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Abstract: Aim: To load-test the osseo-integrated rectangular block implant (RBI), measure the gener-
ated cortical peri-implant strains, and relate these findings to known human physiological parameters.
Materials and methods: Two RBIs were placed into the posterior mandibular saddle in a mature grey-
hound dog and allowed to osseo-integrate. The half mandible (implants in situ) was mounted in
a servohydraulic system. Four triple-stacked rosette gauges were placed cortically (mesial, distal,
buccal, and lingual). A modified ISO-14801 protocol was used (1000 N, 300, 2 Hz, 1 h) and the
generated principal strains (ep, eq) and their angular orientations (F), were calculated. Results:
(1) Bucco-lingual “horizontal” dimension: dominant “horizontal” compressive stresses were on the
lingual aspect and “horizontal” tensile stresses on the buccal aspect. The buccal cortex was elastically
tensile-stretched, while the lingual cortex was elastically compressed. (2) Bucco-lingual “vertical”
dimension: dominant vertical torsional stresses were oriented buccally and apically, with an overall
buccally inclined torsional effect. This was also evidenced on the lingual aspect, where there remained
high torsional rotation elements (high F and e2). (3) Mesio-distal “horizontal” dimension: dominant
torsional stresses oriented as a distal-lingual “counter-clockwise” rotation. Conclusions: The applied
off-axial loads generated a heterogeneous pattern of bucco-lingual and mesio-distal cortical strains,
both vertically and horizontally. The short dimensioned osseo-integrated RBI design appeared to
biomechanically withstand the applied loads and to maintain the strains generated to levels that were
within physiological limits. More studies and statistical analyses are needed to confirm these findings.

Keywords: rectangular block implant; osseo-integration; masticatory load; stress concentration;
strain generation

1. Introduction

Short implant-supported prosthodontic success for the resorbed posterior saddle has
been reported as high [1]. This problem is especially evident in the mandibular posterior
saddle, where occlusal loads are high [2] and where, after many years, the ridge is resorbed.
The importance of implant design in addressing functional demands and reducing stress
concentration has been extensively discussed [3,4]. This research project poses a novel
design of dental implant, the rectangular block implant (RBI). It is specifically designed
to address the needs of patients with this clinical problem. It represents a new concept in
implant design and force distribution [5].

Occlusal overload has been defined as a load that exceeds the load-bearing capacity of
the implant and its prosthesis, resulting in the biological failure of osseo-integration and
the mechanical failure of the prosthesis [6].

Despite the suggestion that occlusal overload may serve as a major contributing factor
to prosthetic failure [7–9], various clinical and animal studies have provided conflicting
evidence regarding its negative impact on implant osseo-integration [10–12].

Based on clinical observations, late implant failures have been related to heavy occlusal
contacts and/or parafunctional habits [13–17], excessive cantilever lengths [14,18–20], the
significant deviation of the prosthesis from the implant axis, and increased crown–implant
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ratios [21]. Conversely, other clinical studies have disagreed with the association between
occlusal load and increased crestal bone loss [22–28].

Strain gauge analysis has been extensively applied to bone [29] and the peri-implant
cortical elements of osseo-integrated fixtures in an effort to characterize the impact of the
loads applied to the adjacent bone [2]. The importance of these endeavors is exemplified
by work [30] which has first established that bony structure adapts through remodeling
processes to maximally withstand applied loads and secondly, clarified strain levels as de-
terminants of the capacity of bone to undergo such physiological adaptation. Frost [30–32]
defined adaptive bone physiological limits where remodeling begins at approximately
500 µε and ceases at approximately 3000 µε, beyond which a pathological state exists.

This endeavor is not designed to replace cylindrical implant designs that currently ex-
ist. It is aimed at providing a specialized implant fixture for a particular clinical application,
that is, the restoration of the resorbed alveolar ridge. The RBI presents a novel approach in
that its longitudinal axis is along the mesial-distal length of the remaining ridge, which is
the very dimension in which nature preserves the maximal remaining bone volume, while
its flat surfaces provide an even force distribution and maximizes surface area.

The aim of this article is to qualitatively analyze the biomechanical characteristics of the
osseo-integrated RBI by determining the peri-implant cortical strains generated through the
application of high (1000 N) unfavorably angulated loads that simulate extreme masticatory
force. It is a qualitative analysis, in supplementation of the post-integration mechanical
testing of the osseo-integrated RBI (mechanical push and pull tests) that has already been
performed [5].

2. Materials and Methods
2.1. The Rectangular Block Implant

For details of design, readers are referred to patents: Europe and the United Kingdom
(EP 32911759 B1; Australia (2016257149 B2). The manufacture of the RBI has been described
in an earlier publication [5].

2.2. Animal Surgery and Ethics

All procedures were performed under Animal Ethics approval (see below). The ap-
proval for this in vivo animal model and its selection was based on its ability to mimic the
human resorbed alveolus after creation of edentulous posterior regions.

The surgical protocol evaluation and clinical testing were achieved through the place-
ment of 2 RBIs into a mature male greyhound dog in a prepared (left side) posterior
edentulous mandibular saddle. This animal model was chosen on the basis of its thin
mandibular structure and underlying inferior alveolar nerve neurovascular bundle, closely
simulating that of the human structure in the edentulous state. The details of the surgical
aspect of implant placement, including anesthesia, have been described elsewhere [5].

Ethical constraints in this study mitigated against the use of greater numbers of
animals and mandated the use of the minimal possible number. As a result, one animal
only was available for this component of the RBI’s biomechanical analysis.

The animal experimentation protocol (including the research question, key design
features, and analysis plan) was prepared prior to the commencement of this study and
submitted for approval (and retained) by the Animal Ethics Committee at the University
of Melbourne. Upon approval, the conduct and reporting of the study were executed
in accordance with the principles of Enhancing the Quality and Transparency Of health
Research (EQUATOR), which are embodied by [33] as applied to animal experimentation:
Animal Research Reporting In Vivo Experiments (ARRIVE).

2.3. Osseo-Integration

This was assessed clinically at second-stage surgery exposure, at which time the
animals were sedated, and then euthanized through administration of 20 mL of sodium
pentobarbitone (325 mg/mL) into the right cephalic vein.
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Resonance frequency analysis (RFA) (Osstell, W & H Pty Ltd., Sydney, Australia,
Smart Peg #47) and torque tests (torque wrench: Nobel Biocare, Sydney, Australia) ap-
plied through a cylindrical healing abutment were performed. Successful clinical osseo-
integration was deemed to have been achieved if the implant produced Osstell readings
over 80 from all directions (mesial, distal, lingual, and buccal), as well as five torque test
levels of over 35 Ncm.

2.4. Embedding

After second-stage clinical testing, the mandible was carefully dissected, de-fleshed,
and sectioned in two through the midline to isolate the half mandible arch into two,
containing the two implants.

The left half of the mandible was embedded in acrylic material (Vertex Trayplast,
Vertex-Dental BV, The Netherlands), such that it was rigidly stabilized. The acrylic was
ground and sanded to produce a platform with a flat base. The mandibular section was
kept as one long piece as much as practicably possible (Figure 1).

Figure 1. Embedded half mandible in acrylic, leaving the exposed alveolus and integrated implants.

The embedment of the bone was limited so as to expose the entire implanted region.
Buccal and lingual bone was left exposed to a depth (8–9 mm) such that it exceeded the
depth of the implants (5.5 mm).

The mesial implant had passed both tests at the second stage and, hence, was used for
this component of the study. The distal implant was left undisturbed in situ throughout the
remaining course of this experiment and remained as a “spare”.

2.5. Prosthetic Crown and the Force Application

A titanium (Grade V) prosthetic abutment designed to engage the unique RBI internal
geometry was prepared and inserted into the mesial RBI at 35 Ncm.

A prosthetic test crown (Cobalt Chrome alloy) was designed (Figure 2) with a central
hollow shaft for abutment screw access and prepared (Figure 2) with a grooved step placed
on the lingual aspect for a buccally oriented off-axial load application. The crown was trial
fitted to ensure complete and stable seating on the prosthetic abutment.
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Figure 2. Prosthetic tooth design (bucco-lingual section): the point of force application, F, is on the
lingual aspect.

After confirmation of fit, Cavit (Dentsply, Australia) temporary material was placed
over the opening of the screw shaft of the prosthetic abutment and the crown was cemented
into position with Fuji Plus (GC Corporation, Japan) glass ionomer luting cement. Excess
material was removed and a period of at least 24 h was allowed for complete setting.

Figure 3 depicts the resultant moments from the force application. It is noted that
M+ > M−; hence, ΣM is positive (i.e., 2.9 F) but less than M+. This was compounded by the
fact that the anti-rotational geometry of the assembly had a much more definitive vertical
stop design than horizontal limitation. This was a natural physical consequence of the axial
path of engagement between the prosthetic abutment and its underlying implant geometry.

Figure 3. Test assembly: crestal region moments generated. The residual axial forces (green arrows)
would be expressed apically.
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These calculations pertained primarily to the crestal regions and have been based on
the assumption of the pivotal point being at the crestal surface (i.e., at 11 mm). It should be
clarified, however, that, after factoring in the effect of the axial force component, this pivotal
point would be transferred deeper into the mandible (depending on the relative stiffness of
the cortico-cancellous architecture). The exact position of this remained unknown.

2.6. Strain Gauges

The gauges used were of a stacked rosette design: miniature three-element 45-degree
rosettes ((WA06030WR120) Measurements Group Inc., Raleigh, NC, USA). The configura-
tion used in the current project was that of a quarter bridge (that is, 3 precise resistors and
1 active in each gauge).

The stacked rosette gauge ensured that all three-gauge elements were above the
portion of the region being examined. Each of the grids was at 45 degrees to the other. The
area of overlap defined the portion of the cortex being examined.

Strain gauges were then adhered onto the mesial crestal, distal crestal, lingual vertical,
and buccal vertical bony cortices (M Bond 200 Adhesive Kit, Measurements Group Inc.,
Raleigh, NC, USA) (Figure 4).

Figure 4. Strain gauge distribution: plan view. Note that this plan view does not show that the
buccal and lingual gauges were “vertically oriented” with respect to the mesial and distal (crestal
“horizontally oriented”) gauges.

The 450 triple-stacked rosettes yielded data produced by each double-wired output
channel (i.e., 6 wires, 3 channels). These channels (0–5) were ascribed the strain values ε1,
ε2, and ε3 in the following “flat-plan” configuration.

The mesial and distal gauges were in the “horizontal-crestal” plane parallel to the
“occlusal plane”. The buccal and lingual gauges were, in their respective “vertical” planes,
perpendicular to the crestal surface. These channels were ascribed the strain values ε1, ε2,
and ε3 in the following “flat-plan” configuration (Figure 5).

A series of secondary terminals were bonded adjacent to each of the gauges in an area
not being investigated. The secondary terminal prevented any strain transferring to the
gauge from accidental pulling of the wires. The lead wires were connected to the secondary
terminals using fine color-coded Teflon-encased wires (Miniature PTFE Wire (H-UT 3607 T
F) Habia Cable Asia Ltd., Swedish Branch, Soderfors, Sweden).
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Figure 5. Orientation of gauge leads with respect to the implant surfaces. The orientation of the
mesial and distal rosettes and their leads was such that ε1 was perpendicular to the adjacent surface
of the implant, ε3 was parallel to this surface, while that of the buccal and lingual gauges was such
that ε3 was perpendicular to the adjacent surface of the implant and ε1 was parallel to this surface;
ε2 was at 450 to each of these in each case.

The wires from the secondary terminals that were a larger gauge cable were used to
connect to the data acquisition system (Data Logger, CPE Systems, Victoria, Australia).
The strain gauges were connected to a Wheatstone signal conditioning module (SCC-SG03
National Instruments Corp., Austin, TX, USA) housed in a configurable connector unit
(SC-2345 National Instruments Corp., Austin, TX, USA).

The outputs went directly to this system. The data were then processed and collated
using the lab view program supplied with the acquisition system. Computer software: (Lab
View 7 Express, National Instruments Corp., Austin, TX, USA). An initial measurement of
120 Ω ensured that the gauge was functional and ready to be tested.

2.7. The Mounted Set-Up

The acrylic embedding was bolted onto a brass plate attached to the base of the servo-
hydraulic platform with an angulated face of 300 from the vertical (Figure 6). The bone was
kept moist with saline through the use of a paper towel wick to avoid desiccation.

Figure 6. Buccal and mesial wires connected; space limitation meant that only 2 gauges at a time
could be used. This image shows the mesial and buccal gauges connected to the system.
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The first test run engaged the mesial and buccal gauges, while the second engaged
the lingual and distal. Uni-axial sinusoidal cyclic loading was at a possible frequency
range of 3–5 Hz for a total of up to 3 × 104 cycles, utilizing closed-loop servo-hydraulics
(MTS 810, Materials Test Systems Corporation, Eden Praire, MN). This frequency and cycle
number was chosen to expedite the test process, without deviating significantly from a low
frequency–high cycle regime. The final ε value for each channel was determined through
the mean difference between maximal and minimal detections of surface deflection to yield
positive (tension) and negative (compression) values.

3. Results
3.1. Channel Data

Schemes 1 and 2 depict the sinusoidal patterns of the gauge channels. The mean
difference (and standard deviation) between maxima and minima for each of the channels
was calculated. The results are depicted in Table 1.

Scheme 1. For each gauge, there was a mixture of compressive (negative) and tensile (positive)
strains. Mesial gauge: Channel 0 (ε1) positive, Channel 1 (ε2) negative, Channel 2 (ε3) negative.
Buccal gauge: Channel 3 (ε1) negative, Channel 4 (ε2) positive, Channel 5 (ε3) positive.

Scheme 2. The absolute strain values (relative amplitudes for 01000 N load). The distal gauge results
were all in compression (negative). Distal gauge: Channel 0 (ε1) negative, Channel 1 (ε2) negative,
Channel 2 (ε3) negative. For the lingual gauge there was a mixture of compressive (negative) and
tensile (positive) strains. Lingual gauge: Channel 3 (ε1) negative, Channel 4 (ε2) positive, Channel 5
(ε3) positive.



Bioengineering 2022, 9, 425 8 of 16

Table 1. The overall mean amplitudes of each gauge output were derived as the mean difference
between the maxima and minima of each channel.

Mesial, Buccal, Distal, and Lingual Gauges (All Readings in Micro-Strain: µε)

Channel ε1 ε2 ε3

mesial gauge
mean max-min difference 798 ± 35 −1551 ± 98 −639 ± 47

tens/comp tension compression compression
1000 N

buccal gauge
mean max-min difference −1029 ± 104 489 ± 23 1618 ± 121

tens/comp compression tension tension

distal gauge
mean max-min difference −285 ± 31 −1281 ± 127 −1742 ± 186

tens/comp compression compression compression
1000 N

lingual gauge
mean max-min difference −707 ± 56 732 ± 17 757 ± 98

tens/comp compression tension tension

3.2. Principal Strains

Using a “strain-transformation” relationship, the principal strains from the rosette
gauge were calculated (Vishay Measurements Group, NC, USA: Technical Note-515)
(Table 2). This is expressed as the two principal strains (perpendicular to each other)
and their angular orientation to the reference grid. Since the direction of the principal
strain is unknown, the angle (θ) is from the direction of the principal axis εp or εq (the
determination of which is given below) to a specified strain gauge reference grid (either ε1
or ε3) according to:

(a) If ε1 > ε3, then φp,q = φp: the reference is from ε1 to εp.
(b) If ε1 < ε3, then φp,q = φq: the reference is from ε3 to εq.
(c) If ε1 = ε3 and ε2 < ε1, then φp,q = φp = −45◦.
(d) If ε1 = ε3 and ε2 > ε1, then φp,q = φp = +45◦.
(e) If ε1 = ε2 = ε3, then φp,q is indeterminate (equal bi-axial strain).

Table 2. Principal strains and their orientations. It is clarified here that, although the positive
and negative values of the principal strains refer to tensile and compressive strains, respectively,
the overall understanding of the directions of the strains is gained when the angular orientation
is factored-in.

Principle Strains: Magnitudes (µε) and Angular Resolve

Load Gauge εp εq θ/ϕ0 Absolute Value

Mesial 1822 −1663 33.0 ε1 > ε3 (ε2 large)

1000 N
Distal 67 −2094 10.0 ε1 > ε3 (ε2 large)
Buccal 1632 −1043 4.2 ε1 < ε3

Lingual 2096 −2047 21.9 ε1 > ε3 (ε2 large)

Where ε2 values are ascribed as large, this was:

(i) Relative to the associated absolute ε1 and ε3 readings for that output;
(ii) Indicative of a high torsional element affecting that peri-implant cortex.

The overall plan view of these principal strains with respect to their proximal implant
surface is depicted in Figure 7.
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Figure 7. Principal strains and their orientations (not drawn to scale): where, indicated in red, the
value of ε2 was of a relatively large magnitude, and this has been included to be indicative of a high
torsional element. The green circular arrows represent the overall “horizontal” torsional (rotatory)
effect on the RBI. Horizontally: the mesial and distal gauges now combined to show an overall
counter-clockwise torsion (green arrows). Vertically: there was a strong push to the buccal: the overall
trend was a buccally oriented torsion (red arrow).

3.3. Observational Summary

Mesio-distally: the large ε2 values represented strong torsional elements, and the
distal counter-clockwise rotation was evident (as defined in the current plan view depiction
of the block).

Bucco-lingually: the compressive strains on the lingual aspect were evident, as well as
large tensile strains on the buccal aspect. This was especially evident on the buccal aspect,
where there was a very low Φ value, yielding essentially the buccal tensional load and the
rotational element.

On the lingual aspect, however, there remained high torsion rotational elements (high
Φ and ε2), giving a complex picture of lingual compression, a buccally directed torsion,
and a block torsion in a counter-clockwise rotation.

4. Discussion
4.1. Measured Cortical Strains

Although the data generated were collected in mesio-buccal and then disto-lingual
pairs, the results of these experiments were analyzed, by comparing the principal strains
and angular orientations of the gauge readings, as paired mesio-distal and bucco-lingual
outputs. The combined effects of the resultant paired angulated tensile-compressive strains
highlighted a complex array of results, where dominant patterns encompassed:

(a) In the buco-lingual horizontal dimension: dominant “horizontal” compressive stresses
on the lingual aspect, coupled with “horizontal” tensile stresses on the buccal aspect.

(b) In the bucco-lingual “vertical” dimension: dominant vertical torsional stresses ori-
ented buccally and apically.

(c) In the mesio-distal “horizontal” dimension: dominant torsional stresses oriented as a
distal-buccal “counter-clockwise” rotation.

The bucco-lingual and the mesio-distal aspects will now be discussed in turn and then
as a composite picture.
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4.2. Tensile and Compressive Elements in the Bucco-Lingual (Horizontal) Dimension

The ramifications of this pattern were two-fold.

(i) Horizontally. In the horizontal bucco-lingual aspect, this could be seen as an elastic
deformation of the body of the mandible. The deformation of the lingual cortex would
have resulted in concavity, while that of the buccal cortex would have resulted in
convexity. This equated to a three-point bending configuration.

This was in congruence with the complex nature of a peri-implant cortico-cancellous
bone elastic deformation buttressing effect. This effect served to limit strains to within
physiological limits. This is vital to the success of this implant design, which has the
combined characteristics of cornered ends (potential stress concentrations) and being
intended for the posterior region, where masticatory forces are maximal.

(ii) Vertically. The second ramification of this strain pattern was in the vertical (axial)
and bucco-lingual aspect, where there was an overall buccally inclined torsional
effect (Figure 8). This was evidenced on the lingual aspect, where there remained
high torsional rotation elements (high Φ and ε2), giving a complex picture of lingual
compression and a buccally directed torsion.

Figure 8. Vertical bucco-lingual torsional effect: buccal view. The red arrow depicts the applied force,
while the vertical green arrow depicts the bucco-lingual “vertical” resultant moment generating the
cortical torsional strains in this orientation. It should be noted that there would also be a “vertical”
apical equal and opposite reactive force evenly distributed along the flat face of the block (blue
arrows). The measurement of this element was beyond the scope of this experiment. (IAN: inferior
alveolar nerve).

4.3. Mesio-Distal Torsion

Relatively large ε2 values for both mesial and distal gauges were present. The distal-
buccal rotation pattern, as evidenced by the patterns of the principal strains and their
angular orientations, was dominant in this (horizontal) plane. That is, the mesial and distal
gauges at 1000 N showed opposite directional characteristics, which highlighted a strong
counter-clockwise rotation (Figure 9).

Although, from a bucco-lingual aspect, the 300 off axial load would be evident, from
the mesio-distal aspect, the force applied at the ledge of the crown should be coincident
with the axis of the entire implant crown complex.
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Figure 9. Horizontal bucco-lingual torsional effect: buccal view. The red arrow depicts the applied
force, while the horizontal black arrow depicts the “horizontal” mesio-distal resultant moment
generating the cortical torsional strains in this orientation. Again, it should be noted that there would
also be a “vertical” apical equal and opposite reactive force evenly distributed along the flat face of
the block (blue arrows). The measurement of this element was beyond the scope of this experiment,
including any of its secondary effects of super-imposing further strains at the positions of the surface
strain gauges.

It is posited that there were imperceptible off-axial loadings in the mesio-distal engage-
ment of the ledge. This, in turn, would have resulted in a mesio-distal rotational moment
generating (via the osseo-integration interface) localized torsional cortical stresses. Such
a nonaxial load could result in rotatory cortical torsional stresses, which may be either
mesially or distally oriented (clockwise or counter-clockwise).

4.4. Combined Mesio-Distal and Bucco-Lingual Torsion

Ultimately, the results of this study have highlighted horizontal and vertical cortical
torsional stresses, which, although analyzed separately in the above results, were expressed
simultaneously in the peri-implant cortical environment (i.e., the super-imposition of
all strains).

These torsional elements were evident through high ε2 strain gauge values for the
lingual, mesial, and distal gauges. It is thought that this was not reflected in the buccal
gauge at 1000 N due to the dominant buccal flexure of the body of the mandible at that
point (Figure 10). The torsional elements at 1000 N were further evidenced by the complex
angular orientations of the principal strains. A diagrammatic representation of the overlay
of the horizontal and vertical cortical torsional stresses can be given (Figure 11).

Figure 10. The buccal flexure of the body of the mandible dominated the readings of the buccal gauge.
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Figure 11. The remaining gauges allowed an overall picture of torsional stresses in the body of the
mandible. The horizontally (mesial-distal) oriented rotational moment caused by the inadvertent
off-axial load application, as seen from the buccal aspect, has been included as a horizontally oriented
torsional load (yellow arrow). In this study, this rotation has been defined as counter-clockwise.

4.5. The Complexity of the Principal Strains and their Angular Orientations

The generation of the complex patterns of principal strains and their angular orien-
tations in the results of this study reflected the equally complex relationship between the
block implant and its surrounding bony environment. Possible (and undefined) key factors
underpinning this complexity included:

(i) The angulation and rotation of the block in the mandible, e.g., the bucco-lingual slant.
This factor varied with respect to the differences between the crestal morphology
of the alveolar ridge and the underlying cross-sectional morphology of the body of
the mandible.

(ii) The particular pattern of osseo-integration around the block itself. Judge [34] exten-
sively studied the trabecular and cortical architecture of the dog mandible, depicting
a high level of variation and heterogeneity in its make-up, while Monje et al. [35] have
highlighted the variability in trabecular density and volume in the posterior mandible
from site to site.

(iii) The particular relative thicknesses of the cortical and cancellous bone, as well as the
shape of the mandible at the position of the implant. These factors would have affected
the critical elements of cortical flexural stress and cancellous tensile shear stress, as
defined by the mathematical principles of such a bi-layered composite beam [36,37].

(iv) The inability to perfectly align the application of the force. The step on the crown
and the engaging push rod would inevitably have some degree of variation in their
orientations. Deviations from perfect parallelism would be expressed as a bias in force
resolution, as well as the resultant axial moments, torsional stress concentrations, and
strain levels.

Furthermore, internally within the cancellous bone which forms the bulk of the osseo-
integrative connection, the block itself will undergo rotatory influences depending on the
exact angulation of the force applied to the prosthetic crown and the alignment of this force
system to the implant body and its alignment, in turn, to the body of the mandible.

This complex interplay of both the bucco-lingual cortical and cancellous rotatory
moments ultimately expressed influence on the mesial and distal peri-implant bone stresses,
producing either compression or tension depending on the rotation experienced. The
elucidation of these factors will require further analyses.

In the oral environment, bony architecture is highly variable, opposing teeth may be
axially tilted, and there may be little prosthodontic latitude in directing masticatory forces
axially. Indeed, it emerges that the current possible paraxial loading and non-parallelism in
placement is most likely a reflection of the true clinical setting. There is little information
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that can clarify these factors, and further analyses beyond the scope of this endeavor
are needed.

4.6. Physiological Limits

Crucially, the strains generated in the mandible here were within physiological lim-
its [29] (<3000 µε, Frost 1987), despite the application of 1000 N of obliquely applied
force. The successful ability of the osseo-integrated RBI environment to biomechanically
withstand such forces points to two key factors.

(i) The importance of the role of the mandible as a single and flexible composite beam.

It was found that, at high loads, tensile strains dominated buccally, while compressive
strains dominated lingually. It was posited that these strains were evidence of a buccal-
lingual mandibular torsional flexure, both in the vertical and horizontal planes.

The differential in the moduli of elasticity between the cortical and cancellous osseous
components would yield a rigid yet flexible beam. The successful osseo-integration of the
block into the mandible meant that it was essentially a fixed component of this “beam”,
and the forces applied to the implant were transferred to the body of the mandible itself.
The predominant stresses generated were buttressed through both cancellous bone shear
and cortical axial bending stresses.

Despite having a higher failure rate than their longer counterparts, short implants
have been extensively documented as being successful, even with crown-to-implant ratios
exceeding 200%. It is postulated that the observations of this component on a more general
level elucidate a fundamental factor at play, which, although present in all implants, is
especially highlighted in short implants; the higher concentration of stresses per unit area
of the implant is dissipated through the flexure of the mandible itself, acting as a single
composite beam. What emerges is a reduction in peri-implant strain levels to within
physiological limits, even when forces are applied that would be expected to produce
strains beyond physiological limits. These results are in congruence with the results of:

Kan et al. [2]: masticatory overloaded implant scenarios failed to yield peri-implant
stresses beyond physiological limits.

Judge [34]: masticatory mechanical loading of the mandible yielded flexure and stress-
induced elastic deformation of the mandible as a whole, as evidenced by a complex array
of transient strains, even at sites distant to the implant.

It must be highlighted that this study has focused solely on the use of cortically placed
strain gauges. Cancellous bone tensile strength is also a critical factor in mandibular
composite beam analysis. Assessment of this, however, requires the trabecular assessment
of strains. Although beyond the scope of this analysis, it emerges that further studies are
needed using trabecular, as well as cortical bone strain gauge readings.

(ii) The rectangular design.

It is posited that the flat walls of the polygonal block design acted to reduce torsional
stress concentrations by providing a large wall-like flat surface area that served to yield a
more even distribution of stresses. In the buccal “vertical” torsional stress orientations, this
was achieved by the flat 24 mm2 face of the block. This is to be contrasted with the uneven
stress distribution of a cylindrical counterpart, where the most buccal radial curvature must
reflect the greatest burden of stress concentration.

This difference was also reflected in the mesio-distal “horizontal” torsional stress
orientation. The radially symmetrical nature of a cylinder will induce higher radial torsional
stresses within the investing bone at its mesial and distal tangents when subjected to
a rotatory load as compared to a rectangular block of the same mesio-distal maximal
dimension (Figure 12). This is, in part, due to the anti-rotational geometry of the block
resulting from its length and its corners and cornered edges. These factors will also act to
reduce peri-implant torsional stresses of the osseo-integrated RBI.
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Figure 12. Applied horizontal rotatory force: occlusal view of a cylindrical implant of diameter 2X
and a block implant of length 2X: an equal moment M, is generated through an equal force F, applied
at an equal distance X from the center of each structure. It is seen that the torsional surface stresses
will be more concentrated at the radial tangents of the cylinder compared to the lower, more even
distribution of the torsional loads of the flat-faced block (depicted as red arrows). The corners of the
block wound also act in opposing resistive directions to the applied moment (green arrows), further
reducing the overall peri-implant torsional stresses.

4.7. Limitations

It is acknowledged that the results of this study must be interpreted with caution,
as it is lacking statistical power. Further studies are needed, where larger samples of
implant bone samples are used to yield high numbers of results. The utilization of strain
gauges [19,34] in these samples would also yield data for future FEA of the osseo-integrated
RBI. These limitations were underpinned by both financial and ethical approval constraints.
These constraints impacted directly on the number of implants and animals used, and,
hence, the lack of controls, as well as the small sample size.

It is further conceded that this study is animal-based; hence, caution should be imposed
when extrapolating implications of these results to the human situation.

5. Conclusions

The observations of this limited qualitative analysis showed that the applied off-
axial load to the osseo-integrated RBI generated a heterogeneous pattern of strains. The
dominant characteristics of this pattern were:

(i) Tensile and compressive strains were expressed bucco-lingually and mesio-distally.
(ii) Bucco-lingually, there was a “horizontal” flexure of the body of the mandible, produc-

ing buccal tensile strains and lingual compressive strains.
(iii) Bucco-lingually, there were strong “vertical” torsional stresses directed apically on

the buccal aspect.
(iv) Mesio-distally, there were strong horizontal torsional stresses in a disto-buccal orientation.

The short dimensioned osseo-integrated RBI design appeared to biomechanically with-
stand the deliberately exaggerated off-axial simulated masticatory loads and to maintain
the strains generated to levels that were within physiological limits. The conclusions and
ramifications of this study are provisional, as more studies and statistical analyses are
needed to confirm them.



Bioengineering 2022, 9, 425 15 of 16

Author Contributions: Conceptualization, E.G.; methodology, E.G., J.E.A.P. and R.B.J.; software, E.G.
and J.E.A.P.; validation, E.G., J.E.A.P. and R.B.J.; formal analysis, E.G., J.E.A.P. and R.B.J.; investigation,
E.G.; resources, E.G., J.E.A.P. and R.B.J.; data curation, E.G.; writing—original draft preparation, E.G.,
J.E.A.P. and R.B.J.; writing—review and editing, E.G., J.E.A.P., M.N. and R.B.J.; visualization, E.G.;
supervision, R.B.J. and J.E.A.P.; project administration, E.G.; funding acquisition, R.B.J. (Internal). All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical approval for this study was provided by the Animal
Ethics Committee, University of Melbourne (Ethics ID: 1112344.1).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This research was assisted with funding kindly provided by the Melbourne
Dental School, University of Melbourne, and the Australian Prosthodontic Society.

Conflicts of Interest: The authors declare that they have no financial or other conflict of interest in
the conduct and reporting of this study. All intellectual property ownership rights remain vested in
the University of Melbourne, and not the authors themselves.

References
1. Rosentiel, S.F.; Land, M.F.; Fujimoto, J. Contemporary Fixed Prosthodontics, 4th ed.; Mosby Publishing Co.: St. Louis, MO, USA,

2006; p. 381.
2. Kan, J.; Judge, R.B.; Palamara, J. In Vitro bone strain analysis of implant following occlusal overload. Clin. Oral Implant. Res. 2014,

25, e73–e82. [CrossRef] [PubMed]
3. Misch, C.E.; Suzuki, J.B.; Dietsh-Misch, F.; Bidez, M.W. A positive correlation between occlusal trauma and peri-implant bone

loss: Literature support. Implant. Dent. 2005, 14, 108–116. [CrossRef] [PubMed]
4. Cehreli, M.; Sahin, S.; Akca, K. Role of mechanical environment and implant design on bone tissue differentiation: Current

knowledge and future contexts. J. Dent. 2004, 32, 123–132. [CrossRef] [PubMed]
5. Gazelakis, E.; Judge, R.B.; Palamara, J.E. The biomechanical profile of an osseo-integrated rectangular block implant: A pilot

in vivo experimental study. Clin. Oral Implant. Res. 2021, 32, 1274–1287. [CrossRef]
6. Isidor, F. Loss of osseo-integration caused by occlusal load of oral implants–A clinical and radiographic study in monkeys. Clin.

Oral Implant. Res. 1996, 7, 143–152. [CrossRef]
7. Rilo, B.; da Silva, J.L.; Mora, M.J.; Santana, U. Guidelines for occlusion strategy in implant-borne prostheses. A review. Int. Dent.

J. 2008, 58, 139–145. [CrossRef]
8. Kim, Y.; Oh, T.J.; Misch, C.E.; Wang, H.L. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical

rationale. Clin. Oral Implant. Res. 2005, 16, 26–35. [CrossRef]
9. Klineberg, I.; Kingston, D.; Murray, G. The bases for using a particular occlusal design in tooth and implant-borne reconstructions

and complete dentures. Clin. Oral Implant. Res. 2007, 18, 151–167. [CrossRef]
10. Heitz-Mayfield, L.J.; Schmid, B.; Weigel, C.; Gerber, S.; Bosshardt, D.D.; Johnsson, J.; Lang, N.P. Does excessive occlusal load affect

osseo-integration? An experimental study in the dog. Clin. Oral Implant. Res. 2004, 159, 259–268. [CrossRef]
11. Jemt, T.; Albrektsson, T. Do long-term followed-up of Branemark implants commonly show evidence of pathological bone

breakdown? A review based on recently published data. Periodontology 2000 2008, 47, 133–142. [CrossRef]
12. Chambrone, L.A.; Lima, L.A. Effects of occlusal overload on peri implant tissue health: A systematic review of animal-model

studies. J. Periodontol. 2010, 81, 1367–1378. [CrossRef]
13. Naert, I.; Quirynen, M.; van Steenberghe, D.; Darius, P. A study of 589 consecutive implants supporting complete fixed prosthesis.

Part II: Prosthetic aspects. J. Prosthet. Dent. 1992, 68, 949–956. [CrossRef]
14. Quirynen, M.; Naert, I.; van Steenberghe, D. Fixture design and overload influence marginal bone loss and fixture success in

Branemark system. Clin. Oral Implant. Res. 1992, 3, 104–111. [CrossRef]
15. Esposito, M.; Hirsch, J.M.; Lekholm, U.; Thomsen, P. Biological factors contributing to failures of osseo-integrated oral implants.

(I). Success criteria and epidemiology. Eur. J. Oral Sci. 1998, 106, 527–551. [CrossRef]
16. Ekfeldt, A.; Christiansson, U.; Eriksson, T.; Linden, U.; Lundqvist, S.; Rundcrantz, T.; Johansson, L.; Nilner, K.; Billstrom, C. A

retrospective analysis of factors associated with multiple implant failures in maxillae. Clin. Oral Implant. Res. 2001, 12, 462–467.
[CrossRef]

17. Fugazzotto, P.A. A comparison of the success of root resected molars and molar position implants in function in a private practice:
Results of up to 15-plus years. J. Periodontol. 2001, 72, 1113–1123. [CrossRef]

18. Shackleton, J.L.; Carr, L.; Slabbert, J.C.G.; Becker, P.J. Survival of fixed implant-supported prostheses related to cantilever lengths.
J. Prosthet. Dent. 1994, 71, 23–26. [CrossRef]

http://doi.org/10.1111/clr.12059
http://www.ncbi.nlm.nih.gov/pubmed/23067316
http://doi.org/10.1097/01.id.0000165033.34294.db
http://www.ncbi.nlm.nih.gov/pubmed/15968181
http://doi.org/10.1016/j.jdent.2003.09.003
http://www.ncbi.nlm.nih.gov/pubmed/14749084
http://doi.org/10.1111/clr.13834
http://doi.org/10.1034/j.1600-0501.1996.070208.x
http://doi.org/10.1111/j.1875-595X.2008.tb00189.x
http://doi.org/10.1111/j.1600-0501.2004.01067.x
http://doi.org/10.1111/j.1600-0501.2007.01446.x
http://doi.org/10.1111/j.1600-0501.2004.01019.x
http://doi.org/10.1111/j.1600-0757.2007.00241.x
http://doi.org/10.1902/jop.2010.100176
http://doi.org/10.1016/0022-3913(92)90557-Q
http://doi.org/10.1034/j.1600-0501.1992.030302.x
http://doi.org/10.1046/j.0909-8836..t01-2-.x
http://doi.org/10.1034/j.1600-0501.2001.120505.x
http://doi.org/10.1902/jop.2001.72.8.1113
http://doi.org/10.1016/0022-3913(94)90250-X


Bioengineering 2022, 9, 425 16 of 16

19. Duyck, J.; Van Oosterwyck, H.; Vander Sloten, J.; De Cooman, M.; Puers, R.; Naert, I. Magnitude and distribution of occlusal
forces on oral implants supporting fixed prostheses: An in vivo study. Clin. Oral Implant. Res. 2000, 11, 465–475. [CrossRef]

20. Wyatt, C.C.; Zarb, G.A. Bone level changes proximal to oral implants supporting fixed partial prostheses. Clin. Oral Implant. Res.
2002, 13, 162–168. [CrossRef]

21. Rangert, B.; Krogh, P.; Langer, B.; Van Roekel, N. Bending overload and implant fracture: A retrospective clinical analysis. Int. J.
Oral Maxillofac. Implant. 1995, 10, 326–334.

22. Engel, G.R.G.; Axmann-Krcmar, D. Effect of occlusal wear on bone loss and Periotest value of dental implants. Int. J. Prosthodont.
2001, 14, 444–450. [PubMed]

23. Wennerberg, A.; Carlsson, G.; Jemt, T. Influence of occlusal factors on treatment outcome: A study of 109 consecutive patients
with mandibular implant-supported fixed prostheses opposing maxillary complete dentures. Int. J. Prosthodont. 2001, 14, 550–555.
[PubMed]

24. Lobbezoo, F.; Van Der Zaag, J.; Naeije, M. Bruxism: Its multiple causes and its effects on dental implants—An updated review.
J. Oral Rehabil. 2006, 33, 293–300. [CrossRef] [PubMed]

25. Blanes, R. To what extent does the crown-implant ratio affect the survival and complications of implant supported reconstructions?
A systematic review. Clin. Oral Implant. Res. 2009, 20 (Suppl. 4), 67–72. [CrossRef]

26. Salvi, G.E.; Bragger, U. Mechanical and technical risks in implant therapy. Int. J. Oral Maxillofac. Implant. 2009, 24 (Suppl. 2009),
69–85.

27. Zurdo, J.; Romao, C.; Wennstrom, J. Survival and complication rates of implant-supported fixed partial dentures with cantilevers:
A systematic review. Clin. Oral Implant. Res. 2009, 20 (Suppl. 4), 59–66. [CrossRef]

28. Johansson, A.; Omar, R.; Carlsson, G.E. Bruxism and prosthetic treatment: A critical review. J. Prosthodont. Res. 2011, 55, 127–136.
[CrossRef]

29. Herring, S.W.; Rafferty, K.L.; Liu, Z.J.; Marshall, C.D. Jaw muscles and the skull in mammals: The biomechanics of mastication.
Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 131, 207–219. [CrossRef]

30. Frost, H.M. Bone “Mass” and the “Mechanostat”: A proposal. Anat. Rec. 1987, 219, 1–9. [CrossRef]
31. Frost, H.M. The Utah paradigm of skeletal physiology: An overview of its insights for bone, cartilage and collagenous tissue

organs. J. Bone Miner. Metab. 2000, 18, 305–316. [CrossRef]
32. Frost, H.M. Why should many skeletal scientists and clinicians learn the Utah paradigm of skeletal physiology? J. Musculoskelet.

Neuronal Interact. 2001, 2, 121–130.
33. Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson,

M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411.
[CrossRef]

34. Judge, R.B. An In Vitro and In Vivo Investigation into Masticatory Bone Strain Using a Dog Model. Ph.D. Thesis, Melbourne
Dental School, University of Melbourne, Parkville, VIC, Australia, 2006.

35. Monje, A.; Chan, H.L.; Galindo-Moreno, P.; Elnayef, B.; Suarez-Lopez del Amo, F.; Wang, F.; Wang, H.L. Alveolar Bone
Architecture: A systematic review and meta-analysis. J. Periodontol. 2015, 86, 1231–1248. [CrossRef]

36. Zenkert, D. An Introduction to Sandwich Construction; Engineering Materials Advisory Services Ltd.: Worcestershire, UK, 1995.
37. Silva, M.J.; Reed, K.L.; Robertson, D.D.; Bragdon, C.; Harris, W.H.; Maloney, W.J. Reduced bone stress predicted by composite

beam theory correlates with bone loss following total hip arthroplasty. J. Orthop. Res. 1999, 17, 525–531. [CrossRef]

http://doi.org/10.1034/j.1600-0501.2000.011005465.x
http://doi.org/10.1034/j.1600-0501.2002.130206.x
http://www.ncbi.nlm.nih.gov/pubmed/12066640
http://www.ncbi.nlm.nih.gov/pubmed/12066702
http://doi.org/10.1111/j.1365-2842.2006.01609.x
http://www.ncbi.nlm.nih.gov/pubmed/16629884
http://doi.org/10.1111/j.1600-0501.2009.01762.x
http://doi.org/10.1111/j.1600-0501.2009.01773.x
http://doi.org/10.1016/j.jpor.2011.02.004
http://doi.org/10.1016/S1095-6433(01)00472-X
http://doi.org/10.1002/ar.1092190104
http://doi.org/10.1007/s007740070001
http://doi.org/10.1371/journal.pbio.3000411
http://doi.org/10.1902/jop.2015.150263
http://doi.org/10.1002/jor.1100170410

	Introduction 
	Materials and Methods 
	The Rectangular Block Implant 
	Animal Surgery and Ethics 
	Osseo-Integration 
	Embedding 
	Prosthetic Crown and the Force Application 
	Strain Gauges 
	The Mounted Set-Up 

	Results 
	Channel Data 
	Principal Strains 
	Observational Summary 

	Discussion 
	Measured Cortical Strains 
	Tensile and Compressive Elements in the Bucco-Lingual (Horizontal) Dimension 
	Mesio-Distal Torsion 
	Combined Mesio-Distal and Bucco-Lingual Torsion 
	The Complexity of the Principal Strains and their Angular Orientations 
	Physiological Limits 
	Limitations 

	Conclusions 
	References

