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Natural Language Processing (NLP) is a discipline at the intersection between
Computer Science (CS), Artificial Intelligence (AI), and Linguistics that
leverages unstructured human-interpretable (natural) language text. In recent
years, it gained momentum also in health-related applications and research.
Although preliminary, studies concerning Low Back Pain (LBP) and other
related spine disorders with relevant applications of NLP methodologies have
been reported in the literature over the last few years. It motivated us to
systematically review the literature comprised of two major public databases,
PubMed and Scopus. To do so, we first formulated our research question
following the PICO guidelines. Then, we followed a PRISMA-like protocol by
performing a search query including terminologies of both technical (e.g.,
natural language and computational linguistics) and clinical (e.g., lumbar and
spine surgery) domains. We collected 221 non-duplicated studies, 16 of
which were eligible for our analysis. In this work, we present these studies
divided into sub-categories, from both tasks and exploited models’ points of
view. Furthermore, we report a detailed description of techniques used to
extract and process textual features and the several evaluation metrics used
to assess the performance of the NLP models. However, what is clear from
our analysis is that additional studies on larger datasets are needed to better
define the role of NLP in the care of patients with spinal disorders.
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1. Introduction

Low Back Pain (LBP) is a particular condition of “pain and discomfort localized

below the costal margin and above the inferior gluteal folds, with or without leg

pain” as defined in the European Guidelines for Prevention of Low Back Pain [1].

Based on the onset, such condition may be either classified as acute or chronic.

Events of the former category usually occur suddenly, lasting no more than six

weeks, often associated with trauma. We refer to chronic LBP if the pain lasts more
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than twelve weeks, caused by a large pool of diseases like disc

degeneration and herniation, spondyloarthritis and

spondylolisthesis. In many cases, chronic LBP is treated with

spine surgery, involving several risks for the patient,

including persisting pain, incidental dural tears, vascular

injuries, and infections.

The prevalence of such a musculoskeletal condition is

increasing world-wide. A recent study [2] has reported the

number of people experiencing LBP at some point in their

lives increased from 377.5 million in 1990 to 577.0 million in

2017, globally. Even if the prevalence increases with age, a

large amount of people experiences LBP not only in their

earlier adulthood but also during adolescence [3]. In

particular, chronic LBP is often considered the main reason

for disability in a large portion of the population [4]. Even in

cases in which pain does not imply disability, this condition

often causes activity limitation and work absence [5,6],

leading to a high economic burden on workers, industries,

and governments [7]. All these aspects concerning LBP and,

more in general, related spine disorders, pose a particular

attention towards the care of this condition.

In recent years, the most ground-breaking technologies have

been explored in the care of LBP, including Artificial

Intelligence (AI) and Computer Science (CS), which have seen

their application in the care of LBP in several studies [8,9]. A

promising trend in this field involves Natural Language

Processing (NLP), a discipline at the intersection between CS,

AI, and Linguistics. NLP leverages unstructured texts written

in the human-interpretable (natural) language. In recent years,

NLP has already been applied in health-related domains, from

radiology [10] to oncology [11], ranging from health-specific

tasks, such as classifying medical notes from the clinical notes

[12], to more traditional ones, such as opinion mining on

patients’ reviews [13]. Recently, another review has focused on

NLP in chronic diseases [14] in which, differently from our

work, the authors did not focus on any spine disorder.

However, the combination of NLP and healthcare is

progressively gaining momentum, and has also been

investigated in LBP care models. In this study, we have

systematically reviewed the available literature on the

application of NLP to develop innovative tools for diagnosing

and treating LBP. Our aim is to describe the state of the art

of such technology and identify future directions and

potential implementations.
2. Materials and methods

To perform an exhaustive overview of the applications of

NLP in the management of LBP we interrogated both

PubMed and Scopus databases with similar queries. For both

databases, we performed the search on November 6th, 2021.
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2.1. Research question

AI and CS systems have already been shown to be a great

support to physicians in the task of diagnosing and treating

LBP and related pathologies in humans [8,9]. With this work,

we aimed to provide a comprehensive review of the literature

regarding the described applications of NLP-related methods

to the care of patients affected by LBP. Precisely, following the

PICO guidelines, we aimed to answer the following research

question:

• In human subjects, no matter for any demographic

information, affected by LBP and related spine disorders

{Population/Problem}

• may NLP-related methodologies, {Intervention}

• compared with human operators and already existing tools,

{Comparison}

• help healthcare providers in the management of such

conditions? {Outcome}

2.2. Research protocol

To perform an exhausting review of the literature, we

developed the following research protocol. First of all, we

elaborated a search query. Then, we formalized the inclusion/

exclusion criteria. We performed the query on two public

databases, namely PubMed and Scopus. In both databases, we

performed the query on the title and the abstract of the

articles. For the Scopus database, in addition, we also

considered the keywords assigned to the papers. After

conducting the first screening by removing the duplicated

articles, two authors carried a preliminary screening after

reviewing titles and abstracts (and, eventually, the keywords) of

the total amount of papers. After that, the same authors went

deeper by analyzing full-text articles. During the previous steps,

we excluded papers not meeting the inclusion criteria from

further analyses. Whenever a discordance happened, the two

authors discussed it together until reaching a consensus.

Finally, we reported in the present review the works retrieved.

The developed protocol is resumed in Figure 1, reporting the

flow-chart diagram realized according to the PRISMA protocol.
2.3. Search query

The proposed search query was divided into two different

parts, one including terms from the NLP terminology, the

other including terms related to LBP. In each of the two

query sections, the terms have been linked by the logical OR

operation, while the inter-relation between the two parts has

been represented by the logical AND operation, meaning that

the papers resulting from the interrogation had to present at

least one of the terms for both query sections.
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FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.
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The NLP part contained several terms, each belonging to a

particular characteristic of the NLP methodologies. Of course,

terms as natural language, NLP, NLG (an acronym for NL

Generation), and NLU (standing for NL Understanding) were

directly inherent to the scope. Terms like computational linguistics

and text mining were included because directly related to the NLP

field, and often utilized as interchangeable synonyms. For both of

them, there are only slight differences. Sometimes, field

practitioners disagree about those differentiations. Usually,

computational linguistics concerns the development of

computational models to study some linguistic phenomenon, also

concerning other fields such as sociology, psychology, and

neurology. For example, a successful CL approach may be

designing a better linguistic theory of how two languages are

historically related. NLP, instead, is mainly oriented towards solving

engineering problems analyzing or generating natural language

text. Here, the success of the NLP approach is quantified on how

well the developed system resolves the specific task. Text mining,

instead, usually refers to turning unstructured text into structured

data to further exploit it, e.g. through statistical analysis (data

mining). Some practitioners find NLP is a part of text mining.

However, there is still not a consensus about it.
Frontiers in Surgery 03
Instead, terms as tokenization, word embedding, rule based,

regex, regular expression, bert, and transformers refer to the

methods to pre-process, extract features and models used to

elaborate unstructured text, while automated reporting,

summarization, named entity recognition, and topic model

refer to specific tasks that can be performed on the text and

are typical in the medical domain. Furthermore, we included

some other generic terms: text analysis, free text, biomedical

text, medical text, clinical text, biomedical notes, medical notes,

clinical notes; and linguistics.

The medical part, instead, contains all terms related to the

LBP and spine disorders conditions: low back pain, lumbar,

intervertebral disc degeneration, intervertebral disc

displacement, spondylarthritis, spondylolisthesis, disc herniation,

spine surgery, spondylarthrosis, and durotomy.
2.4. Inclusion and exclusion criteria

This systematic review aimed to gather all the studies

concerning the utilization of NLP in the diagnosis,
frontiersin.org
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prevention, and treatment of LBP. Straightforwardly, all the

selected articles had to meet all the following inclusion criteria:

• LBP must have been between the main topics of the articles;

• NLP techniques must have been used in the studies;

• Subjects of the studies: all the articles must have been based

on studies of the human spine pathology;

• Language: all articles must have been written in English.

Conversely, we excluded articles that did not meet the

inclusion criteria for one of the following reasons:

• Low Back Pain or spine diseases were not considered;

• No automatic tool of text analysis were exploited;

• Animal studies.

2.5. Quality of evidence

The methodological quality of included studies was assessed

independently by two reviewers (L.A. and F.R.), and any

disagreement was solved by the intervention of a third

reviewer (G.V.). The risk of bias and applicability of included

studies were evaluated by using customized assessment criteria

based on the Quality Assessment of Diagnostic Accuracy

Studies (QUADAS-2) [15]. This tool is based on 4 domains:

patient selection, index test, reference standard, and flow and

timing. Each domain is evaluated in terms of risk of bias, and

the first 3 domains are also assessed in terms of concerns

regarding applicability. Sixteen studies were rated on a 3-point

scale, reflecting concerns about risk of bias and applicability

as low, unclear or high, as shown in Figure 2 (the details of

the analysis are presented in Supplementary Tables S1 and S2).
3. Results

The searching queries were performed on November 6th,

2021, on two databases, namely PubMed and Scopus,

resulting in 103 and 211 papers, respectively. Nonetheless,

many of these articles were duplicates. So, as a first screening,

we removed the repeated studies, resulting in 221 papers.

Then, we analyzed the remaining articles’ titles and abstracts.

In this phase, we excluded the works not meeting the

inclusion criteria. This operation reduced the number of

eligible articles to 45. Among them, we encountered one

narrative review [16], in which Groot et al. recently focused

on the role the NLP in spine surgery in six studies from the

recent literature. However, since these papers are extensively

reported in this review, we did not further focus on their

work here. So, the final screening was performed by reading

the full text of each paper, leading to retaining 16 of them.

Figure 1 graphically shows the described selection process

through a flow-chart diagram according to the PRISMA

protocol.
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In the following paragraphs, we analyze included studies

particularly focusing on the tasks and models in which NLP

is involved, also reporting the metrics used to evaluate the

linguistic approaches.
3.1. Tasks

We identified three main NLP methodologies, namely

classification, annotation, and prediction. Both first two

approaches concern the identification of a category (class) to

which a document belongs, differing for what the NLP

methods are applied. In the classification approach, the system

associates a label to each testing example (i.e., the patients’

document). A classification system may provide information

about a diagnosis, as a Computer-Aided Diagnosis (CAD)

system, which the physicians may exploit to decide, for

example, whether or not to operate on a patient. Also,

healthcare providers may utilize such a system to improve

quality control, while researchers may use it to retrieve a large

cohort of patients suffering from a particular condition and

then conduct some research analysis.

In the annotation approach, NLP is used to label the

documents, too. However, it is implemented as a part of the

entire system, thought to provide the classification outcome

from another kind of data, such as radiological images. From

this point of view, the NLP system is a way to automatize the

annotation of a large amount of data by identifying specific

phenotypes related to a disease condition. In this way, the

second part of the entire system may be trained and evaluated

on a significant larger amount of data than the cases where

only human annotations are considered. This kind of

approach is used to develop successful predictors of clinical

outcomes from clinical data and better define indications for

surgery. It may improve clinical outcomes, which also leads to

avoid invasive spine care and reduce costs.

The third approach can be referenced as the identification of

some category, too. However, here the scope is to predict some

outcomes by exploiting previously acquired data (free-text

notes, in this case). Healthcare providers may use such a

system to predict some outcomes from the patients and thus

arrange in advance the resources necessary for their care.

Moreover, we further classified included studies based on the

timeframe regarding surgical interventions. Thus, papers may

also fall in the pre-, intra-, and post-operative task category,

whether the task interests something before, during, or after

surgery, respectively, as shown in Figure Figure 3.

3.1.1. Classification
3.1.1.1. Pre-operative tasks
We identified diverse studies in which the authors exploited

pre-operative notes to identify useful diagnostic clues and

findings. In detail, we retrieved:
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FIGURE 2

Summary of the methodological quality of included studies regarding the 4 domains assessing the risk of bias (left) and the 3 domains assessing
applicability concerns (right) of the QUADAS-2 score. The portion of studies with a low risk of bias is highlighted in green, the portion with an
unclear risk of bias is depicted in blue, and the portion with a high risk of bias is represented in orange.

FIGURE 3

Schematic partitioning of the works concerning the application of NLP in LBP and related spinal disorders.
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• 1 paper focusing on the identification of multiple imaging

findings;

• 1 paper focusing on the diagnosis of acute LBP;

• 2 papers focusing on the identification of spinal stenosis;

• 3 papers focusing on the identification of axial

spondyloarthritis (axSpA);

• 1 paper focusing on the identification of type 1 Modic

endplate changes.

Following, we describe the tasks.

Imaging findings identification. To advance the care of

patients suffering from LBP, discovering distinct subgroups

with similar prognoses and intervention recommendations is a
Frontiers in Surgery 05
relevant task. Spine imaging findings alone are often

insufficient to diagnose the underlying causes of LBP. In

addition, they are often not of clinical significance since their

frequent occurrence in asymptomatic individuals [17]. To

understand the relationships between imaging findings and

LBP, an important step is the accurate extraction of the

findings, such as spinal stenosis and disc herniation, from

large patient cohorts. NLP may help identify lumbar spine

imaging findings related to LBP in large sample sizes. Tan

et al. [18] worked on this task.

Acute LBP identification. LBP events can be classified either

as acute or chronic. While the former is usually treated with

anti-inflammatories, with the recommendation of returning to
frontiersin.org
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perform daily activities soon, care of the latter often involves

physical therapy, spinal injections [19] and even spine

surgery. Thus, different conditions lead to different treatment

recommendations, leading to different costs to the healthcare

systems. Miotto et al. [20] faced this task.

Identification of axSpA. AxSpA is a serious spinal

inflammatory disease characterized by the additional

involvement of peripheral joints, entheses, and other systems

(including the eye, the gut etc.) [21]. As patients with axSpA

often present with peculiar imaging features, developing a tool

to facilitate the identification of this subset of patients is a key

step to achieve in improving the care of this condition. To

exploit large datasets, NLP may be used to identify concepts

related to axSpA in text, and thus create a cohort of patients

with (high probability of having) the disease. Zhao et al. [22]

and Walsh et al. [23] dealt with this this task. The last team

also exploited their previous work in their [24] to identify

axSpA patients.

Stenosis identification. Spinal stenosis is a condition of

narrowing of the spaces within the spine, which can compress

the spinal canal (spinal canal stenosis, SCS) and the nerve

roots exiting at each intervertebral level (neural foraminal

stenosis, NFS). Such conditions often develop in the lumbar

spine. Here, NLP was used to classify both SCS and NFS, also

with a severity grading scale [25,26].

Type 1 Modic endplate changes identification. Modic

changes consist of magnetic resonance imaging (MRI) signal

alterations affecting the endplates of the lumbar spine and are

particularly frequent in patients with LBP [27]. For this

reason, Huhdanpaa et al. [28] employed NLP to identify the

Type 1 Modic changes from radiology reports.

3.1.1.2. Intra-operative tasks
We identified diverse studies in which authors exploited

operative notes to find evidence of some surgery

complications. In detail, we retrieved two papers focusing on

incidental durotomy (ID) identification and another one

focusing on vascular injury (VI) identification. Such

complications have potential implications for recovery,

causing the length of stay and costs to increase. Thus, an

automated system for surveillance of these events is relevant

to healthcare providers.

Incidental durotomy (ID) identification. Incidental

durotomy (ID) is a common intra-operative complication

during spine surgery, occurring up to 14% of lumbar spine

surgeries [29]. It is defined as an inadvertent tearing of the

dura during surgery with cerebrospinal fluid (CSF)

extravasation or bulging of the arachnoid [30]. The group of

Karhade and Ehresman faced the problem of automatizing

detection of ID events from operative notes [31,32].

Vascular injury (VI) identification. The terms vascular

injury (VI) refers to the trauma of blood vessels (either an

artery or a vein). It is a common event during spine surgery,
Frontiers in Surgery 06
often resulting in serious bleeding, thrombosis, and additional

complications. Karhade et al. [33] dealt with the problem of

detecting VI events from operative notes.

3.1.1.3. Post-operative tasks
Classification in post-operative tasks serves to identify events

occurring after the surgical intervention, such as venous

thromboembolism (VTE). VTE results from the formation of

a blood clot which may obstruct the blood flow locally (thus

causing edema and pain) or may travel to distant sites causing

local blood flow arrest (such as in pulmonary embolism).

Dantes et al. [34] attempted to identify from post-operative

radiology reports the occurrence of VTE in patients who

underwent various kinds of surgeries, including spine surgery.
3.1.2. Annotation
Among the included papers, two implemented NLP to

annotate radiology images. Lewandrowski et al. [35] classified

findings related to spinal stenosis (both SCS and NFS) from

pre-operative reports, while Galbusera et al. [36] trained the

NLP model to identify several spinal disorders. In both cases,

the authors retrieved the annotations for radiology reports

and then used them to label the related images. However, in

the study by Galbusera et al., it was not possible to identify

the timing with respect to surgery, since they included several

types of disorders, as well as patients undergoing post-

operative radiological examination and follow-up.
3.1.3. Prediction
Prediction tasks focus on predicting post-operative outcomes.

In their first paper, Karhade et al. [37], they attempted to identify

required re-operations due to wound infections arising after

lumbar discectomy, while in a subsequent study [38] they

identified unplanned re-admissions of patients who underwent

posterior lumbar fusion. Both the tasks were intended to refer

to a period within 90 days.
3.2. Data

Data used in the analyzed studies is the free text from

clinical notes. However, the kind of notes exploited by the

authors may vary in dependence on the task the authors

aimed to cover. A large proportion of papers used radiology

reports. This is obvious for studies aiming at identifying

imaging findings [18] and diagnose a specific condition

[22,23,25,26,28,34], or at annotating images [35,36].

Other examples include operative notes, obviously used for the

intra-operative tasks [31–34], and post-operative ones too [37,38].

Furthermore, the article from Karhade et al. [38], compared

different kinds of clinical notes, including discharge summaries

[22], and physicians and nursing notes. With the exception of
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[36], in which Galbusera et al. exploited notes in Italian, all other

studies referred to notes written in English language.
3.3. Models

The studies analyzed in this review used various kinds of

NLP models. Referring to Figure 4, we identified such models

as belonging to one of the following categories:

• Rule-based approach: exploits both linguistic and custom

heuristic rules/patterns to make decisions on the input data

• Machine Learning-based approach: exploits statistical

information from text to train the model to predict the

right outcomes

Of course, some pipelines may exploit both the presented

approaches, falling into the so-called hybrid approach category.

Furthermore, the machine learning (ML)-based approach may be

further split into two subcategories, grouping studies that used ML

models and others which implemented deep learning (DL)

paradigms.

Also, models may be categorized as belonging to:

• Supervised approach, which exploits labelled data to train the

model;

• Unsupervised approach, in which the algorithm is not

provided with any labelled data.

By taking into consideration the above definitions, it is

reasonable to consider the rule-base models as belonging to the

unsupervised class of algorithms, while the ML-based models may

fall in both categories. Nonetheless, the supervised approach is

usually more performant because the model learns directly from

input-output pairs, while the unsupervised ones leverage only the

input data. However, the former approach may require a lot of

labeled data, a process that can be extremely time-consuming,

requiring several human resources (annotators), especially for

large datasets. Furthermore, in the healthcare field, annotators

should necessarily have a degree of expertise in the domain. This
FIGURE 4

Schematic partitioning of the NLP models applied in LBP and related spine d
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is the same reason why NLP was used to automatize the

annotation process of images in some of the analyzed studies.
3.3.1. Rule-based models
Rule-based models are concerned about simple searches of

keywords among the text of clinical notes, often by also

developing regular expressions (regex). These rules may

consist of both syntactic and semantic rules, also leveraging

knowledge from both linguistics and the application domain

(knowledge-driven approach). To identify (and then remove)

negated occurrences, authors usually exploits algorithms such

as NegEx [39]. This approach was implemented in [20] to

identify acuity in LBP, and in [28] to identify Type 1 Modic

changes, while in [18,25,26] to identify several findings related

to LBP and stenosis from MRI and/or x-ray reports.
3.3.2. Machine learning-based models
ML models are algorithms that leverage their experience on

previously seen data to automatically improve their performance

on some task. Thus, they leverage a data-driven approach, by

learning discriminative content from a statistical representation

of the input data. The authors of the paper encountered focused

particularly on two models from the machine learning literature:

Logistic Regression (LR) and eXtreme Gradient Boosting

(XGBoost). The former was implemented in [20] for the acuity

identification task and in [22] to identify axSpA. In both cases,

the model was implemented together with a Least Absolute

Shrinkage and Selection Operator (LASSO) regularization. The

latter was particularly employed by Karhade et al. in several

tasks [31–33,37,38]. Another used algorithm was the Support

Vector Machine (SVM), employed in [23] to identify clues of

axSpA and in [24] both to directly identify axSpA and to

extract a feature for a multimodal random forest. Furthermore,

authors in [34] exploited IDEAL-X, a tool introduced in [40]

which exploits the online ML paradigm, to identify VTE

following orthopedic surgery.
isorders.
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3.3.2.1. Deep learning models.
The DL paradigm is a subfield of ML regarding the use of

algorithms partly inspired by the brain structure and

functioning, the so-called artificial (deep) neural networks.

These algorithms are well known to perform better than ML in

a large variety of applications. However, to be competitive they

require a larger amount of training examples, and the training

phase may be largely expensive in terms of time, especially

when researchers do not have access to performant hardware

facilities (i.e., Graphics Processing Units, aka GPUs). Probably

for these reasons, only a few papers investigated the use of DL

models. In [20], the authors compared a convolutional neural

network (ConvNet) with classic ML and rule-based model.

More recently, in [36] the authors fine-tuned a BERT [41]

model pre-trained on general purpose italian text (“bert-base-

italian-uncased”). Models like BERT are based on the

Transformer’s architecture [42], introduced a few years ago.

Exploiting a pre-trained Transformer-based model to initialize

the weights and then train on some downstream tasks has

become a standard practice within the NLP community.

3.3.2.2. Unsupervised models.
All the above-reported studies leverage the supervised paradigm

to train their models. The authors in [20] investigated the use of

unsupervised models to identify acute LBP. They implemented a

Latent Dirichlet Allocation (LDA) [43] to perform topic

modeling, an unsupervised ML technique that captures

patterns of word co-occurrences within documents to

determine words’ sets clusters (i.e., the topics). They identified

a set of keywords among the topics and then manually

reviewed them to retain only those that seemed more likely to

characterize acute LBP episodes. In other words, they selected

the topics including most of the keywords with high

probabilities. Then, they considered the maximum likelihood

among these topics as the probability that a report referred to

acute LBP. Furthermore, the authors in [22] exploited the so-

called multimodal automated phenotyping (MAP) [44], to

identify axSpA from related concepts and coded features.
3.3.3. Hybrid models
For what concerns the hybrid paradigm, we encountered

only one paper [18] exploiting it. Here, the authors

implemented a logistic regression with elastic-net penalization

leveraging several kinds of features. In particular, they also

used features extracted with a combination of regex and NegEx.
3.4. Pre-processing

The pre-processing phase is dedicated to cleaning and

elaborating input data. This step is necessary most of the time

before feeding any algorithm in Computer Science and
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Artificial Intelligence approaches. Of course, NLP methods are

not exempted.

Aside from tokenization (splitting the text into words,

punctuation, etc.) and lower/upper-casing (normalizing words

to their lower or upper-cased version), the most common

procedures for text pre-processing are the following.

Stop words removal. Stop words are words highly common

in a defined language, thus presenting the same likelihood to

appear in both relevant and not relevant documents [45], i.e.

carrying no informative content for the task in exam [28,31–

33,37]. Also, some implemented the removal of generally less

useful tokens, such as punctuation, numerals, and urls

[20,37].

Stemming. Reduction of the words to their root form,

usually by stripping each word of its derivational and

inflectional suffixes [46]. Such a procedure aims to normalize

the words from different inflections to a standard version

[28,31–33,37].

Lemmatization. Similar to the stemming procedure, but

instead of relying on heuristic chops of the words, leverage on

vocabulary and morphological analysis of words to remove

inflectional ending [20].

Filtering. This procedure discard words (or n-grams, i.e., a

sequence of n words) occurring less than a fixed threshold in

the entire (training) dataset. Because of their low prevalence,

these words are not informative. This step reduces the

number of misspelled words. The removal automatically

reduces the dimensionality of word/document representations

(i.e., the number of features), helping the model focus on the

relevant features. Instead of discarding, the authors in [20]

corrected to the terms in the vocabulary having the minimum

edit distance (i.e., the minimum number of operations

required to transform one string into the other).
3.5. Feature extraction

The term “feature extraction” refers to the procedure of

combining variables from the data in order to provide a

representation of each sample to be fed into (ML-based)

models. The most common methods to extract features from

text are:

Bag of Words (BoW). The Bag of Words model represents

each document with a vector, in which every entry

corresponds to the absence/presence (or the counting) of a

specific word occurring inside that document [20,23,24,31,37].

The dimension of each vector is equal to the number of

words encountered inside a corpus (e.g., a corpus built by the

clinical notes collected). Given that, it is clear how the BoW

representation is a sparse representation, i.e., every document

shows a way greater number of absent words.

Bag of N-grams (BoN). The Bag of N-grams model is

analogous to the BoW model. The only difference is that each
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feature is associated with an n-gram, i.e., a sequence of n words.

Of course, several BoN models with different n may be

combined together [20,23,24].

Engineered features. Features are extracted by leveraging the

domain knowledge. For example, in [20] the authors retrieved a

set of 5154 distinct n-grams based on concepts related to acute

LBP episodes, while in [22] the number of occurrences of some

concepts in free-text were used as features.

Word embeddings. Word embeddings are a way to encode

the meaning of each word in a real-valued and non-spare

vector representation. Models to retrieve this kind of

representation, such as word2vec and GloVe, thus provide

word representation such that the words with similar meaning

or context are encoded in representations that are closer in

the vector space. Thus, when a word has different meanings

in the corpus, its representation is different depending on its

context. This kind of feature extraction is exploited more

whenever the final model consists of some neural networks,

thus belonging to the DL-based approaches. In fact, we

encountered word embedding features only in one paper [20]

that explored the use of such an approach, using the

word2vec’s skip-gram algorithm and a convolutional neural

network. In [36] word embeddings are created internally by

the BERT model and are initialized by the “bert-base-italian-

uncased” pre-trained model.
3.6. Feature manipulation

With the term “feature manipulation” we indicate

procedures adopted to regularize the features, thus improving

their carried information (regularization strategy), or to

reduce the feature space, in order to exploit in the next steps

a reduced number of the most relevant features (feature

selection). For the former case, the Term Frequency-Inverse

Document Frequency (TF-IDF) strategy aims to assign to

each term in a document D a weight that is directly

proportional to the term frequency in D and is inversely

proportional to the term frequency in all the documents of

the corpus. In this way, it regularizes the features by

balancing the rare ones with the most common ones. By the

way, this method is applicable to both BoW and BoN models

[20,31–33,37], and engineered features [20], too. For the latter

case, it usually concerns discarding the features less

representative in the (training) dataset. In the case of BoW

and BoN features, this step is equal to performing a filtering

step on the text during the pre-processing phase. However, in

[23] the authors evaluated the discriminative power of each

feature w in relation to each class c by the following equation

DcðwÞ ¼ 1� pðcÞ
1� pwðcÞ (1)
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in which p(c) is the prevalence of class c among the training

snippets and pw(c) is the prevalence of the class c among the

training snippets containing the feature w. The features which

occurred at least in two snippets and presents Dc(w)≥ 2 for

every class c were retained.
3.7. Evaluation metrics

The metrics recognized in the analyzed papers can be

divided into the following categories. The scope of this section

is to help future research orientate them into a vast amount

of metrics and choose the ones that better fit their research.

3.7.1. Discrimination metrics.
This kind of metrics measures the model’s ability to map

input data into separated classes. If the model employed is of

the probabilistic kind (i.e., it outputs a probability instead of

directly outputting the class), a threshold is applied to map

the model’s output to the class labels. Several metrics fall into

this category, each having a specific meaning. Following, we

reported the most common ones encountered in our study.

Since most classification tasks were binary, we report the

binary version of such metrics for simplicity and brevity

purposes. However, in most analyzed papers, multi-class

problems (classifying a sample to one label out of several

classes) were approached as more binary tasks.

The entire set of the found discrimination metrics can be

achieved from the confusion matrix (Table 1), a table layout

that correlates the actual conditions of the samples, positive

(P) and negative (N), with the conditions predicted by the

model (PP and PN). It allows to easily visualize the number

of correct predictions, both true positives (TP) and true

negatives (TN), and the number of ill-classified samples, both

false positives (FP) and false negatives (FN).

The first metrics we introduce are the True Positive and the

True Negative Rates (TPR and TNR, respectively), as defined in

Eq. 2. These measures quantify the ability of the model to

classify the positive (and the negative) samples in the

evaluation dataset. In the analyzed works, they are often

indicated with other names. Usually, the name by which they

are addressed depends on the field of application. In medicine

works, it is not strange to find TPR and TNR reported as

sensitivity and specificity, respectively, while, especially in AI-

related papers, TPR is often presented as Recall.

TPR ¼ TP
P

¼ TP
TP þ FN

[ ½0; 1�

TNR ¼ TN
N

¼ TN
TN þ FP

[ ½0; 1�
(2)

Other useful metrics are the Positive and Negative Predict

Value (PPV and NPV, respectively), as defined in Eq. 3. They
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quantify the ability of the model to not misclassify the negative

(and the positive) samples in the evaluation dataset. Thus, the

PPV metric is often referred to as Precision.

PPV ¼ TP
PP

¼ TP
TP þ FP

[ ½0; 1�

NPV ¼ TN
PN

¼ TN
TN þ FN

[ ½0; 1�
(3)

A more general metric, quantifying the general ability of the

model to correctly classify the samples, independently by their

actual condition, is the Accuracy, defined as in Eq. 4.

Accuracy ¼ TP þ TN
P þ N

¼ TP þ TN
TP þ FN þ FP þ TN

[ ½0; 1� (4)

However, since this metric does not take into account a

specific class, it is not very informative in case of a strong

imbalance of the dataset. In fact, it is possible to show a high

accuracy degree even when the model ill-classify all the

samples belonging to the minority class. To clarify it, take

into consideration the following example: we have 100

documents related to 100 patients; among these documents,

only 3 samples belong to patients with an LBP diagnosis,

while the others belong to the rest of healthy patients; if we

classify each patient as healthy, we will still achieve an

accuracy of 97%, which looks very good at a first impact, but

it hides the fact that we are just predicting always the

majority class. For this reason, it is good practice to prefer

another metric but the accuracy, the F1-score. The F1-score,

also addressed as F1-measure, is the harmonic mean of

precision and recall. It is defined as in Eq. 5, in which the

score of the positive class is reported. The same score may

also be computed for the negative class, by substituting

Precision and Recall with their counterpart metrics, NPV and

TNR.

F1 ¼ 2 � TPR � PPV
TPRþ PPV

[ ½0; 1� (5)

Other widely used evaluation metrics are the Area Under

the ROC and PCR Curves (AUROC and AUPCR,

respectively), where ROC stands for Receiver Operating

Characteristic and PCR stands for Precision-Recall Curve.

Both curves are plotted considering the True Positive Rate
TABLE 1 Confusion matrix.

Predicted condition

PP PN

Actual condition P TP FN
N FP TN
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against the False Positive Rate (FPR = FP/P), and the Positive

Predict Value against the True Positive Rate, by considering

the performances at different classification thresholds.

All of these metrics range between 0 and 1; the closer they

are to the maximum value (i.e., 1), the more performant the

system will be.

3.7.2. Calibration metrics.
These kinds of metrics are a way to quantify the model’s

ability to get close to the population underlying probability.

While discrimination measures the predictor’s ability to

separate patients with different responses, calibration captures

the degree to which its numerical predictions match the

outcomes [47,48]. In particular, some of the analyzed works

reported intercept and slope measures [31–33,37,38] to assess

the miscalibration of the system. Specifically, a positive/

negative calibration intercept assesses the over-/under-

estimation of the predictions, while a calibration slope

evaluates the spread of the predictions; a slope greater/lower

than 1 would indicate that the predictions are too moderate/

extreme. For example, if slope < 1, the estimations are too high

for patients who are at high risk and too low for patients who

are at low risk [49]. However, calibration metrics are more

relevant for clinical but computer science practitioners.

Furthermore, the authors of the papers reporting calibration

measures did not discuss their results in an exhaustive

manner. Thus, in the analysis of these works (Section 4) we

focused less on calibration metrics.

3.7.3. Overall performance metrics.
They are a way to measure the overall performance of the

probabilistic predictions, being correlated to both

discrimination and calibration at the same time. In most of

the papers, the overall performances were assessed through

the Brier Score. Designed to assess the quality of the

probability predictions in forecasting tasks [50], the score

introduced by Brier can be exploited in tasks in which a

model assigns probabilities to a set of mutually exclusive and

discrete classes. Such a score is defined as follows:

BS ¼ 1
N

XN

i¼1

XC

j¼1

ð pi;j � yi;jÞ2 [ ½0; 1� (6)

In which we refer to N as the total number of samples for

which the model is evaluated, to C as the total number of

discrete classes, and pi,j and yi,j as the probabilistic outcome of

the model and the actual class of the jth sample regarding the

ith class, respectively. In particular, when the task is binary

(C = 2), the Brier Score is equivalent to the Mean Squared Error:

BSC¼2 ¼ MSE ¼ 1
N

XN

i¼1

ð pi � yiÞ2 [ ½0; 1� (7)
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The Brier score may assume any value ranging between 0

and 1. However, being a measure of the prediction error, the

closer it gets to the minimum value of the interval (i.e., 0),

the more performant the model will be.

Another metric used to assess the overall performance is the

Standardized Net Benefit. This decision curve analysis evaluates

the clinical benefit of a predictive model over some default

strategies across a range of threshold probabilities, defined as

the minimum probability at which a patient/report is

classified as presenting a particular condition [51]. In the

analyzed papers reporting this decision curve analysis [31–

33,37,38], classifying all the patients/reports as presenting the

condition has been chosen as the default strategy. Also,

comparisons with clinical gold standard codifications were

present (see next paragraph).

3.7.4. Comparative strategies.
When evaluating a predictive model, it is often important to

have a comparison with the performance of other models. In

some cases, the comparison is made with some baseline

methodology considered as the gold standard in actual clinical

practice, like Current Procedural Terminology (CPT) and

International Classification of Diseases (ICD). For example, in

[31] the authors compare their model with both the kind of

codes for durotomy (i.e., CPT=63,707, 63,709, 63,710; ICD-

9=349.3; ICD-10=G96.11, G97.4). To address it, all the

previously described metrics can be used to compare two or

more models. Also, a particular version of the Brier Score is

the so-called null-model Brier Score. It is a version of the

Brier Score computed on a virtual (baseline) model generating

a predicted probability equal to the population prevalence of

the outcome (=P/(P +N )). Another strategy to compare the

two models is by evaluating the p-values after performing

some statistical test, like McNemar’s one.
1https://www.project-redcap.org/
2https://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/vtt/current/web/

index.html
3https://riverbankcomputing.com/software/pyqt/intro
3.8. Explainability

AI is gaining momentum for a large number of different

aspects of our society, including healthcare and will surely

continue to have a significant influence in our daily lives the

near future. However, current methods may achieve high

performance of a specific task but often lack interpretability.

The absence of more interpretable feedback together with the

output from the model is a great inconvenience, especially in

the clinical field. For what concerns the explainability, only

Karhade and colleagues have addressed it, at both global and

local (for the single subject) levels among included studies. It

was possible thanks to the implementation of the XGBoost.

Such an algorithm can provide the importance of each feature

in a particular task. For example, in [31] the patient-level

explanations were provided by highlighting the most

important features (the words), used by the algorithm to
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detect ID, inside the text. Global explanations were provided

averaging the importance score of each feature across all

patients (the documents), to demonstrate the generally most

important factors used for detection. Analogous reasoning was

applied in their other works [37].
3.9. Softwares

We encountered several softwares and tools employed in the

analyzed papers. The most used programming languages used

to implement the NLP methods were Java, Python, and R. In

particular, Java was used to implement rule-based models

[18,28], also incorporating Apache Lucene (v 6.1.0)

Application Program Interface (API), while Python and R

[18,24–26] were usually exploited for ML approaches and

conduct the statistical analyses.

Furthermore, various tools were used to perform manual

annotations, such as REDCap [52] platform1 [18,28] and

Visual Tagging Tool2 [23]. Also, in [36] the authors

implemented a user interface with Python by exploiting the

Python binding version of the graphical user interface toolkit

Qt (PyQt3).
3.10. Domain-specific knowledge

Perhaps unusual in works of this kind, we conducted a

typical NLP analysis of the papers included in this review to

extract some domain-specific knowledge from the articles

included in this review. In particular, we treated the

collection of abstracts as a corpus from which we extracted

domain-specific entities to build its glossary. We then

retrieved the relations between them to create the

knowledge graph of the domain we can call Natural

Language Processing in Low Back Pain and Spine Disorders.

To do so, we applied the T2K2 suite of tools [53] to obtain

the glossary in Figure 5, reporting the prototypical form of

the entity (the term form most frequently attested in the

corpus), its lemmatized form (Section (d)), and its

frequency of occurrence. It is worth noting that these

domain-specific entities may consist of single nominal terms

but also of complex nominal structures. For ease of

visualization, only the first part of the glossary (containing

the most relevant terms) is reported in figure: the ranking
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FIGURE 5

Glossary extracted from the abstracts of the papers included in this work. Entities are ranked following their domain relevance. For ease of
visualization, only the first part of the glossary (containing the most relevant terms) is reported.
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follows the domain relevance of the entities, computed on the

basis of their C–NC value [54]. By looking at the obtained

glossary, it is easy to notice that the entities NLP (and its

variations) and lumbar spine are the most relevant ones

together with patients. We then selected these words as the

most representative of the domain (we excluded the term

patients because too generic) to compute their relations with

the other entities in the glossary. In particular, the relations

are computed on the basis of the co-occurrence of the entity

in the core sentence (the one in which appear the entity

under consideration) and the ones immediately before and

after. The knowledge graph obtained with such entities and

relations is reported in Figure 6. For ease of visualization,

we filtered out terms with a frequency lower than 3 and the

relations not occurring at least twice.
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As interpretable from the figure, the NLP entity represents

the core of the graph (and thus, in some sense, of the domain).

It is worth noting the presence of the several diseases related

to the NLP part (incidental durotomies, axSpa, modic changes,

etc.), suggesting the obvious importance of these terms for the

domain, and of the terms related to the computational part

(algorithm, models, artificial intelligence etc.) and the data

sources (radiology reports, electronic health records, etc.).

However, both the lumbar and spine entities show a few

prerogative relations, such as with disc and with surgery,

respectively, that are not shared with the NLP core. Also,

apart from the entity natural language processing that is just

a variant of the NLP one, the only relation shared by all the

three main entities is the one with patients. Besides being a

very generic term, this result suggests the focus the authors
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put on the patients of their works, which also reflects the

findings of the glossary.
4. Analysis
Our systematic review on the application of NLP to lumbar

spine disorders eventually included 16 studies, whose main

characteristics are summarized in Table 2. For the studies

[18,20] using more than a model, we reported only the one

with the best performance.

From a chronological point of view, Walsh et al. [23] were

the first ones, in 2017, to apply NLP to LBP and related

disorders. They first explored the axSpA language to

manually select three terms that are predictive of such

condition, namely “sacroiliitis”, “spond(*)”, and “HLA–B27

positivity,” and their expanded term variations via regular

expressions. Then, they extracted snippets of text from

clinical notes and radiology reports, where a snippet is

defined as a section of text containing a clinically

meaningful concept surrounded by its context. Finally, they

implemented a Support Vector Machine (SVM) algorithm

for each concept to classify each snippet as intending the

presence of axSpA or not. To do so, they extracted bigram

features from the snippets and performed a discriminative

power-based feature selection. They evaluated the system in

a 10-fold cross-validation fashion, reporting metrics

separately for each concept at the percentage of 95%

(confidence interval) for accuracy (91.1%, 93.5%, 97.2%),

PPV (91.1%, 93.5%, 97.2%), and NPV (91.1%, 93.5%,

97.2%). Also, they evaluated the system on an independent

test set achieving comparable results. In total, the annotation

for 900 “sacroiliitis”-related snippets, for 1500 “spond

(*)”-related snippets, and for 1500 “HLA–B271”-related

snippets were collected. The authors re-used the three

developed models in [24]. In particular, the “spond(*)”

related model was directly implemented in the classification

of the axSpA identification task. Also, the output of the

three models together was used in combination with other

46 coded features in a second experiment, what they called

the Full algorithm. These other variables were extracted from

structured data such as diagnosis codes for axSpA,

laboratory data relevant to axSpA, medications, and

comorbidities). In this second case, applied NLP models can

be also viewed as feature extraction methods. They evaluated

sensitivity, specificity, PPV, and NPV for both the Full

algorithm (87.5%, 91.7%, 79.5%, and 95.2%, respectively)

and Spond algorithm (95.0%, 78.0%, 61.3%, and 97.7%,

respectively). Results were evaluated at 95% CI, determined

through bootstrapping, with sampling with replacement of

the observed data for 500 times. In total, 600 US veterans’
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electronic medical reports were used in their work, 451 for

training and 159 for testing.

Zhao et al. [22] trained a Logistic Regression with LASSO

with 100 random split iterations on 550 patients, in which 127

(23%) were manually determined to have axSpA meeting

classification criteria and 423 did not. They exploited the

Surrogate Assisted Feature Extraction (SAFE) method to

extract a list of potential axSpa-related concepts from online

resources such as MEDLINE. The SAFE method retrieved

four disease concepts, ankylosing spondylitis (AS),

sacroiliitis, HLA-B27, and spondylitis. For each patient, the

numbers of positive mentions of each axSpA concept were

combined with coded data: the number of occurrences of

ICD code for AS and the healthcare utilization (i.e., the

number of medical encounters in each patient’s record).

Then, the authors compared three models: Logistic

Regression model; LASSO-LR, and the multimodal

automated phenotyping (MAP) [44], an unsupervised

approach that classifies phenotypes in EHR data. Although

their behaviors were similar in terms of AUC (93.0%, 92.9%,

92.7%), sensitivity (70%, 71%, 78%), specificity (95%, 95%,

94%), and F1-score (75%, 75%, 79%), the MAP algorithm

was slightly better than the others. However, all three

methods outperformed methods based on related ICD codes

counting. To achieve these performances, they extracted 550

notes (among healthcare provider notes, discharge

summaries, and radiology reports), randomly split 100 times

into training and test sets.

In 2018, Huhdanpaa et al. [28] developed a pipeline of text

pre-processing and concept identification at the document level,

using a list of keywords and regular expressions to incorporate

spelling variations and negations (NegEx algorithm [39]). They

evaluated 458 radiology reports from the Lumbar Imaging with

Reporting of Epidemiology (LIRE) study [55], with a prevalence

of Type 1 Modic changes approximately of 10%, resulting in a

sensitivity of 0.70, a specificity of 0.99, a precision of 0.90, an

NPV of 0.96, and a F1-score of 0.79. Results were reported for

a 95% CI.

Tan et al. [18] used a similar approach to identify 26

imaging findings from radiology reports, producing

dichotomous predictions for each report, where a positive

assignment was made if there was at least one sentence with

a keyword that was not modified by a negation term. Also,

they applied a multimodal Logistic Regression with elastic-

net to n-gram features and Regex and NegEx from the rule-

based model (among others), resulting in a hybrid model.

They fine-tuned the model hyperparameters on the

development subsample with 10-fold cross-validation using a

Receiver Operating Characteristic (ROC) loss function.

Results, estimated at 95% confidence intervals using

bootstrap percentiles on the test set based on 500 iterations,

were reported for both the models, in terms of (averaged)

sensitivity (0.83, 0.94), specificity (0.97, 0.95), and AUC
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FIGURE 6

Knowledge graph built for the main entities of the domain extracted from the abstracts of the papers included in this work. For ease of visualization,
only the terms with a frequency greater than 3 and the relations occurring at least twice are reported.

TABLE 2 Overview table of analyzed papers.

Study Year NLP task Task category Domain Source Model

Caton et al. [25] 2021a Class. pre-op. SCS/NFS Lumbar MRI reports rule-based

Caton et al. [26] 2021b Class. pre-op. SCS/NFS Lumbar MRI reports rule-based

Miotto et al. [20] 2020 Class. pre-op. acute LBP Clinical notes DL (ConvNet)

Walsh et al. [23] 2017 Class. pre-op. axSpA Electronic medical records ML (SVM)

Walsh et al. [24] 2020 Class. pre-op. axSpA Clinical chart database ML (SVM)

Zhao et al. [22] 2019 Class. pre-op. axSpA Electronic medical records ML (SAFE+MAP)

Huhdanpaa et al. [28] 2018 Class. pre-op. Type 1 Modic Endplate Changes Lumbar MRI reports rule-based

Tan et al. [18] 2018 Class. pre-op. LBP-related imaging findings Lumbar MRI reports and X-ray reports hybrid

Lewandrowski et al. [35] 2020 Annot. pre-op. SCS/NFS Lumbar MRI reports Not specified

Galbusera et al. [36] 2021 Annot. / spinal disorders Lumbar X-ray reports DL (BERT)

Ehresman et al. [32] 2020 Class. intra-op. Incidental durotomy Electronic health records ML (XGBoost)

Karhade et al. [31] 2020a Class. intra-op. Incidental durotomy Operative notes ML (XGBoost)

Karhade et al. [33] 2021a Class. intra-op. Vascular injury Operative notes ML (XGBoost)

Dantes et al. [34] 2018 Class. post-op. Venous Thromboembolism Electronic medical records ML (IDEAL-X)

Karhade et al. [37] 2020b Pred. post-op. Reoperation due to infection Operative notes ML (XGBoost)

Karhade et al. [38] 2021b Pred. post-op. Unplanned readmission Operative notes ML (XGBoost)
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(0.90, 0.98). They also reported performances in detecting the

8 findings commonly found in subjects without LBP and the 6

findings that are likely clinically more important for LBP. In all

the cases, the hybrid model outperformed the rule-based one,

especially with regards to sensitivity and AUC metrics.

Building on the same principles, Caton et al. [25]

implemented a rule-based model to assess the severity degree

of SCS and left and right NFS (including bilateral cases).

Each text block, parsed from the “Findings” section of

radiology reports, individuates a discrete level from T12-L1

through L5-S1. The 6-point severity grading scale includes

“Normal,” “Mild,” “Mild to Moderate,” “Moderate,”

“Moderate to Severe,” and “Severe.” Assuming that normal

anatomy can be presumed by the absence of specific

comment by the radiologist, failure cases (no mentions to

the conditions) were identified as the “Normal” class. To

accomplish the task, the authors iteratively assembled a

dictionary of non-standard terms (e.g., “marked” or

“minimally”) to facilitate the mapping of non-standard terms

to the grading scale. They reported the accuracy of 94.8% of

this system on an annotated random set of 100 LMRI

reports, meaning in 93 misclassifications out of 1800 level

instances. At the individual levels, NLP accuracy ranged

from 86.0%at right L5-S1 to 100% in 5/18 level instances

(27.8%). The authors used their system to analyze the effects

of age and sex in SCS and NFS, and also to compute a

composite severity score in [26].

For what concerns the identification of spinal stenosis,

another study has employed the NLP method trained on

5000 manually labeled disc levels extracted from radiology

reports [35]. Here, Lewandrowski et al. marked both the

central canal and the neural foramina based on the

radiologist’s report. For the former, the following labels were

used: “no signs of abnormality,” “disc bulging without

compromise of the thecal sac,” “disc bulging compressing

thecal sac (central canal stenosis),” and “disc herniation

compressing thecal sac (central canal stenosis).” For the

latter, instead, the reports were annotated as “no signs of

abnormality,” “left foraminal stenosis,tead, the reports were

annotated “right foraminal stenosis,” or “bilateral foraminal

stenosis.” The NLP tool was then applied on 17800 disc

levels with radiology reports to generate labeled training data

for the main deep learning method. The pipeline was similar

to the DeepSPINE, proposed by Lu et al. a couple of years

earlier [56]. However, no performance for the NLP model

was reported in the paper.

For what regards annotation tasks, Galbusera et al. [36]

fine-tuned the “bert-base-italian-uncased” pre-trained model

to identify 12 spine disorders related findings from radiology

reports written in Italian, such as the presence of spinal

implants or loss of lordosis. For the training (fine-tuning)

phase, they manually annotated 4288 reports, while to

evaluate the resulting model they annotated 202 reports. For
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all findings, the model has generally shown high accuracies

and specificities, the former ranging from 0.88 to 0.98 and the

latter from 0.84 to 0.99. About the sensitivity metric, the

model reported a lower performance, namely 0.5 for the

“osteoporosis” and 0.63 for the “fractures” findings. The lower

sensitivity can be attributed to the unbalanced nature of the

dataset: such radiological findings were more frequently

absent than present. About the F1-score, it ranges from 0.63

(osteoporis, again) to 0.95. The author used the NLP model

to train (and evaluate) the main DL algorithm, the ResNet-18

convolutional neural network [57], previously pre-trained on

the ImageNet database.4

Returning to the classification tasks, Dantes et al. [34] used

NLP to identify VTE in the post-operative period. They

employed the IDEAL-X tool [40], using both the controlled

vocabulary mode and the ML model. They found out that the

former was able to reach a better performance in terms of

sensitivity (97.2%) and specificity (99.3%), calibrated with 468

and evaluated on 2083 radiology reports. Conversely, with the

second mode, they reached a sensitivity of 92% and specificity

of 99%. Furthermore, the ML required around 50% of reports

to be processed before achieving both metrics to be greater

than 95%. For both models, results were reported withing the

95% CI.

Identifying surgical and post-surgical complications is

indeed a hot topic in this field. Karhade et al. proposed a

ML-based pipeline to identify ID [31] and VIs [33]. To

extract features, they used the TF-IDF version of bag-of-

words and an extreme gradient boosting model. They

achieved a high performance for both discrimination and

calibration metrics. Also, the Brier Score resulted in being

lower than the null Brier Score in each case. Furthermore, in

[31] and in [33] they compared their model with gold-

standard methodologies exploiting CPT (Current Procedural

Terminology) and ICD (International Classification of

Disease) codes of the intra-operative events. Their model

always outperformed these methodologies, also showing a

higher standard net benefit at all thresholds. Ehresman et al.

[32] used the same model to statistically analyze 1279

patients. Also, the same research unit exploited the same

pipeline in the two prediction tasks, to anticipate reoperation

due to wound infection after lumbar discectomy [37] and

unplanned readmissions after lumbar fusion [38]. In the first

case, the model was trained on 4483 patients and evaluated

on 1377 patients, while in the second one totality of 708

patients were used, including 141 patients as the test set. In

particular, in [37] their model achieved again better

performance than CPT/ICD methodologies. Their studies
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have shown the adaptability of their proposed pipeline to

several tasks, to achieve both classification and prediction

outcomes, but limited themselves to searching for more

performant models.

From this point of view, the study from Miotto et al. [20] is

interesting. They compared several kinds of models, belonging

either to rule-based and ML-based (both ML and DL)

methods, also including unsupervised models. They aimed to

classify whether a patient suffered from acute LBP or not.

They evaluated five pipelines. In the first one, a rule-based

model was proposed, implemented as a keyword search

supported by the NegEx algorithm. About other

unsupervised models, they exploited a topic modeling

framework, using the Latent Dirichlet Allocation (LDA)

model, capturing patterns of word co-occurrences within

documents; these word distributions define interpretable

topics to which every document can be classified as. Topics

referring to acute LBP were manually reviewed, then they

considered the maximum likelihood among these topics as

the probability that a report referred to acute LBP. About

ML models, they implemented Logistic Regression with

LASSO, employing BoN or engineered features. Finally, they

implemented a convolutional neural network for the DL

models category. They also compared the various methods

with an ICD baseline, considering as acute LBP all the notes

associated with the Low back pain ICD-10 code (M54.5).

The rule-based method resulted as the worst model, with

recall equal to only 0.03, even worst than the ICD-based

one. However, it reached the greatest precision, equal to

0.71. Also, the topic modeling-based approach achieved

comparable performance to ICD. The best performing

model, however, was the network, achieving a precision of

0.65, recall of 0.73, F1-score of 0.70, and AUROC and

AUPRC equal to 0.98 and 0.72, respectively.
5. Discussion

An overview of the analyzed works is reported in Table 2.

Interestingly, all the papers included in this review were

published in the last few years, with the oldest one dated

2017. Among these, classification and pre-operative tasks

were the dominant categories to have been investigated.

Also, various domains have been investigated by the

authors. Identifying axSpA and spinal stenosis (and related

findings) were the most present tasks, and they were

investigated in 3 studies each, respectively. For the latter,

however, one of the studies focused on the NLP part for

annotation. For what concerns intra- and post-operative

tasks, Karhade (and Ehresman) [31–33,37,38] and their

corresponding coauthors were particularly productive,

constituting approximately one third of included studies on

the topic. In addition, the review from Grotto et al. [16]
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also comes from the same research unit. In fact, they faced

several problems, from both the classification and

prediction categories. Nonetheless, they always employed

the same pipeline to the various task. From a medical point

of view, this confirms the adaptability to several domains of

their approach, but from an NLP point of view, this sounds

more like a limitation, having no improvements of the

methodologies between consecutive works. In this regard,

the study from Miotto et al. [20] looks more captivating,

exploring and comparing different kinds of methods.

However, Karhade’s team [31,33,37,38] was the only one

investigating the interpretability of their system. This, of

course, was an effect of choosing XGBoost as the classifier

model (Section (h)).

Another thing is the distribution models’ types. Five studies

implemented rule-based models, while the rest of the papers

used ML-based models. In particular, only two among them

exploited DL architectures. As also shown by Miotto et al.

[20], the performance of rule-based NLP can be limited. The

main reasons are to be found among the complexity of the

findings, their ambiguity in reports, and feature sets that are

not sufficiently rich. Nonetheless, rule-based methods are

intrinsically unsupervised, which means that do not require

large annotated datasets, as ML-based ones (especially, when

working with deep learning architectures), which is an

obstacle to their implementation.

Most of the times, medical researchers used NLP to

identify large cohorts of patients in order to conduct their

research analyses. In other words, they developed systems to

collect datasets by including patients with high probability

(according to the developed NLP system) of presenting some

condition, in order to conduct their analyses on a larger

cohort than they would get with traditional data collection.

From this point of view, classification and annotation

approaches are even more similar. However, in the

annotation tasks the NLP system is employed to develop

another system able to identify some spine disorders from

radiology images. However, the developed models in the

analyzed works may be used by physicians and healthcare

providers to improve patients’ care. For example, identifying

acute LBP before surgery may provide some insights to the

physicians, whether to recommend a therapy against

another. Similarly, predicting reoperation in the near future

may help healthcare providers to allocate resources in a

more efficient way. Analyzing patient outcomes and relative

changes in costs applying these systems may be a future

research trend. Also, most of the works leverage private

databases, which is an issue for comparing various works. It

is well known that clinical text is usually full of sensitive

content, however, a future direction may be to publicly

provide data with respect to the privacy policies. This would

help the research community in comparing works with each

other.
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6. Conclusions

NLP is a promising technology that is being extensively

investigated in the last year in multiple clinical fields,

including spine disorders. Although preliminary, studies on

the topic have demonstrated to effectively classifying different

conditions and events, label documents and predict outcomes.

However, additional studies on larger datasets are needed to

better define the role of NLP in the care of patients with

spinal disorders.
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