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Potential therapeutic roles of retinoids for prevention 
of neuroinflammation and neurodegeneration in 
Alzheimer’s disease

Introduction
Retinoids are natural and synthetic derivatives of vitamin 
A. These compounds are remarkable in brain health and 
disease as they are known to play significant roles in the de-
velopment and normal functions of the human brain (Das 
et al., 2014). So, there is a great interest in understanding 
the chemistry and biochemistry of the known and novel 
retinoids and their potential therapeutic applications to the 
treatment of brain diseases, especially Alzheimer’s disease 
(AD). The vitamin A metabolite retinoic acid (RA) performs 
most of the physiological functions because RA has the 
ability of binding to the receptors of the nuclear receptor su-
perfamily for regulation of expression of many genes in the 
cells (Lerner et al., 2012). Retinoids are highly regarded for 
their capability of modulating the expression of many genes 
that code for enzymes, neurotransmitter transporters, and 
receptors, transcription factors, cell surface receptors, and 
neuropeptide hormones (Goodman, 2006). Retinoids carry 
out transcription of their target genes through interaction 
with retinoid receptors such as retinoic acid receptors (RARα, 
β, and γ) and retinoid X receptors (RXRα, β, and γ), which 
themselves are transcriptional regulators and are known to 

be highly expressed in amygdala, prefrontal cortex, and hip-
pocampal areas in the brain (Goodman and Pardee, 2003). 
Binding of nuclear receptors to a specific DNA site either 
repress or activate expression of target genes (Khorasaniza-
deh and Rastinejad, 2001). The functional responses of RA 
and their receptors are modulated by many co-activators and 
co-repressors (Jenster, 1998; Xu et al., 1999). Co-activators 
and co-repressors modify chromatin and/or interact with 
the typical transcriptional machinery for modulating tran-
scription of the target genes (Lee et al., 2001). 

Retinoid deficiency or mutation in RARβ and RXRγ genes 
is known to be associated with inhibition spatial learning 
and memory and also development of depression in animals. 
Studies showed that suppression of expression of RARα in 
rats, which were deprived of vitamin A, caused deposition 
of amyloid-beta (Aβ) peptide in the cerebral vessels (Shudo 
et al., 2009). Retinoids have important roles in prevention 
of neuroinflammatory responses for providing neuroprotec-
tion (Lee et al., 2009). Retinoids are known to down regulate 
expression of cytokines and inflammatory molecules in 
microglia (Goncalves et al., 2013). The agonists of retinoid 
receptors increase expression of choline acetyltransferase 
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gene and vesicular acetylcholine transporter gene to enhance 
cholinergic neurotransmission (Mufson et al., 2008).

It is now widely known that elderly adults over age 65 
are usually the AD patients. Aging is a major risk factor in 
developing AD. Currently, AD is the most common neuro-
degenerative disease that affect more than 15 million people 
worldwide (Andreeva et al., 2017). The demography of AD 
is rapidly expanding in the global populations. Clinical ob-
servations firmly show the association of AD with dementia 
and loss of memory. Neuropathologically, AD is character-
ized by extra-neuronal accumulation of amyloid plaques and 
intra-neuronal neurofibrillary tangles in temporal lobe of 
the brain. The amyloid plaques are composed of aggregated 
Aβ peptide while neurofibrillary tangles are hyperphosphor-
ylated tau protein (Querfurth and LaFerla, 2010). Accumu-
lation of these protein aggregates triggers neuroinflamma-
tion, oxidative stress, and mitochondrial damage leading to 
loss of not only neurons but also white matter in the brain. 
Emerging evidence suggests that AD pathology may result 
from a complex interplay between abnormal Aβ and tau 
proteins (Figure 1). According to the ‘amyloid hypothesis’ 
of AD, accumulation of Aβ aggregates in the extracellular 
space of neurons in the brain is the primary cause for driv-
ing the pathogenesis for neurodegeneration and cognitive 
decline in AD patients (Hardy and Allsop, 1991; Musiek 
and Holtzman, 2015). The strength of amyloid hypothesis 
lies in its consistency with the genetic defects in AD, but it 
has deficiencies in explaining some important issues in AD. 
All attempts to develop drugs for targeting Aβ and treating 
AD have ended in failure (Karran and De Strooper, 2016). 
On the other hand, the ‘tau hypothesis’ of AD states that 
hyper phosphorylation of tau protein is the main factor for 
formation of neurofibrillary tangles and progression of AD 
(Kametani and Hasegawa, 2018). The major weakness of the 
amyloid hypothesis is its inability in conclusively identifying 
the biochemical pathways that link amyloid plaque to tangle 
formation for neurodegeneration in AD (Götz et al., 2004; 
Eriksen and Janus, 2007). There are many other hypotheses 
about pathogenesis in AD and many drugs based on these 
hypotheses have been developed for treatment of AD (Du 
et al., 2018). Because AD is a multidimensional disease, it is 
now becoming clear that development of a drug with multi-
ple therapeutic actions or combination of drugs with diverse 
activities for inhibition of pathogenesis will be required for 
successful treatment of AD.

In this review, we describe multiple therapeutic roles of 
natural and synthetic retinoids for prevention of neuroin-
flammation and neurodegeneration in AD. Promotion of 
novel and innovative research ideas on retinoids, hopefully, 
will enable the next generation of investigators in designing 
and synthesizing new multi-active retinoids to use as power-
ful therapeutic agents for prevention of pathogenesis in AD 
patients in the future.

Chemistry and Biochemistry of Natural and 
Synthetic Retinoids
It has long been known that retinoids play important roles 

in development and function of the embryonic and early 
postnatal brain (Jiang et al., 2012; Cunningham and Duester, 
2015; Bonney et al., 2018). However, increasing body of ev-
idence indicates that retinoid signaling also plays important 
roles in the function of the adult brain (Lane and Bailey, 
2005; Kour and Rath, 2016; Mishra et al., 2018). Vitamin A 
(retinol) is the most multifunctional natural retinoid that 
regulates many biological processes such as embryonic de-
velopment, cell differentiation, cell growth, and apoptosis as 
well as normal function of the brain (Khillan, 2014). Reti-
nol is generally produced from pro-vitamin A carotenoids, 
which are supplied by many colorful fruits and vegetables 
or animal sources such as liver, egg yolks, or dairy products. 
Carotenoids are converted into vitamin A (retinol) in the 
small intestine of the animal body. Many photosynthetic 
plants, bacteria, and some fungi have the ability to bio-
synthesize pro-vitamin A carotenoids. But animals must 
consume carotenoids through their dietary sources for accu-
mulation of vitamin A in the body (Weber and Grune, 2012; 
Green and Fascetti, 2016). 

Retinoids are a group of compounds related to vitamin A, 
including its natural and synthetic derivatives, which have 
four isoprenoid units joined in a head-to-tail fashion. A 
retinoid has basic chemical structure that defines it a reti-
noid (Figure 2). Retinoids are unstable due to the presence 
of conjugated double bonds that easily undergo oxidation 
and/or isomerization in the presence of oxidants, light or 
excessive heat. Retinoids that contain alcoholic and carbox-
ylic groups are soluble in methanol and ethanol, whereas 
the esterified long-chain fatty acid is only slightly soluble 
in alcohol but highly soluble in hexane. Epidemiological 
studies lend support to the hypothesis that higher dietary 
intake of pro-vitamin A carotenoids is associated with lower 
risk of many brain diseases, including AD (Li et al., 2012; 
Fiedor and Burda, 2014; Lakey-Beitia et al., 2017; Yang et 
al., 2017). Vitamin A also effectively increases visual tuning 
and prevents age-related macular degeneration (Cheung and 
Eaton, 2013; Harrison, 2019). The chemical structures of ca-
rotenoid precursors and natural retinoids contain a relatively 
long chain conjugated polyene (Figure 3). Carotenoids and 
retinoids are composed of conjugated polyene systems that 
absorb light in the visible and ultraviolet spectrums around 
450 nm and within the rage of 325–380 nm, respectively 
(Furr, 2004). Colorimetric methods are commonly used for 
the estimation of carotenoids and retinoids.

For chemical synthesis of retinoids, many studies used the 
Wittig reaction to synthesize retinyl acetate and the ethyl 
ester of RA (Maercker, 1965). However, the Wittig reaction 
predominately synthesizes the cis isomer whereas trans 
olefin linkages are most frequently observed in the natural 
retinoids. Over the last few decades many modifications and 
alternatives to the Wittig olefination have been invented. In 
the Horner Wadsworth Emmons modification, replacement 
of the phosphonium salts with phosphonate esters produced 
trans or E-olefin. Two groups of investigators (Julia and 
Arnould, 1973; Koch and Gartner, 1997) employed similar 
olefination techniques in retinoid syntheses. Recently, re-
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searchers have shown that fully functional retinoid receptor 
agonists can be developed without the classic extended 
polyene chain. Toxicity profile and off-target binding of 
all-trans-retinoic acid (ATRA) and cis-RA (which are also 
metabolized by many cytoplasmic enzymes such as Cyp26, 
isomerases, and others) are problematic and thus their full 
potentials as novel pharmacological agents have not been 
well exploited. To overcome these problems, the synthetic 
chemistry community has developed many synthetic reti-
noids (Altucci et al., 2007; le Maire et al., 2012) using SAR 
(Structure Activity Relationship) analysis and computational 
modeling. 

Many excellent reviews and research articles have been 
published highlighting several natural and synthetic ret-
inoids in the drug discovery process and the signaling 
pathways (Kagechika and Shudo, 2005; Das et al., 2014; 
Haffez et al., 2018; Chisholm et al., 2019). Currently, there 
are several major synthetic retinoids that are being used as 
clinical agents (Figure 4). Clinically, isotretinoin (13-cis-
RA) is the most effective drug for treatment of acne vulgaris 
although during the isotretinoin therapy some changes oc-
cur in hematological parameters that are within the normal 
range (Gencoglan et al., 2018). Isotretinoin therapy, which 
was well tolerated, improved sperm production in some 
men with infertility (Amory et al., 2017). Fenretinide or 
N-(4-hydroxyphenyl) retinamide is being developed as an 
anti-cancer drug in the clinics (Cooper et al., 2017). Bexar-
otene monotherapy, which is well-tolerated, is effective in 
cutaneous T-cell lymphomas (Hamada et al., 2017) and also 
it has shown efficacy in patients with peripheral T-cell lym-
phomas (Farhan et al., 2019). Multiple-dose administration 
of R667 (0.2–1 mg) for up to 16 days was well tolerated in 
patients with emphysema (Chiu et al., 2007). Tazarotene is a 
very effective treatment for plaque psoriasis, with significant 
decreases in plaque elevation and scaling following 12 weeks 
of therapy (Tanghetti et al., 2018). Its efficacy and tolera-
bility can be further increased by combination with topical 
corticosteroids. A new topical formulation of combination 
of tazarotene and halobetasol seems to provide an optimal 
management strategy for plaque psoriasis (Tanghetti et al., 
2018). Clinical trials for five years have eventually estab-
lished that adapalene in its various pharmaceutical formula-
tions is an important addition to the current treatments for 
acne vulgaris (Millikan, 2001). Our research group has been 
successful in synthesizing bororetinoids, some of which have 
been used in preclinical studies (Zhong et al., 2011). 

Both natural and synthetic retinoids are being exten-
sively studied for functional neuroprotection in the central 
nervous system (CNS) injuries and diseases (Mey, 2006; 
Chakrabarti et al., 2016). The process of biosynthesis of RA 
starts with either the conversion of retinol to retinal or with 
retinal itself (Figure 5). Retinol, also known as vitamin A, 
is obtained from food sources (Sommer and Vyas, 2012). 
RA must be biosynthesized from retinol by two oxidation 
steps. Retinol is converted into retinal through the action of 
retinol dehydrogenase and the transformation of NAD+ to 
NADH (Lidén and Eriksson, 2006; Hong et al., 2015). From 

retinal, RA is biosynthesized in the next oxidation step. This 
biosynthetic reaction requires enzymes known as retinalde-
hyde dehydrogenases (RALHDs or ALDHs), with common 
enzyme types being ALDH1A1–3 and ALDH8 (Duester, 
2008; Kedishvili, 2016). In the cytoplasm, retinol is bound 
to cellular retinol-binding proteins (CRBPs) while RA is 
bound to cellular RA-binding proteins (CRABPs) (Napoli, 
2017). CRBPs are divided into two classes (CRBP type I and 
II); similarly, CRABPs are also broken down into two classes 
(CRABP type I and type II) and they carry RA to the RARs 
and RXRs that are similar but differ in amino acid sequences 
and ligand bindings. The carrier proteins CRBPs are involved 
in transport and metabolism of retinol while CRABPs are in-
volved in the regulation of many RA signaling pathways and 
making RA available to the nuclear receptors (Zhang et al., 
2012).

extra-Neuronal Increase in Amyloid-Beta 
Oligomers and Accumulation of Amyloid-
Beta Plagues Leading to Pathogenesis in 
Alzheimer’s Disease
A certain quantity of the Aβ is necessary for transmission 
of information to the neurons in the brain. Emerging evi-
dence shows both physiological and pathological functions 
of Aβ on various stages of the synaptic vesicle cycle, from 
post-fusion membrane recovery to trafficking, docking, and 
priming of synaptic vesicles for fusion and release of neu-
rotransmitters (Ovsepian et al., 2018). The mechanisms of 
storage and release of neurotransmitters at axon terminals 
are summarized in the widely-known hypothesis of synaptic 
vesicle cycle (Südhof, 1995), which is also the primary site of 
Aβ production (Müller et al., 2017). Two findings, (i) neuro-
nal activity triggers formation of Aβ and (ii) increase in Aβ 
causes decrease in excitatory synaptic transmission (Kame-
netz et al., 2003), led to the hypothesis that Aβ normally 
serve as a negative feedback signaling pathway and increase 
in synaptic activity increases processing of amyloid precur-
sor protein (APP) to Aβ, which reduces synaptic activity 
(Venkitaramani et al., 2007). A recent report suggests that 
different isoforms, concentrations, and aggregation status of 
Aβ may differently influence synaptic function and dysfunc-
tion (Gulisano et al., 2018). The inhibition of endogenous Aβ 
impairs synaptic plasticity and memory, strongly indicating 
that the peptide is essential for healthy function of the brain. 
However, an increase in oligomeric Aβ has been related to 
synaptic dysfunction, which is the earliest sign of pathogen-
esis in AD.

It is now widely known that the major histopathological 
hallmark of AD is the accumulation of amyloid plaques 
composed of aggregation of Aβ peptide in different areas 
of the brain (parenchyma of the amygdala, hippocampus, 
and neocortex) (Reiss et al., 2018). Proteolysis of APP may 
occur by the selective actions of α-, β- and γ-secretases in 
two distinct pathways (Figure 6). The non-amyloidogenic 
cleavage of APP occurs on the cell surface, while internaliza-
tion of APP and its amyloidogenic processing results in Aβ 
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production, release, and oligomerization. Aβ peptide, which 
may contain 36–43 amino acids, is produced from the APP. 
Aβ peptide is a portion of the transmembrane domain and 
the extracellular domain of the APP, which occurs as several 
isoforms of 695, 751, and 770 amino acids. The non-amyloi-
dogenic (normal) pathway of APP proteolysis uses α-secre-
tase to produce an N-terminal fragment called APPα and a 
membrane-bound C-terminal fragment α. The neuroprotec-
tive APPα may play roles enhancing synaptogenesis, neurite 
outgrowth, and neuronal survival. In the membrane, C-ter-
minal fragment α is cleaved by γ-secretase to yield a soluble 
N-terminal fragment (p3) and a membrane-bound C-ter-
minal fragment called APP intracellular domain (AICD). 
The functions of AICD may include nuclear signaling via 
transcriptional regulation and axonal transport through its 
ability to associate with different proteins. The amyloidogen-
ic (abnormal) pathway of APP proteolysis employs β-secre-
tase to produce a N-terminal fragment called APPβ and a 
membrane-bound C-terminal fragment β. Then, C-terminal 
fragment β is cleaved by γ-secretase to generate a soluble 
N-terminal fragment (Aβ) and the membrane-bound C-ter-
minal fragment (AICD) as before. Notably, Aβ is required 
for neuronal function but its accumulation in the extracel-
lular space causes its aggregation to form Aβ plaques in the 
brain. The deleterious effects of Aβ on neuronal and synaptic 
function eventually cause neurodegeneration in AD. 

The understanding of the processing of APP in two differ-
ent pathways and its metabolites is crucial for development 
of novel therapeutics for AD (O’Brien and Wong, 2011). 
Many recent studies are revealing not only the regulation 
of APP processing but also physiological as well as patho-
logical functions of APP and its metabolites (Zhang et al., 
2011, 2012). The non-amyloidogenic pathway uses α- and 
γ-secretases and produces the peptides to provide help-
ful neurotrophic effects (Allinson et al., 2003; Haass et al., 
2012). In contrast, the amyloidogenic pathway employs β- 
and γ-secretases and produces Aβ peptides (Sinha et al., 
1999; Francis et al., 2002). The Aβ peptides produced are 
prone to accumulation and aggregation. The predominantly 
produced Aβ peptides via the amyloidogenic pathway are 40 
residues in length (Aβ1–40 or Aβ40) and monomers of Aβ40 
are nontoxic. Only a small percentage of Aβ peptides contain 
42 residues in length (Aβ1–42 or Aβ42). Increased plasma 
levels of Aβ42 have been correlated with occurrence of AD 
(Mayeux et al. 1999). Because Aβ42 has extra two amino ac-
ids, it has a greater tendency of misfolding and aggregation 
that may lead to formation of the neurotoxic amyloid depos-
its contributing to pathogenesis of AD (Ahmed et al., 2010). 
Dysregulation in synthesis, processing, and clearance leading 
to accumulation of aggregated Aβ42 peptides was thought to 
be the starting point of AD. Although it has previously been 
suggested that an accumulation of Aβ42 plaques promote 
formation of neurofibrillary tangles and ultimately neuronal 
death, it is now evident that soluble rather than accumulated 
Aβ is related to dementia (Nimmrich and Ebert, 2009). Solu-
ble Aβ oligomers specifically interfere with synaptic function 
and are associated with neuropathology in AD (Lesné et 

al., 2013). It is now known that Aβ oligomers do not induce 
neuronal death, but prolongation of synaptic dysfunction 
ultimately causes degeneration of synapses abolishing their 
ability to encode and retrieve memories in the AD brain. The 
implication of Aβ42 in synaptic dysfunction may provide a 
new target for therapeutic intervention in AD (Marsh and 
Alifragis, 2018).

Intra-Neuronal Formation of Neurofibrillary 
Tangles for Pathogenesis in Alzheimer’s 
Disease
Neurofibrillary tangles are aggregates of hyperphosphorylat-
ed tau protein, which is now most widely considered to be 
the primary marker of AD (Kolarova et al., 2012; Sierra-Fon-
seca and Gosselink, 2018). However, it has been demonstrat-
ed that significant loss of neurons occurs before the forma-
tion of neurofibrillary tangles and that neurofibrillary tangles 
account for only a small amount (around 8%) of loss of neu-
rons (Kril et al., 2002). Only an increase in neurofibrillary 
tangle load is associated with severity and chronic aggression 
in AD patients (Lai et al., 2010). In addition to supporting 
neuronal architecture, microtubules are known to track and 
efficiently transport nutrients, molecules, and information in 
the neurons (Dent and Baas, 2014). The fiber-like protein tau 
is responsible for maintaining the stability of microtubules 
(Feinstein and Wilson, 2005). The threads of tau proteins be-
come tangled and twisted due to their hyperphosphorylation 
by kinases such as glycogen synthase kinase 3 and p70 S6 
kinase, and thus microtubules become unstable and disinte-
grate, causing collapse of the entire neuron transport system 
in AD patients (Brion, 1998). Moreover, recent studies sug-
gest that other post-translation modifications (glycosylation, 
glycation, prolyl-isomerization, cleavage or truncation, 
nitration, polyamination, ubiquitination, sumoylation, and 
oxidation) of tau protein (Martin et al., 2011) and also tau 
self-aggregation (Farías et al., 2011) significantly contribute 
to pathogenesis and neurodegeneration in AD.

Neuroinflammation and Neurodegeneration 
in Alzheimer’s Disease
Two major neuropathological features of AD are the extra-
cellular accumulation of Aβ peptide into amyloid plaques 
and the intraneuronal formation neurofibrillary tangles of 
hyperphosphorylated tau protein, both of which are known 
to contribute to neuroinflammation and neurodegeneration 
(Hung et al., 2016; Cai et al., 2018). Neuroinflammatory 
responses are highly responsible for pathogenesis in AD 
(Shadfar et al., 2015; Sawikr et al., 2017; Ahmad et al., 2019). 
Chronic neuroinflammation and impairment of lipid ho-
meostasis can lead to pathogenesis and neurodegeneration 
in AD (Hampel, 2012). It has been reported that an anti-ce-
ramide antibody increases amyloid plaque formation and 
serum exosomes in a mouse model of AD (Dinkins et al., 
2015). In the brains of AD patients, activated microglia and 
astrocytes reside very near to the plaques suggesting that 
activation of glial cells may be related to the formation of 
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Figure 1 Schematic representation of a 
complex interplay between abnormal 
amyloid-beta (Aβ) and tau proteins 
leading to neuroinflammation and 
neurodegeneration in Alzheimer’s disease 
(AD). 
Aβ aggregates into plaques outside the neu-
rons, while abnormal tau proteins accumu-
late inside the neurons in specific regions 
of the brain involved in spatial learning and 
memory. After accumulation of Aβ plaques 
occurs significantly, the abnormal tau pro-
teins spread rapidly throughout the brain 
leading to significant neuroinflammation, 
neurodegeneration, and cognitive deficits in 
AD.

Figure 2 Basic chemical structure of retinoic acid (RA, a natural retinoid) with its different parts. 
The chemical structure of a retinoid has three parts: (a) a trimethylated cyclohexene ring that acts as a bulky hydrophobic group, (b) a conjugat-
ed tetraene side chain that serves as a linker unit, and (c) a typical carboxylic acid part that is hydrophilic with a polar carbon-oxygen functional 
group. The word ‘retinoid’ includes only a few endogenous (naturally occurring) and a large group of synthetic derivatives of vitamin A.

Figure 3 Chemical structures 
of natural carotenoids and 
retinoids.  
Carotenoids are precursors of 
vitamin A. Carotenoid precur-
sors are found in plant-based 
foods such as dark and yellow 
vegetables, carrots, and fruits. 
Natural retinoids are chem-
ical derivatives of vitamin A 
(retinol). Natural retinoids are 
found in animal-based foods 
such as liver, kidney, eggs, and 
dairy products.
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Figure 4 Chemical structures of some major synthetic retinoids used as 
clinical agents.  
Synthetic retinoids are produced from all-trans-retinoic acid (ATRA) with 
a goal of achieving high therapeutic effects and eliminating side effects 
in the clinics. The first orally administered synthetic retinoid to become 
approved for clinical use in the United States was 13-cis-retinoic acid 
(isotretinoin). Black showed the hydrophobic group, blue showed the linker 
unit, and red showed the polar carbon-oxygen functional group.

Figure 6 Amyloid precursor protein (APP) 
proteolysis in two different pathways and 
role of amyloid-beta (Aβ) plaques in 
neurodegeneration in the AD brain. 
The non-amyloidogenic (normal) pathway 
of APP proteolysis produces an N-termi-
nal fragment (called APPα) and a mem-
brane-bound C-terminal fragment α (CTFα). 
In the membrane, CTFα is then cleaved to 
yield a soluble N-terminal fragment (p3) and 
a membrane-bound C-terminal fragment 
called APP intracellular domain (AICD). The 
amyloidogenic (abnormal) pathway of APP 
proteolysis produces N-terminal fragment 
(called APPβ) and membrane-bound C-termi-
nal fragment β (CTFβ). Then, CTFβ is cleaved 
to generate a soluble N-terminal fragment (Aβ) 
and membrane-bound C-terminal fragment 
(AICD) as before. Accumulation of Aβ in the 
extracellular space causes its aggregation to 
form Aβ plaques in the brain. 

Figure 5 vitamin A (retinol) as the starting compound for biosynthesis of retinoic acid (RA) in the cells.  
In the cytoplasm, retinol remains bound to cellular retinol-binding proteins (CRBPs) for its movement and role in metabolism, but RA remains 
bound to cellular RA-binding proteins (CRABPs) for its movement for regulating many signaling pathways. Also, RA with the help of CRABPs can 
move to the nuclear receptors (RARs and RXRs) for expression of specific genes. RARs: Retinoic acid receptors; RXRs: retinoid X receptors.
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Aβ plaques (Wyss-Coray and Mucke, 2002). Microglial cells 
exhibit a main role for recognition and elimination of Aβ42 
oligomers by increasing their phagocytic activity (Zotova 
et al., 2011; Sha et al., 2014). However, a more recent study 
suggests that chronic infusion of Aβ42 oligomers induces 
sustained neuroinflammation and activates microglia in rat 
hippocampus leading to spatial memory decline, as seen in 
AD (Fekete et al., 2018).

It has previously been demonstrated that chronic ac-
tivation of microglia releases various chemokines and 
cytokines such as interleukin (IL)-1, IL-6, and tumor ne-
crosis factor-alpha (Akiyama et al., 2000) and activates the 
complement system for catastrophic effects in inducing 
neuroinflammation and progression of AD (Holmes et al., 
2009). Cholesterol has a role in pathogenesis in AD because 
high levels of serum cholesterol can significantly promote 
APP processing for Aβ metabolism leading to accumulation 
of Aβ plaques (Ledesma and Dotti, 2012). Alterations in 
expression of the genes, which are responsible for choles-
terol homeostasis, are known to be important risk factors in 
pathogenesis of AD (Rogaeva et al., 2007). The interconnec-
tions between Aβ plaque and innate immune response are 
widely characterized and recent studies suggest the existence 
of interplays between tau pathology and the innate/adaptive 
immune responses (Laurent et al., 2018). Improper microg-
lial function, due to either aberrant activation or decrease 
in phagocytic functionality, can occur during aging and in 
course of development of AD leading to neuroinflammation 
that ultimately contributes to neurodegeneration (Labzin et 
al., 2018). Early disease-provoking neuroinflammation could 
start decades before the presentation of severe cognitive im-
pairments or dementia in the AD patients (Eikelenboom et 
al., 2010; Cuello, 2017). It is thought that early neuroinflam-
mation and multiple dysfunctional pathways in the CNS can 
be promising therapeutic targets as we continue to search for 
a definite diagnosis of AD preclinical stages (Cuello, 2017; 
Elfakhri et al., 2019). 

Currently Available Prescription Medications 
for Treatment of Alzheimer’s Disease
There is no cure yet for AD. However, some prescription 
medications are currently available for AD patients for 
improvement of their cognitive and behavioral symptoms 
(Ghezzi et al., 2013; Kumar et al., 2015). Acetylcholinesterase 
inhibitors and glutamate receptor antagonists are approved 
by the US Food and Drug Administration (FDA) to treat 
AD and recently there have been some other advances in the 
pharmacotherapy for AD (Khoury et al., 2017). Depending 
on the clinical stages (early, moderate, and severe) of AD, 
four commonly prescribed medications are used (Figure 7). 
Donepezil (Aricept®) is approved by the FDA for all stages of 
AD (Lee et al., 2015; Kim et al., 2017). Rivastigmine (Exelon®) 
(Birks and Grimley Evans, 2015) and galantamine (Raza-
dyne®) (Lilienfeld, 2002) are approved by the FDA for mild 
to moderate AD. Aricept®, Exelon®, and Razadyne® are ace-
tylcholinesterase inhibitors that improve cognitive functions 

(learning and memory) (Rodda et al., 2009). But these med-
ications show side effects such as nausea, vomiting, appetite 
loss, and increased rate of bowel movements (Kobayashi et 
al., 2016). Also, acetylcholinesterase inhibitors become less 
effective over time. Memantine (Namenda®) is the primary 
drug approved by the FDA for treatment of moderate to 
severe stages of AD (Kishi et al., 2018). Namenda®, which is 
an orally active glutamate receptor antagonist, can improve 
memory, attention, reason, language, and the ability to per-
form simple tasks (Matsunaga et al., 2015). But it causes side 
effects such as dizziness, headache, confusion, and constipa-
tion in AD patients (Perras, 2005). We described (Table 1) 
for the readers to quickly scan and extract information about 
the mostly used prescription medications for treatment of 
different stages of AD, their mechanisms of action, beneficial 
effects, and also adverse effects.

The FDA-approved treatments offer neither promise of 
cure nor turnaround of the disease. These treatments, how-
ever, may alleviate some of the AD symptoms temporarily 
and thus help improve the health-related quality of life and 
somewhat delay placement of individual AD patients into 
the institutional care (Atri, 2011). All the current AD thera-
pies, including acetylcholinesterase inhibitors and glutamate 
receptor antagonists, have limited scope and provide limited 
benefits in AD, which is a multifaced disease. No current 
therapy is yet capable of targeting the Aβ aggregation, which 
is crucial in pathogenesis of AD. New avenues need to be 
explored urgently to design and discover powerful drugs 
that possess the capability of targeting multiple pathological 
pathways to prevent pathogenesis of AD. Present treatment 

Figure 7 The drugs approved by the US Food and Drug 
Administration for treatment of Alzheimer’s disease at different 
clinical stages.
Aricept®, Exelon®, and Razadyne® are acetylcholinesterase inhibitors 
that block breakdown of the neurotransmitter acetylcholine by the en-
zyme acetylcholinesterase and thus they increase level and action of the 
neurotransmitter in the brain of Alzheimer’s disease patients. Namen-
da® is a glutamate receptor antagonist that blocks the damaging effects 
of excessive amount of glutamate, also a neurotransmitter, produced in 
the brain of Alzheimer’s disease patients.
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algorithms and potential future treatments for AD have been 
extensively described in a very recent review article (Gross-
berg et al., 2019).

Retinoids for Prevention of 
Neuroinflammation in Alzheimer’s Disease
Neuroinflammation is an important player in the pathogen-
esis of AD (Regen et al., 2017). Inflammation causes synaptic 
dysfunction and neurodegeneration in the brain. Production 
of excessive neuroinflammatory mediators induces produc-
tion and aggregation of Aβ peptide and hyperphosphory-
lated tau protein. Aggregates of Aβ peptide and hyperphos-
phorylated tau protein generate chemokines and cytokines. 
Intense neuroinflammatory responses are regularly detected 
in AD patients as well as in animal models of this disease 
(Johnston et al., 2011). Macrophages and microglia act as 
scavengers to remove Aβ aggregates via phagocytosis in the 
brain (Weitz and Town, 2012). But the presence of neuroin-
flammatory cytokines is known to block this phagocytosis 
(Weitz and Town, 2012). Optimal microglial function is nec-
essary for scavenging tasks, but chronic activation of these 
cells in the brain also causes proinflammatory responses, ox-
idative stress, degradation of neuroprotective retinoids, and 
down regulation of RA signaling, promoting degeneration of 
surrounding healthy neurons (Regen et al., 2017). 

During AD pathogenesis, Aβ-stimulated signaling path-
ways induce synthesis and release of proinflammatory cyto-
kines (e.g., IL-1β, IL-6, tumor necrosis factor-alpha), chemo-
kines (e.g., C-C motif chemokine ligand 2), and acute phase 
proteins as well as reactive nitrogen species and reactive 
oxygen species and can further promote plaque formation 
(Fiala, 2010). Astrogliosis, microgliosis, and chronic neu-
roinflammation are highly notable hallmarks in AD patients 
(Weisman et al., 2006). Aβ triggers production of proinflam-
matory cytokines and chemokines by the astrocytes and mi-

croglia but retinoids can suppress production of these proin-
flammatory mediators by interaction with RARs that are 
expressed in astrocytes and microglia (Shudo et al., 2009). It 
has been reported that retinoids cause activation of RAR and 
RXR to modulate functions of astrocytes and the microglia 
to reduce the production of proinflammatory cytokines and 
chemokines (Sodhi and Singh, 2014).

Prevention of neuroinflammatory responses is one of 
the most important goals in the treatment of AD. Roles of 
retinoids for prevention of neuroinflammation have been 
reported in neurodegenerative processes by earlier studies 
(Kuenzli et al., 2004). Since retinoids significantly inhibit 
generation of IL-6 (Zitnik et al., 1994; Kagechika et al., 1997), 
the strategy for down regulation of IL-6 by retinoids may be 
a useful therapy against AD. Retinoids have been observed to 
suppress lipopolysaccharide-induced or Aβ-induced tumor 
necrosis factor-alpha production and to inhibit expression 
of inducible nitric oxide synthase in activated microglia by 
inhibiting nuclear translocation of the nuclear factor-kappa 
B (Dheen et al., 2005; Kaur et al., 2006). More recent studies 
also show that ATRA inhibits lipopolysaccharide-induced 
neuroinflammation, amyloidogenesis, and memory deficits 
in old rats (Behairi et al., 2016) and promotes proliferation 
of neural stem cells along with suppression of activation of 
microglia leading to adult neurogenesis in the hippocampus 
in a mouse model of AD (Takamura et al., 2017). 

Neuroinflammation inhibitory roles of an RAR agonist 
Am80 (Tamibarotene) was investigated in lipopolysaccha-
ride-induced neuroinflammation model in vivo and the 
results demonstrated that Am80 could promote the produc-
tion of brain-derived neurotrophic factor providing neuro-
protection in pathological conditions (Katsuki et al., 2009). 
Am580 caused suppression of inflammatory cell death in 
cultured cortical neurons following exposure to Aβ (Jarvis et 
al., 2010). Retinoids play significant roles in inhibiting neu-

Table 1 Currently available prescription drugs for treatment of different stages of Alzheimer’s disease

Drug
Prescribed for Alzheimer’s 
disease stage(s) Mechanisms of action Beneficial effects Side effects

Donepezil 
(Aricept®)

All stages It is a cholinesterase inhibitor that 
inhibits breakdown of acetylcholine in 
the brain.

As the drug maintains 
acetylcholine levels, it improves 
brain functioning, memory, and 
thinking and may delay or slow 
worsening of symptoms.

It causes nausea, vomiting, 
diarrhea, muscle cramps, 
fatigue, weight loss, and 
appetite loss. 

Rivastigmine 
(Exelon®)

Mild to moderate It is a cholinesterase inhibitor that 
prevents breakdown of acetylcholine 
and butyrylcholine in the brain.

As the drug maintains 
acetylcholine levels, it improves 
brain functioning, memory, and 
thinking and may delay or slow 
worsening of symptoms.

It causes nausea, vomiting, 
diarrhea, weight loss, 
appetite loss, indigestion, 
and muscle weakness.

Galantamine 
(Razadyne®)

Mild to moderate It is a cholinesterase inhibitor that 
inhibits breakdown of acetylcholine but 
stimulates nicotinic receptors to release 
more acetylcholine in the brain.

As this drug stimulates release 
of acetylcholine, it strengthens 
the nerve cells to respond to 
certain messages.

It causes nausea, vomiting, 
diarrhea, decreased 
appetite, dizziness, and 
headache.

Memantine 
(Namenda®)

Moderate to severe It is a N-methyl D-aspartate antagonist 
that prevents toxic effects of excess 
glutamate.

It shows significant 
improvement in mental 
functioning and ability to 
perform daily activities.

It causes dizziness, 
headache, diarrhea, 
confusion, and 
constipation. 
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roinflammatory responses and promoting phagocytosis of 
Aβ aggregates in various neurodegenerative conditions in-
cluding AD. Currently, intense research activities are under-
way for understanding the molecular mechanisms of action 
of retinoids and carotenoids for prevention of neuroinflam-
mation in AD (Mohammadzadeh et al., 2017). 

Because retinoids and carotenoids are potent anti-inflam-
matory and anti-oxidative agents, they provide neuropro-
tection. They are capable of suppression of AD progression 
through multiple mechanisms such as inhibition of produc-
tion as well as accumulation of Aβ, suppression of oxidative 
stress, and inhibition of secretion of pro-inflammatory medi-
ators so as to improve cognitive functions (Mohammadzadeh 
et al., 2017). All these recent studies strongly suggest that ret-
inoids and carotenoids work through multiple pathways to 
provide potent neuroprotective effects in AD. A very recent 
report suggested that ATRA attenuated neuroinflammation 
by modulation of expression of Sirtuin 1, a class III histone 
deacetylase and a member of the Sirtuin family of proteins, 
and nuclear factor-kappa B in the rat brain (Priyanka et al., 
2018).

Retinoids for Prevention of 
Neurodegeneration in Alzheimer’s Disease
Dietary supplementation of carotenoids has been shown to 
play a crucial role in preventing several neurodegenerative 
diseases including AD (Obulesu et al., 2011). Retinoids are 
involved in neuronal patterning, differentiation, axonal 
outgrowth, and axonal regeneration (Maden, 2007; Put-
tagunta and Di Giovanni, 2012). Retinoid deprivation leads 
to impairment of normal brain development and function, 
resulting in the appearance of symptoms of different neu-
rodegenerative diseases including AD (Etchamendy et al., 
2003; Sánchez-Hernández et al., 2016; Zeng et al., 2017). 
Investigations indicate that retinoids can induce genera-
tion of specific neuronal cell types and further regenerate 
axons after damage (Maden, 2007). In addition, retinoids 
are involved in the maintenance of the differentiated state 
of adult neurons and neural stem cells as well as adequate 
levels of retinoid signaling for synaptic plasticity, learning, 
and memory in the adult brain (Lane and Bailey, 2005; Tafti 
and Ghyselinck, 2007). Thus, retinoids appear to be essential 
for the normal maintenance of the brain function and for 
the treatment of different neurodegenerative diseases of the 
brain, including AD (Dräger, 2006; Fukasawa et al., 2012; 
Niewiadomska-Cimicka et al., 2017). 

Vitamin A and other retinoids can directly inhibit forma-
tion of Aβ plaques in vivo, indicating potential therapeutic 
roles of retinoids for neuroprotection and thus prevention 
of pathogenesis in AD (Lerner et al., 2012). It has been pro-
posed that RA can significantly potentiate neurotransmitter 
functions of acetylcholine in cholinergic neurons in the brain 
(Szutowicz et al., 2015). Degeneration of cholinergic neurons 
contributes to deficits in cognitive and memory functions 
(Schliebs et al. 2011). The cholinotrophic properties of RA 
and its derivatives may justify their use in the treatment 
of AD (Sodhi and Singh, 2013; Szutowicz et al., 2015). 

An effective treatment of AD in a mouse model required 
co-activation of RARα and RARβ (with the agonist Am80 
or Tamibarotene) and RXRs (with the pan agonist HX630) 
(Kawahara et al., 2014). This study reported that co-admin-
istration of Am80 (0.5 mg/kg) and HX630 (5 mg/kg) for 
17 days significantly improved memory deficits in AβPP23 
mice, but administration of either agent alone showed no 
therapeutic effect. However, these investigators did not re-
port any potential side effects of combination treatment with 
RAR and RXR agonists. 

Bexarotene, which is a RXR agonist and also known as 
rexinoid, is repurposed in a recent study for the treatment 
of AD in mouse models (Mariani et al., 2017). Bexarotene 
was dispersed in water and administered in AD mice by 
oral gavage at the dose of 100 mg/kg daily and treatment 
began at either 3.5 or 7.5 months of age and continued for 
15 days. Bexarotene treatment improved memory, olfacto-
ry cross habituation, and neuron survival, while reduced 
plaque burden, astrogliosis, and expression of inflammatory 
genes. Collectively, bexarotene treatment decreaed neuron 
loss and increased markers of synaptic integrity leading to 
improved cognition in the mice of aggressive AD. But this 
study did not report any side effects of bexarotene treatment. 
Bexarotene is usually used as a selective rexinoid for cancer 
treatment as mentioned above but it is now emerging as a 
viable candidate for clinical trials in AD (Koster et al., 2017). 
Treatment of cancer patients with bexarotene at a dose up to 
300 mg/m2 per day raised triglycerides up to 2.5 times and 
more than half of the patients experience hypothyroidism 
(Marshall et al., 2015). Increases in triglyceride and cho-
lesterol levels reverted to normal levels following cessation 
of therapy, and the triglyceride and cholesterol levels could 
be clinically manageable with antilipidemic therapy during 
treatment with bexarotene. Overall, the mechanism of action 
of bexarotene and similar rexinoids still remains controver-
sial because they demonstrate distinct adverse side effects in 
humans that may show more detrimental effects in elderly 
AD patients if taken over prolonged periods (Koster et al., 
2017).

Conclusion
Application of natural and synthetic retinoids and their 
receptor agonists are under investigation to regulate the 
on-going processes of stem cell turnover, cell plasticity, and 
tissue regeneration. Impaired retinoid signaling promotes 
AD pathology. Because retinoids are small molecules, they 
can readily enter the tissues and therefore constitute prom-
ising therapeutic candidates. Their application at lower dose 
or in combination with other neuroprotective drugs could 
minimize unwanted side toxicity in non-target tissues. Ret-
inoids thus represent a novel therapeutic strategy for AD 
treatment as they can block multiple pathological conditions 
of this disease, including plaque formation, neuroinflam-
matory responses, and neurodegeneration in the brain. Al-
though many therapeutic applications of retinoids have been 
well studied, it will be highly critical to synthesize receptor 
subtype and isotype specific retinoids (to reduce toxicity, 
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off-target binding, and increase specificity). To address these 
issues, our research group is designing and synthesizing new 
bororetinoids as promising pharmacological agents for the 
treatment of AD and other neurodegenerative diseases.
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