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The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic
determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged
yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content
microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but
explained >50% of the variance in the population’s average protein abundance for half of the GFP fusions tested. To map
trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of
five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the
genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of
the genome combined. We present evidence for both shared and independent genetic control of transcript and protein
abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but
several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL
hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale
measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans
pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance.

[Supplemental material is available for this article.]

Efficient methods for genotyping large numbers of individuals

have greatly improved our ability to map a heritable trait to the

genome. While genome-wide association studies have identified

more than 1200 genetic variants for nearly 170 complex traits in

humans, these findings have not yet translated into substantially

improved disease onset prediction or new molecular targets for

prevention and cure (Visscher et al. 2012). Analyses of model or-

ganism crosses provide a tractable context in which to understand

complex trait genetics. A particularly fruitful trait-mapping ap-

proach has been measurement of mRNA and protein expression

levels as an intermediate for terminal phenotypes (Hubner et al.

2005; Emilsson et al. 2008; Chakravarti et al. 2013).

We and others have probed genetic regulation of RNA levels to

considerable depth (Grundberg et al. 2012; Parts et al. 2012). In

humans, the fraction of total mRNA level variation that can be at-

tributed to additive effects of independent loci (narrow sense heri-

tability) ranges between 0.15 and 0.35. Narrow sense heritability is

even higher in yeast, prompting linkage and association studies to

map the responsible variants (Gaffney 2013). Genotype around the

promoter (cis) region influences transcript levels of many, if not

most, genes in yeast andman (Bremet al. 2002; Stranger et al. 2012),

and expression quantitative trait loci (eQTLs) affecting several genes

at a distance (trans eQTLs) have been mapped in a variety of

model organism crosses (Yvert et al. 2003; Mehrabian et al. 2005;

Keurentjes et al. 2007). To date, eQTLmapping studies havemade

summary measurements from large populations of cells, gener-

ating phenotypes that represent a population average.

Tools for systematically measuring the proteome have lagged

relative to methods for assaying the transcriptome. Efforts in yeast

and other systems have begun to provide important insights about

the relationship between mRNA and protein levels and their re-

sponse to genetic and environmental perturbations. Mass spec-

trometry of protein fragments has evolved from quantification of

a limited number of peptides (Foss et al. 2007; Lu et al. 2007; de

Godoy et al. 2008; Ramakrishnan et al. 2009;Ghazalpour et al. 2011)

to thousands of proteins (Marguerat et al. 2012; Picotti et al. 2013;

Skelly et al. 2013; Wu et al. 2013). These advances have enabled

mapping of alleles that contribute to the variation in protein

abundance in yeast (Foss et al. 2007, 2011; Skelly et al. 2013),

mouse (Ghazalpour et al. 2011; Holdt et al. 2013), and human

(Johansson et al. 2013; Wu et al. 2013). Due to limited statistical

power and inherently low-throughput measurement, mass spec-

trometry-based studies have mainly focused on the effects of cis

variants and established that about half of cis alleles associated

with a protein level also affect transcript abundance (Ghazalpour

et al. 2011; Skelly et al. 2013; Wu et al. 2013). At present, mass

spectrometric measurements are necessarily performed on pop-

ulations of many cells.
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Indirectmeasurement of fusionproteins provides an alternate

method for protein level determination. Quantitative genome-

scale experiments in yeast have been enabled by the availability of

collections of strains comprised of individual open reading frames

(ORFs) fused to green fluorescent protein (Huh et al. 2003) or

a tandem affinity purification tag (Ghaemmaghami et al. 2003),

ORF-GFP or ORF-TAP, respectively. Previous work on these collec-

tions has established the baseline level (Ghaemmaghami et al.

2003), localization (Huh et al. 2003), sources of individual varia-

tion (Newman et al. 2006), and response to perturbations (Tkach

et al. 2012; Breker et al. 2013; Denervaud et al. 2013; Mazumder

et al. 2013) for individual fusion proteins. Despite the availability

of these resources, the effect of genotype onprotein abundancehas

not been interrogated on a genome scale (Parts 2014).

Previous studies have demonstrated moderate correlation

between protein and RNA levels, emphasizing the need to further

explore the extent to which genetic mechanisms regulating

protein and mRNA abundance overlap. Many cis signals regu-

late both mRNA and protein levels, but studies in outbred in-

dividuals have lacked power to detect associations with trans loci.

To date, comprehensive dissection of protein level heritability

and validation of trans eQTL signal propagation to protein

abundance has been unexplored. Here we use a combination of

flow cytometry and quantitative microscopy to establish the

extent of genetic contribution of trans variants to protein levels

in single cells and populations, map several responsible loci, and

compare the genetic determinants of mRNA and protein level

heritability.

Results
We quantified the extent to which protein levels differ between

a near-clonal population of inbred and a genetically diverse pop-

ulation of outbred progeny in a model yeast cross for each of the

4084ORF-GFP fusion strains in the yeast GFP collection (Huh et al.

2003). We used the synthetic genetic array (SGA) method (Tong

and Boone 2006) to mate each member of the ORF-GFP collection

to both an isogenic lab strain (‘‘BY’’) and a divergent wild isolate,

RM11 (‘‘RM’’) (genotypes in Supplemental Table 1). We produced

pools of;120,000 haploid BY3 BYand RM3 BYmeiotic progeny

for each GFP-tagged ORF (Fig. 1A; Supplemental Methods). We

marked BY and RM parents and haploid progeny with mCherrywt

and mCherry*, respectively, to permit unambiguous separation of

parental genotype by red fluorescence intensity (Fig. 1C;

Methods). We mixed the corresponding inbred (BY 3 BY) and

outbred (RM 3 BY) segregant populations and grew them in the

same liquid culture to control for environmental effects. At mid-

log phase, we measured the fluorescence intensities of 20,000–

50,000 individuals using high-throughput flow cytometry and

imaged 200–500 cells from the same culture using high-content

microscopy (Methods; Fig. 1B–D; Supplemental Fig. 1; Supple-

mental Table 2). We classified individual cells into inbred BY3 BY

and outbred RM 3 BY populations based on their mCherry level

and quantified GFP fluorescence. We sequenced total RNA from

inbred and outbred pools and found moderate correlation of

mRNA and protein levels, consistentwith previouswork (Pearson’s

r = 0.56) (Methods; Supplemental Table 2; Supplemental Fig. 4;

Marguerat et al. 2012).

Extent of trans variant influence on protein abundance

The ORF-GFP locus is fixed to the BY background in our crossing

and selection design, thus all the differences between the inbred

and outbred GFP levels are expected to be due to trans effects. We

find that trans variants have a large effect on a subset of protein

abundances in the BY 3 RM cross: 6% of fusion proteins (197/

3251) differ by 20% or more between inbred and outbred progeny

(Fig. 2A,B). Examples include GFP fusions to Hxt2 (hexose trans-

porter) (Fig. 1B–D), Pdr5 (pleiotropic ABC transporter), and Mdh1

(malate dehydrogenase) (Fig. 2A). We find functional enrichment

among proteins whose abundance varies in the cross, consistent

with functions of known segregating regulators (Mense and Zhang

Figure 1. Overview of the experiment. (A) Experimental design. The GFP collection strains are crossed to near-isogenic (BY) and genetically diverged
(RM) parental strains, the progeny measured using two assays, and sorted for pQTL mapping. (B) Section of an example microscopy image. Hxt2-GFP
signal is shown in green and nuclear Hta2-mCherry signal in red; white outlines designate the cell boundaries. (C ) Classifying cells into BY 3 BY inbred
progeny and RM 3 BY segregants. The mCherry fluorescence (x-axis, log10 scale) of the RM parent (mCherry*, dark red) is on average ;100-fold lower
than that of the BY parent (mCherry wild type, bright red), and is used to classify cells into RM 3 BY or BY 3 BY cross progeny. (D) Example cytometry
readout. Hxt2-GFP level (x-axis, log10 scale) ismeasured for tens of thousands of individual cells from the inbred BY3 BY population (blue) and segregating
RM 3 BY population (green), and used to calculate the summary statistics of the Hxt2 protein level.
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2006; Smith and Kruglyak 2008), enrichments of transcript

level changes, and the different evolutionary backgrounds of the

parental strains (Supplemental Table 3; Supplemental Results;

Supplemental Methods; Mortimer et al. 1994; Warringer et al.

2011).

Genotype accounts for at least 50% of the variation in pop-

ulationmean protein abundance for 49% of the traits wemeasured

(Fig. 2D; Supplemental Table 4; Methods). The magnitude of cell-

to-cell variation in the measured populations was, however, much

larger than a typical genetic signal (Fig. 1C,D; Supplemental Fig. 3).

Thus, the distribution of the fraction of GFP level variation be-

tween single cells that could be attributed to genotype was skewed

toward zero (median H2 = 0.03) (Fig. 2C; Methods). We further

quantified the maternal contribution to single-cell protein level

variation bymicroscopy and found thatmother and daughter cells

have more similar protein levels compared to random pairs for

90% of the measured genes (Supplemental Fig. 5; Supplemental

Table 2; Methods). This indicates that the large observed variation

in protein abundance between individual cells is not completely

stochastic in nature.

As we selected the ORF-GFP allele from the BY parent in our

experiments, virtually no RM cis variants are present in outbred

progeny. To explore the role of cis effects, we chose 52 ORFs based

on our measurements of protein level heritability and number of

previously described eQTLs (Smith and Kruglyak 2008) and con-

structed ORF-GFP fusions in the RM background. We performed

a reciprocal experiment in which the RM ORF-GFP allele, and thus

RM cis sequence,was selected (Methods) and found 26 genes (50%)

for which the cis sequence made at least a 20% difference in pro-

tein abundance (Supplemental Table 5). This represents a signifi-

cant (p < 10�12, Fisher’s exact test) eightfold increase over the 6%

expected if cis and trans sequence had the same independent dis-

tribution of effect sizes.We further find that cis effects are greater in

magnitude than trans effects for 42% (22 of 52) of the genes. From

our data, we conclude that association studies which focus on the

coding and cis-regulatory regions (due to statistical power consider-

ations) are likely capturing a large fraction of genetic effects on pro-

tein expression, in concordance with previous reports (Keurentjes

et al. 2007; Ghazalpour et al. 2011).

Mapping protein level QTLs

Although cis sequences strongly regulate protein abundance for

many genes, our genome-wide analysis demonstrated the pres-

ence of trans effects. To map the responsible loci, we performed

bulk segregant analysis (Ehrenreich et al. 2010; Parts et al. 2011;

Cubillos et al. 2013) for genetic variation in protein levels

(Methods). We used flow sorting to isolate 5% fractions of the

brightest (GFP high) and dimmest (GFP low) cells of the outbred

BY 3 RM progeny for crosses of 25 ORF-GFP fusions. Population

Figure 2. Genetic contribution to protein levels via trans variants. (A) Protein levels are similar in the inbred BY 3 BY and segregating RM 3 BY
populations. Average protein level for the inbred BY3 BY individuals (x-axis, log10 scale) and BY3 RM segregants (y-axis, log10 scale) for 3173 genes (blue
dots). Individual examples of genes with a large difference between inbred and outbred progeny, and genes discussed in the text are highlighted. (B) The
distribution of differences in GFP level between inbred and outbred populations is tightly centered on zero. The effect of 0.1 on the log10 scale corresponds
approximately to a difference of 25%. (C ) Single-cell protein level heritabilities are low. Distribution of broad sense heritability (x-axis), calculated as the
fraction of total variation explained by genotype in the pooled population of inbred BY3 BY and outbred RM3 BY segregants, assuming 50%contribution
from both. Median heritability across genes is marked with a red asterisk. (D ) Population average protein level heritabilities are high. Distribution of broad
sense heritability (x-axis), calculated as the average squared difference of mean protein level between inbred BY3 BY individuals and RM3 BY segregants
and the total variation in average protein level across replicates and populations. Median heritability across genes is marked with a red asterisk.

Genetic basis of protein level variation in yeast
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average GFP levels of sorted fractions were stable for at least 10

generations (Supplemental Fig. 6). We compared parental contri-

butions bymeasuring variant allele frequencies between the sorted

populations by microarray genotyping and Illumina sequencing.

In total, we found 156 genomic regions in which the RM allele

frequency was at least 20% different between the GFP low and

high populations and defined these as protein level quantitative

trait loci (pQTLs; false discovery rate = 22%) (Supplemental Table

7; Supplemental Fig. 7; Methods). For a subset of traits, we iden-

tified nonsynonymous variants within the mapped region (Fig. 3B)

and identified the causal gene by allele replacement and reciprocal

hemizygosity test (Fig. 3C; Supplemental Results). The number of

pQTLs per ORF-GFP varied from zero to 22, with a median of five.

While technical factors contribute to the detection power in an

individual cross, the number of loci we havemapped indicates that

regulation of protein levels is not genetically simple.

Many of our pQTLs mapped to previously identified eQTLs

(Fig. 3A; Smith and Kruglyak 2008). Eleven trans eQTL hotspot

regions segregated in our experiment and regulated at least 30

transcripts; eight of them also had at least four pQTLs at a relaxed

cutoff (1.0 expected) (Methods). The three eQTL-rich regions that

did not harbor multiple pQTLs were located on chromosomes IX

and XVI, and a chromosome region XV that includes the IRA2

gene, discussed below.

Concordance of genotype effects on mRNA and protein level
The genetic determinants of mRNA levels likely also affect corre-

sponding protein abundance. To test whether this is the case for

our mapped varying traits, we compared the previously identified

eQTLs (Smith and Kruglyak 2008) to our pQTLs.We calculated the

eQTL effect size from amultivariate regressionmodel that includes

all significant eQTLs (Methods; Smith and Kruglyak 2008) and

used the difference in RM and BY allele frequency at the pQTL

locus as the pQTL effect size. There were 19 significant eQTLs (log-

odds score > 5) for our 25 interrogatedORF-GFP genes, 12 of which

had a concordant pQTL of effect at least 0.1 (Fig. 4A; Methods). We

also found several strong pQTLs that did not show an eQTL signal

(Supplemental Fig. 8). For example, of the 10 strongest pQTLs,

three mapped to a 280-kb locus on chromosome XI, with the RM

allele linked to high levels of Tdh2-GFP, Eno2-GFP, and Sed1-GFP

proteins. Post-transcriptional regulation of glycolytic gene prod-

ucts, including Tdh2 and Eno2, has been reported previously

(Bruckmann et al. 2007), suggesting a mechanism regulating

central carbon metabolic protein levels independent of transcript

levels. It is possible that the same process underlies some of the

other large heritable changes we found for other proteins involved

in glycolysis (Supplemental Table 2). Our genome-wide analysis

and subsequent pQTL mapping suggest functionally coherent

regulation of protein abundance above regulation of mRNA levels.

Figure 3. Protein level QTLs. (A) Genome-wide density of pQTLs and eQTLs. Number of pQTLs (y-axis, linear scale, positive), and eQTLs (y-axis, log2
scale, negative) in 50% overlapping 25-kb bins along the genome (x-axis). eQTL peaks with at least 30 linkages, and pQTL peaks with at least four pQTLs
are highlighted with either bright redmarkers (peak present for both pQTLs and eQTLs), dark redmarkers (peak present for pQTLs or eQTLs, but not both),
or black markers (eQTL peaks due to alleles not segregating in our cross). Known QTL hotspots are marked with the causal gene. (B) Chromosome IV QTL
for Hxt2-GFP abundance overlapping the RGT2 locus. The allele frequencies (y-axis) in the GFP high pool (red) and GFP low pool (blue) along a 200-kb
region of chromosome IV (x-axis). Each dot corresponds to one segregating site between the BY and RMparents, with its y-coordinate equal to the fraction
of sequencing reads with the RM allele mapped to the site. Solid lines correspond to window-averaging of the dots and approximate the underlying
population allele frequency, with the 5% confidence intervals given by shaded regions. The estimated difference between the RM allele frequencies in the
GFP high and low pools is overlaid with a solid black line, and the local allele frequency differencemaximumwith a dashed black vertical line. Yeast genes in
the region are displayed below the allele frequencies as rectangles, with the RGT2 gene highlighted. (C ) RGT2RM (blue) and PDR1RM (yellow) are causal
alleles for Hxt2 and Pdr5 protein level differences, respectively, by reciprocal hemizygosity. Two independent clones weremeasured in triplicate for the BY3
RM hybrid (left), the same hybrid with the BY allele deleted (middle), and the RM allele deleted (right).

Parts et al.

1366 Genome Research
www.genome.org



Multiple pleiotropic regulators of mRNA levels have been

mapped in the BY3 RMcross (Brem andKruglyak 2005; Smith and

Kruglyak 2008), with HAP1, MKT1, and IRA2 loci showing the

most profound effects (Fig. 3A). We examined the contribution of

known regulators of mRNA abundance on protein level by build-

ing RM alleles of these three genes into the BY parent background

in series and repeated the cross to generate BY 3 BYRMregulator

progeny in which these regulators were the only segregating loci.

We then compared the effect of the allele swaps onprotein levels to

the effect of corresponding locus genotypes onmRNA abundance.

We found high concordance between effects of the HAP1 locus

genotype on GFP and mRNA levels (Spearman rho = 0.57) and

moderate concordance between theMKT1 locus effects (Spearman

rho = 0.33) (Fig. 4B,C; Supplemental Table 8; Methods). The IRA2

locus also affected bothmRNA and protein levels, but its effects on

the protein levels in our study were anticorrelated with those from

the previous mRNA results (Spearman rho =�0.49) (Supplemental

Fig. 9). Overall, these three known major effect loci partially ex-

plain nearly half the genes with >20% GFP level change (84/197,

43%), with the remaining 113 genes not strongly enriched in

specific GO categories (p > 10�3) (Supplemental Table 3). Our re-

sults confirm indirect control of protein abundance via mRNA

abundance, and further identify nearly 120 heritable protein traits

that cannot be accounted for by these major effect eQTLs.

Discussion
The ability to quantify how genetic signals are propagated from

genome to phenotype has been limited by the lack of sensitive

high-throughput assays of intermediate phenotypes. We have

overcome this limitation for the examination of protein levels by

use of large-scale crosses and high-throughput phenotyping of

single cells. We have shown that genotype-dependent changes in

mRNA levels, the immediate product of DNA, are to a large extent

carried through to respective protein abundances. As anticipated

but not previously demonstrated (Foss et al. 2007, 2011; Wu et al.

2013), the effects of the loci that contribute to the differences are

shared across both expression and protein level phenotypes. A

recent pQTL mapping study of the BY 3 RM cross found that the

majority of eQTLs have a corresponding pQTL, and that cis pQTLs

exist for about half of the tested genes (Albert et al. 2014). This

result is complementary to the present work, as only three protein

traits overlapped between studies. Given the broad similarities in

cis genetic control of mRNA and protein levels (Skelly et al. 2013;

Wu et al. 2013; Albert et al. 2014), it is reasonable to assume that

a large fraction of described mRNA level regulators in humans,

including variants associated with common diseases, affect the

levels of corresponding proteins (Nica et al. 2010).

Whilewe demonstrated that cis signals onmRNA level alone are

not sufficient to explain the heritable variation in genetically com-

plex protein levels, both our data and previous studies (Keurentjes

et al. 2007; Ghazalpour et al. 2011; Albert et al. 2014) suggest that

the effects of trans variants on the proteome are generally smaller,

perhaps due to purifying selection acting on alleles that have

a large effect onmultiple transcripts or proteins (Battle et al. 2014).

The extent to which common genetic variation in cis and trans

contributes to translation, protein degradation, mRNA turnover,

and other important regulatory layers remains to be precisely

quantified, but we have shown that several pleiotropic regulators

of mRNA abundance influence levels of the corresponding pro-

teins through one of these mechanisms.

Gene expression heterogeneity within a population can be

due to the influence of cell cycle position, stochastic expression,

epigenetic effects, or other factors. Such variation, sometimes

termed noise, has been demonstrated to have a complex genetic

basis for some traits (Ansel et al. 2008), and postulated to underlie

bet-hedging strategies (Levy et al. 2012). Genetic influences of

trans variants that we have focused on could be reflected in in-

creasing or suppressing variation in the inbred or segregating

population without affecting the mean expression. However, as

the inbred and segregant population GFP level variances do not

show large differences (Supplemental Fig. 3C) and the heritability

calculations take these variances into account, our data do not

provide strong evidence toward genetic control of gene expression

variance independently of the average abundance. Substantial

influence of genetic interactions has been found for mRNAs (Brem

et al. 2005; Smith and Kruglyak 2008) and other traits (Gerke et al.

2009; Costanzo et al. 2010), and we expect to uncover interactions

between loci in trans as well as between the genotype of the pro-

moter and distal regulators in future experiments.

Figure 4. Concordance of genotype effects on mRNA and protein level. (A) eQTL and pQTL effect directions and magnitudes are concordant. Dif-
ference betweenmRNA level in the segregants with the BY and RM allele at the eQTL locus (x-axis) is concordant with the difference between the RM allele
frequencies between the corresponding ORF-GFP high and low pools at the eQTL locus (y-axis) for 12 eQTLs (blue dots), and not detectable for the
remaining seven (red dots). (B) Comparison of allele effect sizes for HAP1 locus. Change in GFP level in response to substituting the HAP1RM allele into the
BY background (x-axis) is correlated with the difference between average mRNA levels of segregants with the HAP1RM and HAP1BY alleles (y-axis) (Smith
and Kruglyak 2008) for genes with an mRNA level linkage to the HAP1 locus (red markers). Changes in all other genes (blue markers) are shown as
a reference. (C ) As in B, but for bothMKT1RM and IRA2RM alleles introduced to the BY background and genes withMTK1mRNA linkages highlighted in red.
See also Supplemental Figure 9.
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Methods

Strain construction and crossing
Starting strains were generated from the BY4742 (BY) or LK1552
(RM11-A) strain (Supplemental Table 1). Query MATa strains car-
rying the HTA2-mCherry:URA3MX allele were crossed to the GFP
array MATa strains using a modified synthetic genetic array pro-
cedure (Tong and Boone 2006) to create large pools of inbred (BY
query 3 BY GFP array) and segregating outbred (RM query 3 BY
GFP array) haploid individuals. We developed and used a low-
fluorescent mCherry* allele (Y198C) in the RM parent to distin-
guish progeny of inbred BY3 BYand segregating RM3 BY crosses
based on red fluorescence signal (Fig. 1C). To quantify cis effects,
we generated 52 ORFs with GFP fusion strains in the RM back-
ground (RMG) parallel to the BY collection (BYG). We crossed the
BY and RM query strains to the GFP fusion strains in both back-
grounds, yielding BY3 BYG, BY3RMG, RM3BYG, and RM3 RMG

crosses. Additional details on strain construction and production
of diverse haploid populations are available in Supplemental
Methods.

Cytometry

Inbred BY3 BYand segregating RM3 BYpopulations were pooled
in the liquid culture; cis effect screens and reciprocal hemizygosity
confirmation were grown separately. For each culture, measure-
ments from up to 50,000 cells were collected using an LSR II flow
cytometer (BD Biosciences) following sonication. Scatter and
mCherry measurements were used to filter the data and cluster the
cells into budded vs. unbudded and mCherry high (mCherry wild
type, BY 3 BY cross) vs. mCherry low (mCherry*, RM 3 BY cross)
classes (schematized in Supplemental Fig. 1). Unbudded (side-
scatter low) populations were used to calculate GFP abundance
summary statistics (mean, median, variance, count) both on raw
data, and log10-transformed data on all the cells, as well as the
middle 10% of the cells centered on the median cell size (FSC-A),
followed by normalization across replicates (Supplemental Tables
2, 5). To quantify the cis effect of the RM allele, we calculated the
difference between the BY3 RMG and RM3 BYG normalized GFP
level. Methodological details, including relevant instrument con-
figurations and data preprocessing, are in Supplemental Methods.

Microscopy

We imaged the cell cultures on the Opera High Content Screening
Platform (PerkinElmer) using Dextran Alexa647 fluor (Molecular
Probes) in themedia to distinguish cells from the background. The
images were processed with CellProfiler (Stoter et al. 2013) (pipe-
line in Supplemental Data set 3). Segmented cells were classified
into inbred BY 3 BY and outbred RM 3 BY populations according
to the mCherry signal, and GFP abundance statistics were calcu-
lated from the populations using average cellular pixel GFP in-
tensity as a readout. Details on image acquisition and processing
are available in Supplemental Methods.

Heritability estimation

For single-cell levels, we assumed the entire considered population
to consist of 50% RM3 BY segregants and 50% of inbred BY3 BY
individuals, which produces an estimate for the total variance in
the population s2 as 0.5(s2

inbred + s2
segregants + 0.5D2), where the

s2
inbred and s2

segregants are calculated directly from cytometry data,
andD is the difference between the correspondingmeans.We then
computed the heritability as max(0, 1 � s2

inbred/s
2). The as-

sumptions of the population composition and log-transformation
of the data affect the distribution of heritabilities but not the
qualitative conclusions drawn (Supplemental Fig. 3D,F). For pop-
ulation average level heritability, we estimated the variances as
average squared errors of the population average measurements
across replicate experiments (Supplemental Fig. 3E,G). Additional
details on heritability calculations are in Supplemental Methods
and Supplemental Figure 3H–K.

Cell sorting

We chose 25 ORFs with large GFP level differences between inbred
BY 3 BY and RM 3 BY segregants in our whole-genome screen and
used flow sorting (FACSAria, BD Biosciences) to isolate 20,000 cells in
the top5%(‘‘GFPhigh’’) andbottom5%–10%of theGFP levels (‘‘GFP
low’’) for two replicates of each of the corresponding ORFBY-GFP
segregant pools. Sorted cells were grown as single colonies, pooled,
and re-measured by flow cytometry to confirm that the selected
difference in averageGFP levelwas inherited (Supplemental Fig. 6).
Culture pregrowth and sorting setup is described in Supplemental
Methods.

Sequencing and microarrays

DNA was extracted from the sorted pools, following Nextera XT
library preparation, and sequencingwas done using 100-bp paired-
end reads on the Illumina platform. RNA was extracted from two
replicates each of a pool of 96 BY 3 BY and RM 3 BY crosses, fol-
lowed by Illumina sequencing. For each sequenced DNA sample
from a sorted pool, the posterior distribution of the RM allele fre-
quency at each locus was calculated as described (Parts et al. 2011).
ORFmRNA abundance was calculated as the average read coverage
of theORF.Microarraymeasurements were performedwith Agilent
SurePrint oligonucleotide microarrays with 60-nt probes (Agilent
Technologies), and the difference between the BY and RM probe
intensities for each sample at each locus was used as the genotype
signal. Details of sequencing library preparation, array design and
hybridization, and data processing are provided in Supplemental
Methods.

pQTL calling

pQTLs were called as regions for which the posterior allele frequency
difference between the GFP very high and low populations was at
least 20%, and at least five standard deviations, and the pQTL peak
center was picked as the site with the highest combined allele fre-
quency difference. The frequency of expected false positives was
calculated as the fraction of all sites in the other replicate that
exhibited allele frequency change of at least 10% in the same di-
rection within 500 bp of a randomly picked QTL peak center. Com-
parison of pQTLs and eQTLs is described in Supplemental Methods.

Analyzing effects of alternate alleles of transcriptional
regulators

Allele replacements of HAP1RM, MKT1RM, and IRA2RM were per-
formed in the BY background. The population average GFP level
was measured using a Tecan Infinite M1000 fluorometer (Supple-
mental Table 8). Full details of strain construction and analysis are
in Supplemental Methods.

Data access
The sequencing data from this study have been submitted to the
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/)
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under accession number PRJEB5268. The microarray data are
available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-2269. The data and source code
used for analysis are available in the Supplemental Material.
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