . , n. The reproduction number

was then estimated from each of 1000 simulated epidemic curves to generate a distribution of R estimates from which
simple statistics can be computed including 95% confidence intervals. These statistics need to be interpreted with
caution. For example, 95% confidence intervals for R derived from our bootstrap sample of R should be interpreted
as containing 95% of future estimates when the same assumptions are made and the only noise source is observation
error. It is tempting but incorrect to interpret these confidence intervals as containing the true parameters with prob-
ability 0.95. Fig. 2 shows the temporal distributions of the reproduction number and the proportion of the clinical
reporting obtained by the bootstrap method after fitting the complex SEIR epidemic model to the initial phase of the
Fall influenza wave using 17 epidemic days of the Spanish Flu Pandemic in San Francisco, California.

4. Primer of mathematics and statistics of R0 and R(t)

In addition to the estimation of R0, it is of practical importance to evaluate time-dependent variations in the trans-
mission potential. Explanation of the time course of an epidemic can be partly achieved by estimating the effective
reproduction number, R(t), defined as the actual average number of secondary cases per primary case at time t

(for t > 0) [41,42,44,81,82].1 Although effective interventions against Spanish influenza may have been limited in
the early 20th century, it is plausible that the contact frequency leading to infection varied with time owing to the
huge number of deaths and dissemination of information through local media (e.g., newspapers). R(t) shows time-
dependent variation with a decline in susceptible individuals (intrinsic factors) and with the implementation of control
measures (extrinsic factors). If R(t) < 1, it suggests that the epidemic is in decline and may be regarded as being
under control at time t (vice versa, if R(t) > 1).

1 R(t) should not be confused with the number of removed individuals using the same notation. In the following arguments of this paper, R(t)

denotes the effective reproduction number.
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Fig. 2. Model fits, residuals plots, and the resulting distributions of the reproduction number and the proportion of the clinical reporting obtained
after fitting the complex SEIR epidemic model to the initial phase of the Fall influenza wave using 17 epidemic days of the Spanish Flu Pandemic
in San Francisco, California. See Eqs. (10) [39]. In the top panel, the epidemic data of the cumulative number of reported influenza cases are the
circles, the solid line is the model best fit, and the solid blue lines are 1000 realizations of the model fit to the data obtained through parametric
bootstrapping as explained in the main text.

4.1. Estimation of R0 using the intrinsic growth rate

To appropriately understand the theoretical concept of R(t), let us firstly consider an explicitly infection-age struc-
tured epidemic model. Whereas Kermack–McKendrick model governed by ODEs (i.e. SIR and SEIR models as
discussed above) has been well-known, Kermack and McKendrick had actually proposed an infection-age structured
model in their initial publication in 1927 [72], the mathematical importance of which was recognized only after 1970s
[83,84]. Let us denote the numbers of susceptible and recovered individuals by S(t) and U(t). Further, let i(t, τ ) be
the density of infectious individuals at time t and infection-age τ (i.e. time since infection). The model is given by

dS(t)

dt
= −λ(t)S(t),(

∂

∂t
+ ∂

∂τ

)
i(t, τ ) = −γ (τ)i(t, τ ), i(t,0) = λ(t)S(t),

(17)
dU(t)

dt
=

∞∫
0

γ (τ)i(t, τ ) dτ,

where λ(t) is referred to as the force of infection (foi) (i.e. as discussed in Section 2, foi is defined as the rate at which
susceptible individuals get infected) which is given by:

(18)λ(t) =
∞∫

β(τ)i(t, τ ) dτ
0
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and γ (τ) is the rate of recovery at infection-age τ . It should be noted that the above model has not taken into account
the background host demography (i.e. birth and death). In a closed population, the total population size N is thus
given by:

(19)N = S(t) +
∞∫

0

i(t, τ ) dτ + U(t).

It should also be noted that, although i(t, τ ) is referred to as density, it is not meant to be a normalized density (i.e.
integral of i(t, τ ) over t and τ does not sum up to 1). Rather, we use density to mathematically refer to the absolute
frequency in the infection-age space.

The system (17) can be reasonably integrated

(20)i(t, τ ) =
⎧⎨
⎩


(τ)j (t − τ), for t − τ > 0,


(τ)


(τ − t)
j0(τ − t), for τ − t > 0,

where

j (t) = i(t,0),

(21)
(τ) = exp

(
−

τ∫
0

γ (σ )dσ

)

and j0(τ ) suggests the density of initially infected individuals at the beginning of an epidemic. In the following
arguments, we call j (t) as incidence of infection (i.e. new infections at a given point of time t ). It is not difficult to
derive

(22)S(t) = S(0) −
t∫

0

j (σ ) dσ

from (17)–(21). Thus, the subequation of i(t,0) in system (17) is rewritten as

(23)j (t) = λ(t)

[
S(0) −

t∫
0

j (σ ) dσ

]
.

Taking into account the initial condition in (20), Eq. (23) is rewritten as

(24)j (t) =
[
S(0) −

t∫
0

j (σ ) dσ

][
G(t) +

t∫
0

ψ(τ)j (t − τ) dτ

]
,

where

ψ(τ) = β(τ)
(τ),

(25)G(t) =
∞∫

0

β(σ + t)

(σ + t)


(σ )
j0(σ ) dσ.

Considering the initial invasion phase (i.e. initial growth phase of an epidemic), we get a linearized equation

(26)j (t) = S(0)G(t) + S(0)

t∫
0

ψ(τ)j (t − τ) dτ.
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Eq. (26) represents Lotka’s integral equation, where the basic reproduction number, R0, is given by

(27)R0 = S(0)

∞∫
0

ψ(τ)dτ.

Thus, the epidemic will grow if R0 > 1 and decline to extinction if R0 < 1. The above model can yield the same final
size equation as seen in models governed by ODEs [17].

Assuming that the infection-age distribution is stable, we get a simplified renewal equation

(28)j (t) =
∞∫

0

A(τ)j (t − τ) dτ,

where A(τ) is the product of ψ(τ) and S(0). Moreover, assuming that we observe an exponential growth of incidence
during the initial phase (i.e. j (t) = k exp(rt) where k and r are, respectively, a constant (k > 0) and the intrinsic
growth rate), the following relationship must be met

(29)j (t) = j (t − τ) exp(rτ ).

Replacing j (t − τ) in the right-hand side of (28) by (29), we get

(30)j (t) =
∞∫

0

A(τ)j (t) exp(−rτ ) dτ.

Removing j (t) from both sides of (30), we get the Lotka–Euler characteristic equation:

(31)1 =
∞∫

0

e−rτA(τ) dτ.

Further, we consider a probability density of the generation time (i.e. the time from infection of an individual to the
infection of a secondary case by that individual [85]), denoted by w(τ):

(32)w(τ) := A(τ)∫ ∞
0 A(x)dx

= A(τ)

R0
.

Using (32), Eq. (31) can be replaced by

(33)
1

R0
=

∞∫
0

exp(−rτ )w(τ) dτ.

Eqs. (29)–(33) are what Wallinga and Lipsitch discussed in a recent study [6], reasonably suggesting the relationship
between the generation time and R0. Accordingly, the estimator of R0 using the intrinsic growth rate is given by:

(34)R̂0 = 1

M(−r)
,

where M(−r) is the moment generating function of the generation time distribution w(τ), given the intrinsic growth
rate r [6].2 Eq. (34) significantly improved the issue of estimating R0 using the intrinsic growth rate alone, because
(34) permits validating estimates of R0 by various different distributional assumptions for w(τ). The issue of assuming

2 In the original study of Wallinga and Lipsitch [6], the notation R0 is not used for Eq. (34) and rather document (34) as the estimator of R. Most
likely, there are two reasons for this. First, we cannot assure if all individuals are susceptible to pandemic influenza before the start of epidemic
(as discussed in Section 2). Second, we cannot assume that infection-age distribution is stable during the initial growth phase, which is highlighted
in (20). Thus, it should be remembered that the above discussion is mathematically tight in theory, but there are certain number of assumptions to
apply the concept to observed data. Since writing R alone is always confusing (as it is unclear if R is concerned with time or immunity status),
here we use R0 instead.
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Fig. 3. Temporal distribution of Spanish influenza in Zurich. Left panel shows an epidemic curve (i.e. deaths distribution) of pandemic influenza in
a suburb of Zurich in 1918. In total, 259 deaths were observed from 9 July to 18 August. Right panel shows observed and expected values of the
cumulative number of deaths during the first 16 days. The intrinsic growth rate is estimated to be 0.16 per day. Data source: [91].

explicit distributions for latent and infectious periods has been highlighted in recent studies [86–90] and indeed, this
point is in part addressed by (34), because the convolution of latent and infectious periods yields w(τ). Moreover,
since the assumed lengths of generation time most likely yielded different estimates of R0 for Spanish influenza by
different studies [60], Eq. (34) highlights a critical need to clarify the generation time distribution using observed data.

Here we briefly show a numerical example. Fig. 3 shows the daily number of influenza deaths during Spanish
influenza pandemic in a suburb of Zurich, 1918 [91]. Since the non-linear phase is difficult to analyze, our interest
to estimate R0 with this dataset is limited to the initial growth phase only (right panel in Fig. 3). Even though the
data represent deaths over time (i.e. not infection events with time), we can directly extract the same intrinsic growth
rate as practised with onset data, assuming that death data are a good proxy for morbidity data (see our discussions
in Section 6). Assuming exponential growth in deaths as shown in (29), the intrinsic growth rate r is estimated to be
0.16 per day. Supposing that w(τ) is arbitrarily assumed to follow a gamma distribution with mean G and coefficient
of variation, CV = √

Var(G)/G, R0 is given by

(35)R0 = (1 + rG(CV)2)
1

(CV)2 .

Although there is no concensus regarding the generation time of Spanish influenza, we assume it ranges from 2–5 days.
Assuming further that CV = 0.5, R0 is estimated to range from 1.36 (for G = 2 day) to 2.07 (for G = 5 days).

4.2. The concept of R(t) and its estimation

In the following, let us consider the non-linear phase of an epidemic. Derivation of R0 given by (34) assumes an
exponential growth which is applicable only during the very initial phase of an epidemic (or, when the transmission is
stationary over time), and thus, it is of practical importance to widen the utility of above-described renewal equations
in order to appropriately interpret the time-course of an influenza pandemic. Let us explicitly account for the depletion
of susceptible individuals, as we deal with an estimation issue with time-inhomogeneous assumptions (i.e. non-linear
phase). Adopting the mass action assumption, we get:

(36)j (t) = S(t)

∞∫
0

ψ(τ)j (t − τ) dτ =
∞∫

0

A(t, τ )j (t − τ) dτ,

where A(t, τ ) should be interpreted as the reproductive power at time t and infection-age τ at which an infected
individual generates secondary cases. We refer to the latter part of Eq. (36) as a non-autonomous renewal equation,
where the number of new infection at time t is proportional to the number of infectious individuals (as assumed in the
renewal equation in the initial phase).
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Using Eq. (36), the effective reproduction number, R(t) (i.e. instantaneous reproduction number at calendar time t )
is defined as:

(37)R(t) =
∞∫

0

A(t, τ ) dτ.

Following (37), we can immediately see that R(t) with an autonomous assumption (i.e. where contact and recovery
rates do not vary with time) is given by:

(38)R(t) = S(t)

S(0)
R0

which is shown in [17]. In practical terms, Eq. (38) suggests that time-varying decrease in transmission potential
as well as decline in the epidemic reflects only depletion of susceptible individuals. This corresponds to a classic
assumption of the Kermack and McKendrick model.

However, as we discussed in the beginning of this section, we postulate that human contact behaviors (and other
extrinsic factors) modify the dynamics of pandemic influenza, assuming that the decline in incidence does reflect not
only depletion of susceptibles but also various extrinsic dynamics (e.g., isolation, quarantine and closure of public
buildings). Thus, instead of the assumption in (36), we shall assume time-inhomogeneous ψ(t, τ ); i.e.

(39)j (t) = S(t)

∞∫
0

ψ(t, τ )j (t − τ) dτ =
∞∫

0

A(t, τ )j (t − τ) dτ

to describe A(t, τ ).
To derive simple estimator of R(t), it is convenient to assume separation of variables for A(t, τ ) (implicitly as-

suming that the relative infectiousness to infection-age is independent of calendar time) [92]. Under this assumption,
A(t, τ ) is rewritten as the product of two functions φ1(t) and φ2(τ ):

(40)A(t, τ ) = φ1(t)φ2(τ ).

Arbitrarily assuming a normalized density for φ2(τ ), i.e.

(41)

∞∫
0

φ2(τ ) dτ ≡ 1

then, it is easy to find that

(42)R(t) =
∞∫

0

A(t, τ ) dτ = φ1(t)

suggesting that the function φ1(t) is equivalent to the effective reproduction number R(t). Another function φ2(τ )

represents the density of infection events as a function of infection-age τ . Accordingly, we can immediately see that
φ2(τ ) is exactly the same as w(τ), the generation time distribution. That is, the above arguments suggest that A(t, τ )

(i.e. the rate at which an infectious individual at calendar time t and infection-age τ produces secondary transmission)
is decomposed as:

(43)A(t, τ ) = R(t)w(τ).

Inserting (43) into (39) yields an estimator of R(t) [92]:

(44)R̂(t) = j (t)∫ ∞
0 j (t − τ)w(τ) dτ

.

The above Eq. (44) is exactly what was proposed in applications to SARS [41] and foot and mouth disease [93]; i.e.
discretizing (44) to apply it to the daily incidence data (i.e. using ji incident cases infected between time ti and time
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ti+1 and descretized generation time distribution wi ),

(45)R̂(ti) = ji∑n
j=0 ji−jwj

was used as the estimator. However, it should be noted that the study in SARS implicitly assumed that onset data c(t)

at time t reflects the above discussed infection event j (t). That is, supposing that we observed ci onset cases reported
between ti and ti+1, R(t) was calculated as

(46)R̂(ti) = ci∑n
j=0 ci−j sj

,

where sj is the discretized serial interval which is defined as the time from onset of a primary case to onset of the sec-
ondary cases [94,95]. The method permits reasonable transformation of an epidemic curve (i.e. temporal distribution
of case onset) to the estimates of time-inhomogeneous reproduction number R(t). Employing the relative likelihood
of case k infected by case l using the density function of serial interval s(t); i.e.

(47)p(k,l) = s(tk − tl |θ)∑
m 	=k s(tk − tm|θ)

.

Using (47), expected value and variance of R(ti) are given by the following

E
(
R(ti)

) = 1

n2
t

∑
l:tl=t

n−q∑
k=1

p(k,l),

(48)Var
(
R(ti)

) = 1

n2
t

n−q∑
k=1

( ∑
l:tl=t

p(k,l)(1 − p(k,l)) −
∑

l,m:tl=tm=t

p(k,l)p(k,m)

)
,

where nt is the total number of reported case onsets at time t [96].
In the present day, only by using the above described methods (or similar concepts with similar assumptions), we

can transform epidemic curves into R(t) and roughly assess the impact of control measures on an epidemic. However,
whereas Eqs. (45) and (46) are similar in theory, we need to explicitly account for the difference between onset and in-
fection event. In fact, when there are many asymptomatic infections and asymptomatic secondary transmissions, serial
interval is not equivalent to the generation time, and thus, directly adopting the above methods would be inappropriate.
Since this point is particularly important in analyzing influenza data, we discuss this issue in Section 6.

5. Statistical methods to estimate R0

5.1. Branching process

In the previous sections, we discussed several different methods to estimate R0 either by (i) employing detailed
curve fitting methods assuming a structured epidemic model or (ii) using the intrinsic growth rate (or doubling time
[97,98]). Summarizing the above discussions, we believe that the readers should benefit from memorizing R0 =
1/M(−r) for the use of the intrinsic growth rate r in estimating R0 [6] and remembering the final size equation
R0 = − ln(1 − p)/p, suggesting the severity of an epidemic as the theoretical concept. Indeed, estimators using
either the intrinsic growth rate or final size relations have played an important role in discussing R0 of pandemic
influenza [63].

However, it should be noted that deterministic models do not permit incorporating stochasticity explicitly (e.g.,
standard error for R0 is determined by measurement of errors alone), as the models argue only average number of
secondary transmissions within the assumed transmission dynamics. That is, our arguments given above explore only
the time-evolution of influenza spread in the mean field. To address the issue of variation in secondary transmissions,
full stochastic models are called for [99].

From a viewpoint of data science, the discrete-time branching process, which is also referred to as Galton–Watson
process, can reasonably assess individual heterogeneity in secondary transmissions [100,101]. As we discussed the
initial growth phase of the deterministic model, let us consider the same epidemic phase where we observe a geometric
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increase in the number of cases by generation [23]. We denote the initial number of infected individuals by C0 in gen-
eration 0. Then, during the first generation, C1 cases are produced by secondary transmissions of C0. Similarly, let Cn

be the number of infections in generation n. The branching process of this type assumes that every infected individual
has an independently and identically distributed stochastic random variable ρ

(n)
i representing the number of secondary

cases produced by case i in generation (n), and that environmental stochasticity and immigration/emigration can be
ignored. Supposing that the pattern of secondary transmission follows a discrete probability distribution pk with k

secondary transmission(s); i.e.

(49)pk = Pr
(
ρ

(n)
i = k

)
(k = 0,1,2, . . .)

then, the expected number of secondary transmissions and the variance are given by

R0 = E
(
ρ

(n)
i

) =
∞∑

k=1

kpk,

(50)Var
(
ρ

(n)
i

) =
∞∑

k=0

(k − R0)
2pk.

In other words, the concept of probability distribution pk reflects offspring distribution in population ecology, and
this permits explicit modeling of variations in secondary transmissions in infectious diseases [102,103]. This approach
is particularly important during the initial phase of an epidemic, because the number of infectious individuals is small
in this stage, and thus, it is deemed essential to take into account demographic stochasticity, i.e. variation in the
numbers of secondary transmissions by chance. Indeed, the model has been applied to observed outbreak data where
we observed the extinction before growing to a major epidemic [104,105].

Let us briefly discuss the variation in secondary transmissions and an estimation method of R0 using the discrete-
time branching process, deriving analytical expressions of the expected number of infected individuals in generation n,
Mn = E(Cn) and the variance Vn = Var(Cn). It is impossible to avoid using the probability generating function (pgf)
to discuss the branching process. The above described ρ

(n)
i characterize positive and discrete number of secondary

transmissions, and thus, is a non-zero discrete random variable. The pgf of ρ, gρ(s) is given by

(51)gρ(s) = E(sρ) =
∞∑

k=0

pks
k.

There are two basic properties concerning g(s) in relation to the epidemic process. First, R0 is by definition the mean
value of secondary transmissions (Eq. (50)) and, thus given by g′(1). Second, the probability that an infected individual
does not cause any secondary transmissions p0 = Pr(ρ = 0) is given by g(0), which is useful for discussing threshold
phenomena and extinction [101]. If we note that C0 = 1 (i.e. only one index case), the Galton–Watson process has the
following pgf identity:

g0(s) = s,

(52)gn+1(s) = gn

(
g(s)

) = g
(
gn(s)

)
.

Even when there are C0 = a cases in generation 0 (where a > 1), we just have to assume that there are a different
independent infection-trees and thus

gC0(s) = sa,

(53)gCn(s) = (
gn(s)

)a
.

From the above discussions, the expected number of cases in generation n, Mn, and the variance Vn is

Mn = Rn
0M0,

(54)Vn =
{

nVar(ρ) (R0 = 1),

Rn−1
0 Var(ρ)

Rn
0 −1

R0−1 (R0 	= 1).
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The process grows geometrically if R0 > 1, stays constant if R0 = 1, and decays geometrically if R0 < 1. These three
cases are referred to as supercritical, critical, and subcritical, respectively. However, unlike the deterministic model, it
should be remembered that critical process does not permit continued transmissions, and rather, the process becomes
extinct almost surely (i.e. probability of extinction given R0 = 1 is one) [101].

Mathematically, demographic stochasticity in transmission is represented by a Poisson process, which has been
practiced in the application of branching processes to epidemics [17]. Assuming that mean value of secondary trans-
missions is a constant R0, the conditional distribution of observing Cn+1 cases, given Cn cases, follows a Poisson
distribution:

(55)Cn+1|Cn ∼ Poisson[CnR0].
Supposing that we analyze influenza data documenting the generations of cases from 0 to n in which we observed
geometric growth, the likelihood of estimating R0 is proportional to

(56)
n∏

k=1

(R0Ck−1)
Ck exp(−R0Ck−1).

Here we apply the above model to the Spanish influenza data in Zurich (Fig. 3). Assuming that the generation time
of length τ , w(τ), is given by the following delta function with the mean length 3 days,

(57)w(τ) =
{∞, for τ = 3,

0, for τ 	= 3,

then the observed series of data can be grouped by generation (C0, C1, C2, . . . ):

(58)1, 3, 4, 7, 26, 30, 37, . . . .

Since we assumed exponential growth during the initial 16 days in the previous section, here we similarly assume a
geometric increase up to the 6th generation. Applying (56) to the above data, maximum likelihood estimate of R0 (and
the corresponding 95 percent confidence intervals) is 1.51 (1.24, 1.81). The model is simple enough to estimate R0,
and indeed, a slight extension of the discrete-time branching process has been employed to estimate R0 as well as the
proportion of undiagnosed cases in the analysis of SARS outbreak data [106].

It should be noted that the discrete-time branching process assumes a homogeneous pattern of spread. A technical
issue has arisen on this subject during the SARS outbreak. Usually, we observe some cases who produce an extraor-
dinary number of secondary cases compared with other infected individuals, which are referred to as superspreaders.
Because of this, observed offspring distributions for directly transmitted diseases tend to be extremely skewed to the
right. Empirically, it has been suggested that Poisson offspring distribution is sometimes insufficient to highlight the
presence of superspreaders in epidemic modeling [107]. For example, if non-zero discrete distribution of secondary
cases follows a geometric distribution with mean R0, the pgf is given by a geometric distribution with mean R0:

(59)g(s) = 1

1 + R0(1 − s)
.

Moreover, if the offspring distribution follows gamma distribution with mean R0 and dispersion parameter k, the pgf
g(s) follows negative binomial distribution [108]:

(60)g(s) =
(

1 + R

k
(1 − s)

)−k

.

We still do not know if pandemic influenza is also the case to warrant the skewed offspring distributions. To explicitly
test if superspreading events frequently exist in influenza transmission, it is necessary to accumulate contact tracing
data for this difficult disease, the cases of which often show flu-like symptoms only (as discussed in Section 1).
In addition, it should be noted that we cannot attribute the skewed offspring distribution to the underlying contact
network only. To date, there are two major reasons which can generate superspreaders: (i) those who experience very
frequent contacts (social superspreader) or (ii) those who are suffering from high pathogen loads or those who can
scatter the pathogen through the air such as the use of nebulizer in hospitals (biological superspreader). From the
offspring distribution only, we cannot distinguish these two mechanisms.



66 G. Chowell, H. Nishiura / Physics of Life Reviews 5 (2008) 50–77
5.2. Counting process

With regard to the estimation of R0 using final size, we briefly discuss another method based on a stochastic
process. As we discussed above, let S(t), I (t) and U(t) be the numbers of susceptible, infectious and recovered
individuals at time t , respectively. Further, let β and 1/γ denote the transmission rate and the mean duration of the
infectious period, respectively. Supposing that K(t), the number of individuals who experienced infection between
time 0 and time t , is given by K(t) = S(0)−S(t), the two processes K(t) and U(t) are increasing counting processes
where the general epidemic is explained by:

Pr
(
dK(t) = 1, dU(t) = 0 | Zt

) = βS̄(t)I (t) dt,

Pr
(
dK(t) = 0, dU(t) = 1 | Zt

) = γ I (t) dt,

(61)Pr
(
dK(t) = 0, dU(t) = 0 | Zt

) = 1 − βS̄(t)I (t) dt − γ I (t) dt,

where Zt denotes the σ -algebra generated by the history of the epidemic {S(u), I (u);0 < u < t} and S̄(t) = S(t)/n

(where n is the size of the susceptible population at time 0). The latter is equivalent to assuming density-independent
transmission (i.e. also referred to as true mass action or frequency dependent assumption [109]). Based on Eq. (61),
two zero-mean martingales [110] are defined by:

M1(t) = K(t) −
t∫

0

βS̄(u)I (u) du,

(62)M2(t) = U(t) −
t∫

0

γ I (u)du.

From the martingale theory [111], a zero-mean martingale is given by

(63)M(t) =
t∫

0

1

S̄(u)
dM1(u) − β

γ
M2(t) = n

S(0)
+ n

S(0) − 1
+ · · · + n

S(t) + 1
− β

γ
U(t).

Thus, the estimator θ̂ = β̂/γ̂ is given by

(64)θ̂ = [ n
S(0)

+ n
S(0)−1 + · · · + n

S(T )+1 ]
U(T )

= − ln(1 − p̃)

U(T )
,

where p̃ is the observed final size (= 1 − S(T )/n) at the end of the epidemic at time T . Furthermore, the variance of
the zero-martingale is given by

(65)Var
(
M(t)

) = Var
(
M1(t)

) + θ2Var
(
M2(t)

)
.

From the martingale central limit theorem [112], the estimator θ is approximately normally distributed in a major
outbreak in a large community. The standard error is then consistently estimated by:

s.e.(θ̂ ) =
[

n

S(0)2 + n

(S(0)−1)2 + · · · + n

(S(T )+1)2 − θ̂2R(T )
]1/2

U(T )

(66)=
[

n
S(0)+1/2 + n

S(0)+1/2 − θ̂2R(T )
]1/2

U(T )
.

Consequently, the estimator and standard error of R0 are given by:

R̂0 = n × θ̂ ,

(67)s.e.(R̂0) = n × s.e.(θ̂ ).

More detailed mathematical descriptions can be found elsewhere [74,113,114].
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Here we show a numerical example. Let us consider a large epidemic of equine influenza (i.e. influenza in horses)
as our case study. In 1971, a nationwide epidemic of equine-2 influenza A (H3N8) was observed in Japan [115]. For
example, in Niigata Racecourse, 580 influenza cases were diagnosed with influenza among a total of 640 susceptible
horses. The final size p is thus 90.6 percent (95 percent CI: 88.4, 92.9). From this data, we calculate R0 and its
uncertainty bounds.

Using p̃ = 0.906 and total number of infected U(T ) = 580 in Eq. (64), θ̂ is estimated as 0.00408. There-
fore, the estimate of R0 = 2.60 is given by Eq. (67). Moreover, from Eq. (66) where S(T ) = 639 − 579 = 60
and S(0)(= n) = 639 (we assume one case was already infected at time t = 0), we obtain s.e.(θ̂ ) = 0.000126.
Here, θ̂ is assumed to follow normal distribution. Therefore, the 95 percent confidence interval for R0 is given as
[R0 − 1.96 × 640 × 0.000126,R0 + 1.96 × 640 × 0.000126] = [2.44,2.76].

When applying the final size equation, it should be remembered that (i) we assume all individuals are initially
susceptible (in the above described model) and (ii) we assume β and γ are independent of time (i.e. constant), and
thus, that any extrinsic factors should not have influenced the course of the observed epidemic.

5.3. Epidemics with two levels of mixing

In the above described models, we always assumed that the pattern of influenza transmission is homogeneous,
which is clearly unrealistic to capture the transmission dynamics of influenza. Since the last century, it has already
been understood that the transmission dynamics are not sufficiently modeled by assuming homogeneous mixing.
However, because more detailed data are lacking (e.g., epidemic records of pandemic influenza with time, age and
space), what we could offer has been mainly to extract the intrinsic growth rate from the initial exponential growth,
and estimate R0 using the estimator based on a model with the homogeneous mixing assumption.

One line of addressing heterogeneous patterns of transmission using the observed data is separating household
transmission from community transmission. In other words, it is of practical importance to distinguish between indi-
vidual and group R0 [116]. From the beginning of explicit modeling of influenza [117,118], a method to separately
estimate the transmission parameters has been proposed, which has been partly extended in a recent study [92] or
applied to further old data of pandemic influenza [119]. Indeed, an important aspect of this issue was highlighted
in a recent study which compared estimates of R0 between those having casual and close contacts [63]. To estimate
key parameters of household and community transmissions of influenza, or to simulate realistic patterns of influenza
spread, such a consideration is fruitful.

Mathematically elaborating this concept, there are several publications which proposed the basis of analyzing
household transmission data employing stochastic models [120–122]. Moreover, a rigorous study has been made to
estimate parameters determining the intrinsic dynamics (e.g., infectious period) using household transmission data
with time [123].

Future challenges on the estimation of R0 include the application of such theories to the observed data with some
extension. For example, as we discussed above, knowing the generation time would be crucial to elucidate a robust
estimate of R0 [6,89,90,92]. However, we do not know if the generation time varies between close and casual contacts;
this should be the case, because, as long as the generation time is given by coevolution of latent and infectious periods,
close contact should lead to shorter generation time than casual contact. In future studies, influenza models may better
to highlight the increasing importance of considering household transmission to estimate the transmission potential
using the temporal distribution of infection events.

6. Characteristics of influenza data

Except for our approach in Section 3, mathematical arguments given in this paper are not particularly special for
influenza. In other words, we modelers have employed similarly structured models which describe the population dy-
namics of other directly transmitted diseases, and such models are applicable not only for influenza but also for many
viral diseases including measles, smallpox, chickenpox, rubella and so on [18]. However, influenza has many different
epidemiologic characteristics compared to other childhood viral diseases. For instance, following the previous efforts
in influenza epidemiology [124–126] and modeling [127,128], we should at least note the following:
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1. Detailed mechanisms of immunity have yet to be clarified. Since influenza virus has an wide antigenic diver-
sity (i.e. unlike other childhood viral diseases, antigenic stimulation is not monoclonal), this complicates our
understanding in the fraction of immune individuals, cross-protection mechanisms and evolutionary dynamics
[129–132].

2. Flu-like symptoms are too common, and thus, we cannot explicitly distinguish influenza from other common viral
infections without expensive laboratory tests for each case. Because of this character, it is difficult to effectively
implement usual public health measures (e.g., contact tracing and isolation).

3. Although explicit estimates are limited [133,134], a certain fraction of infected individuals does not exhibit any
symptoms (following infection). This complicates not only the eradication [135] but also epidemiologic evalua-
tions of vaccines and therapeutics [136].

4. Looking into the details of the intrinsic dynamics [4,123], it appears recently that the generation time and in-
fectious period are much shorter than what were believed previously. Therefore, despite the relatively small R0
estimate, the turn-over of a transmission cycle (i.e. speed of growth) is rather quick. The incubation period of
Spanish influenza is as short as 1.5 days [137], complicating the implementation of quarantine measures [138].

Thus, depending on the characteristics of observed data (and the specific purpose of modeling), we have to highlight
these factors referring to the best available evidence. This is one of the most challenging issues in designing public
health interventions against a potential future pandemic.

6.1. What is reported in the observed data?

In addition to the above described issue, we, of course, must remember what the reported data is. In many studies,
the compartment I (t) or relevant class of infectious individuals of the SIR (or SEIR) model was fitted to the observed
data. Indeed, in the majority of previous classic studies, R(t) (i.e. removed class; denoted by U(t) in our discussion)
of Kermack and McKendrick model was fitted to the data, assuming that the removed class highlights observed data
as the reported cases no longer produce secondary cases. However, the observed epidemiologic data is actually neither
I (t) nor U(t). Always, what we get as the temporal distribution reflects case onset or deaths with time which is mostly
accompanied by some reporting delay.

We believe this is one of the most challenging issues in epidemic modeling. Except for rare examples in sexually
transmitted diseases, infection event is not directly observable, and thus, we have to maximize the utility of reported
(observed) data, explicitly understanding what the data represents.

In this case, back-calculation of the infection events is called for. Let c(t) denote the number of onsets at time t ,
this should be modeled by using incidence j (t) and the density of the incubation period of length τ , f (τ):

(68)c(t) =
∞∫

0

j (t − τ)f (τ) dτ.

Further, supposing that b(t) is the number of reported cases at time t and the density of reporting delay of length σ is
h(σ ), observed data is modeled as:

(69)b(t) =
∞∫

0

c(t − s)h(s) ds =
∞∫

0

∞∫
0

j (t − s − τ)f (τ) dτ h(s) ds.

That is, only by using the observed data b(t) and known information of the reporting delay h(s) and incubation period
distributions f (τ), we can translate the observed data into infection process j (t).

In some cases, only death data with time, d(t), is available [60]. Similarly, this can be modeled using the back-
calculation. Let q denote the case fatality of influenza which is reasonably assumed time-independent, and further let
m(u) be the relative frequency of time from onset to death, d(t) is given by:

(70)d(t) = q

∞∫
0

c(t − u)m(u)du.
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Even when using onset data with delay or death data, it should be noted that the intrinsic growth rate is identical
to that estimated from the infection event distribution. Assuming that the incidence j (t) exhibits exponential growth
during the initial phase of an epidemic, i.e. j (t) = k exp(rt), Eqs. (68) and (70) can be rewritten as

b(t) =
∞∫

0

∞∫
0

k exp
(
r(t − s − τ)

)
f (τ) dτ h(s) ds

(71)= k exp(rt)

∞∫
0

∞∫
0

exp
(−r(s + τ)

)
f (τ) dτ h(s) ds

and

d(t) = q

∞∫
0

∞∫
0

j (t − u − τ)f (τ) dτ m(u)du = q

∞∫
0

∞∫
0

k exp
(
r(t − u − τ)

)
f (τ) dτ m(u)du

(72)= qk exp(rt)

∞∫
0

∞∫
0

exp
(−r(u + τ)

)
f (τ) dτ m(u)du.

Thus, the growth terms exp(rt) (i.e. which depends on time) of b(t) and d(t) are still identical to that of incidence j (t).
In other words, mathematically Eqs. (71) and (72) could be a justification to extract an estimate of the intrinsic growth
rate from cases with reporting delay or deaths with time. However, we should always remember that the infection-age
distribution is not stable during the initial phase, and moreover, this method cannot address individual variation in the
secondary transmissions (e.g., superspreaders, as we discussed in Section 5).

6.2. What to be learnt from the reported data?

In this way, it is not an easy task to clarify the infection events with time. A similar application of the convolution
equation has been intensively studied in modeling HIV/AIDS. Since AIDS has a long incubation period, and because
AIDS diagnosis is certainly reported in the surveillance data (at least, in industrialized countries), backcalculation of
the number of HIV infections with time using the number of AIDS diagnoses and the incubation period distribution has
been an issue to capture the whole epidemiologic picture of HIV/AIDS [139–142]. In the current modeling practice
using the temporal distribution of onset events, we are now faced with a need to apply this technique to diseases with
much shorter incubation periods.

Now, let us look back at a method to estimate R(t), which was proposed by Wallinga and Teunis [41]. Whereas the
method has a background of mathematical reasoning (as shown in (46), Section 4.2), the estimator was derived implic-
itly assuming that observed data exactly reflects infection events. If asymptomatic infection and transmission are rare,
this assumption might be justifiable as the lengths of the serial interval and generation time become almost identical.
However, as long as we cannot ignore asymptomatic transmissions, which is particularly the case for influenza, the
assumption s(σ ) = w(τ) might be problematic [85].

Since R(t) of this method was given by summing up the probability of causing secondary transmissions by an
onset case at the onset time of this case t , we should rewrite the assumption using a modified onset-based renewal
equation as follows [60]:

(73)c(t) =
t∫

0

c(t − τ)R(t − τ)s(τ ) dτ.

For simplicity, we ignore reporting delay in the observed data, roughly assuming that the observed data reflects c(t).
Translating Eq. (73) in words, it is implicitly assumed that secondary transmission happens exactly at the time of
onset, and based on this assumption, R(t) in the right-hand side of (73) can be backcalculated.
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To understand the assumptions behind the above equation, let us assume that incidence j (t) is given by

(74)j (t) = S(t)

∞∫
0

β(σ)
(σ )c(t − σ)dσ,

where β(σ ) is the transmission rate at disease-age σ (i.e. the time since onset of infection [143]) and 
(σ) is the
survivorship of cases following onset. It should be noted that Eq. (74) ignores secondary transmissions before onset
of illness. As we discussed above, c(t) is given by j (t) and the incubation period distribution f (τ),

(75)c(t) =
∞∫

0

j (t − τ)f (τ) dτ.

Replacing c(t) in the right-hand side of (74) by (75), we get

(76)j (t) = S(t)

∞∫
0

j (t − s)φ(s) ds,

where s represents infection-age (i.e. time since infection), and φ(s) is given by

(77)φ(s) =
s∫

0

β(a)
(a)f (s − a)da

which represents generation time distribution. From Eqs. (76) and (77), we can find that R(t) is given by

(78)R(t) = S(t)

∞∫
0

φ(s) ds = S(t)

∞∫
0

β(σ)
(σ )dσ

∞∫
0

f (τ) dτ.

Eq. (78) can be further reduced to R(t) = R0S(t)/S(0) which represents Kermack and McKendrick’s assumption.
Replacing j (t) in the right-hand side of (75) by (74), we get

(79)c(t) =
∞∫

0

ψ(t, σ )c(t − σ)dσ,

where ψ(t, σ ) denotes the serial interval distribution of calender time t and disease-age σ :

(80)ψ(t, σ ) =
σ∫

0

β(σ − τ)
(σ − τ)f (τ)S(t − τ) dτ.

Eq. (80) is difficult to solve as it includes S(t − τ) in the right-hand side. However, in the special case, e.g., let us say
when we can assume β(τ)
(τ) = kδ(τ ) (where k is constant and δ(·) is delta function),

(81)ψ(t, σ ) = kf (σ )S(t − σ).

Inserting (81) back to (79),

(82)c(t) =
∞∫

0

kf (σ )S(t − σ)c(t − σ)dσ =
∞∫

0

R(t − σ)c(t − σ)
f (σ )∫ ∞

0 f (τ) dτ
dσ

which is onset-based renewal equation which was presented in (73). What to be learnt from (82) is, the assumption that
secondary transmission happens immediately after onset suggests that the incubation period distribution is identical
to the serial interval distribution as shown above, which is a bit funny conclusion. Maximizing the utility of observed
data has still remained an open question.
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In addition to modeling the temporal distribution, explicit modeling of asymptomatic infection is also called
for [135]. Provided that there are so many asymptomatic transmissions which are not in the negligible order, we
need to shift our concept of transmissibility; e.g., rather than R0, a threshold quantity of symptomatic infection is
required. In such a case, application of type-reproduction number T might be useful [144,145], and it has already
been put into practice [146].

7. What to be clarified further?

In this review, we focused on the use of the temporal distribution of influenza to estimate R0 (or R(t)) and the
relevant key parameters. It must be remembered that our arguments, almost necessarily, employed the homogeneous
mixing assumption, as we cannot extract information on heterogeneous patterns of infection from a single stream of
temporal data alone. Presently, more information (e.g., at least, spatio-temporal distribution) is becoming available for
influenza. In this section, we briefly sketch what can be (and should be) done in the future to quantify the transmission
dynamics of pandemic influenza.

7.1. What R0 really means?

It is not a new issue that heterogeneous patterns of transmission could even destroy the mean field theory in infec-
tious diseases. For example, in a pioneering study of gonorrhea transmission dynamics by Hethcote and Yorke [147],
an importance of contact heterogeneity was sufficiently highlighted. Since a simple model assuming homogeneous
mixing did not reflect the patterns of gonorrhea transmission in the United States, Hethcote and Yorke divided the pop-
ulation in question into two; those who are sexually very active and not, the former of which was referred to as core
group. Compared with the temporal distribution of infection given by a model with homogeneous mixing assumption,
the simple heterogeneous model with a core group revealed much quicker increase in epidemic size, showing rather
different trajectory of an epidemic. Given that the variance of sexual partnership is extremely large (i.e. if the distrib-
ution of the frequency of sexual intercourse is extremely skewed to the right with a very long right tail), the estimate
of R0 is shown to become considerably high. The finding supports a vulnerability of our society to the invasion of
sexually transmitted diseases. Following this pioneering study, considerable efforts have been made to approximately
model the heterogeneous patterns of transmission using extended mean field equations [18,26,148,149].

In addition to such an approximation of heterogeneous transmission, recent progress in epidemic modeling with
explicit contact network structures suggests that variance of the contact frequency plays a key role in determining the
threshold quantity, and in some special cases, the concept of threshold phenomena could be confused [150–153]. In
Section 4, we defined the force of infection as

(83)λ(t) =
∞∫

0

β(τ)i(t, τ ) dτ.

In deterministic models given by simple ODEs (which ignores infection-age), λ(t) is equivalent to βI (t). These are
what classical mean field models suggest.

Let us account for an epidemic on networks, whose node-connectivity distribution (i.e. the distribution of proba-
bilities that nodes have exactly k neighbors) follows some explicit distribution P(k). The force of infection λc, which
yields R0 = 1, in a static contact network is given by

(84)λc = 〈k〉
〈k2〉 .

Here 〈k〉 denotes the average connectivity of the nodes. Assuming that P(k) follows a power law of the form P(k) =
ck−v (where c is constant),

(85)〈k2〉 = c
∑

k

k2−v.

Given that v � 3, λc = 0, and in such a case, R0 even becomes infinite. This implies that the disease spread will
continue for any mean estimate of R0. Such a network structure is referred to as scale free [154], complicating disease
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control efforts in public health [155,156]. The importance of the network structure would also be highlighted for
v > 3.

For sexually transmitted infections, contact frequency is countable (unlike airborne infection or transmission
through droplets), and v is estimated to be around 3 or a little larger [157]. Following such a finding, many non-sexual
directly transmitted diseases are also modeled in the present day assuming the scale-free network [150]. However, it
should be noted that the pattern of contact does not necessarily follow scale-free for all directly transmitted diseases.
Indeed, there is no empirical evidence which suggests that the contact structure of any droplet infections follows the
power law (i.e. we do not know if the above described contact heterogeneity is the case for diseases except for sexually
transmitted diseases). A typical example of confusion is seen in the superspreading events during the 2002/03 SARS
epidemics [158], where we cannot explicitly attribute the phenomena either to contact network or biological factors
(as long as contact and infection event are not directly observable). We still do not know how we should account for
the distribution P(k) for influenza and other viral respiratory diseases (i.e. power law or not) which remains to be
clarified for each disease in future research.

7.2. New theory to replace mass action principle

Methodological developments have been made to account for the network heterogeneity with data [159]. An ap-
proximate approach to address this issue is highlighted particularly in spatio-temporal modeling, an excellent account
of which is reviewed by Matt Keeling [160].

Even though it is difficult to quantify the transmission dynamics with an explicit contact network with time, there
are useful analytical approximations to capture the dynamics of influenza (and other respiratory transmitted viral
diseases) and estimate the transmission potential. For example, the force of infection with a power law approximation
is reasonably given by:

(86)λ(t) = βI (t)1+αS(t)1+Ψ .

In (86), α and Ψ characterize the epidemic dynamics; e.g., initial growth (i.e. if α is less than 0, the modified form
acts to dampen the exponential growth of incidence) and endemic equilibrium (i.e. when Ψ is greater than 0, density-
dependent damping is increased). A model of this type was actually validated with measles data in England and Wales,
comparing the prediction with that of employing the mass action principle [161].

Another approximation might be a pair-wise model [162], which can explicitly account for the correlation between
connected pairs. The model reasonably permits deriving the force of infection λ using the number of various connected
pairs, which implies wide applicability to the epidemiologic data of sexually transmitted infections. Incorporating
spatial heterogeneity in an approximate manner would shed light on further quantifications [163,164], and thus, simple
and reasonably tractable models which permit spatio-temporal modeling of influenza are expected (e.g., [165]).

7.3. Which kind of data do we have to explore?

Summarizing the above discussions, we have presented modeling approaches that can quantify the transmission
potential of pandemic influenza. As we have shown, temporal case distributions have been analyzed in many instances,
and previous efforts have come close to maximize the utility of temporal distributions (i.e. epidemic curve). However,
at the same time, we have also learned that we can extract almost the intrinsic growth rate alone from a single time-
evolution data. Accordingly, we are now faced with a need to clarify heterogeneous patterns of transmission and more
detailed intrinsic dynamics of influenza [166–168]. With regard to the latter, primitive epidemiologic questions (e.g.,
probability of clinical attack given infection) remain to be answered for Spanish, Asian and Hong Kong influenza. Let
us summarize what we need to clarify theoretically about pandemic influenza in list:

1. Acquired immunity.
2. Evolutionary dynamics.
3. Multi-host species transmission.
4. Asymptomatic transmission.
5. Attack rate (i.e. Pr(onset | infection)).
6. Case fatality (i.e. Pr(death | onset)).



G. Chowell, H. Nishiura / Physics of Life Reviews 5 (2008) 50–77 73
7. Generation time and serial interval.
8. Latent, incubation, infectious and symptomatic periods with further data.
9. Transmission potential with time, space and antigenic types.

10. Transmission potential with time and age.

These issues highlight the importance to quantify the transmission of influenza using not only cases (i.e. those fol-
lowed onset of symptoms) but also some hint suggesting the infection event. For example, the majority of the above
listed issues could be reasonably addressed by implementing serological surveys (e.g., antibody titers of individu-
als and, preferably, time-delay distribution from infection to seroconversion). Since the proportion of those who do
not experience symptomatic infection (i.e. probability of asymptomatic infection) is not small for influenza [64,146],
case records can tell us little to address the above mentioned issues, and thus, historical data of Spanish influenza
may hardly offer further information. By maximizing the utility of observed data, we have to clarify the dynamics of
influenza further, and identify key information which characterize the specific mechanisms of spread.
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