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Simple Summary: Dry matter intake, related to the number of nutrients available to an animal
to meet its production and health needs, is crucial for the economic, environmental, and welfare
management of dairy herds. Because the equipment required to weigh the ingested food at an
individual level is not broadly available, we propose some new ways to approach the actual dry
matter consumed by a dairy cow for a given day. To do so, we used regression models using parity
(number of lactations), week of lactation, milk yield, milk mid-infrared spectrum, and prediction
of bodyweight, fat, protein, lactose, and fatty acids content in milk. We chose these elements to
predict individual dry matter intake because they are either easily accessible or routinely provided by
regional dairy organizations (often called “dairy herd improvement” associations). We succeeded in
producing a model whose dry matter intake predictions were moderately related to the actual values.

Abstract: We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield,
milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose,
and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a
geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square
(PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN)
using the highest contribution variables. In the ANN, we replaced the spectra with their projections
to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity.
Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean
square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN.
Although the available data were significantly different, we also performed a country-independent
validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to
6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation,
we discussed the developed models’ performance with those achieved by the National Research
Council’s equation.

Keywords: dry matter intake; partial least square; artificial neural network; dimensionality reduction;
machine learning; dairy cows; feed intake; feed efficiency; mid infrared spectra
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1. Introduction

Dairy cows’ Dry Matter Intake (DMI), which is directly linked to feeding efficiency,
is crucial for the economic, environmental, and welfare management of dairy herds to be
estimated. The National Research Council [1] related DMI to the amount of nutrients avail-
able to an animal to meet its production and health needs. Whether under or overfeeding
cows, malnutrition negatively affects animal health [2], reproductive condition [3] and
could impact the economic balance of production [4].

Specifically, in early lactation, dairy cows, which suffer from partially insatiable en-
ergy needs due to appetite drop and physical limitation in rumen capacity [5], enter into
negative energy balance (NEB) [5,6], mobilize their body reserves to produce milk [7]
and lose bodyweight as an immediate consequence [8]. This weight loss should be care-
fully controlled to avoid health and fertility problems [2,9]. Similarly, cows being too
fat approaching parturition might undergo a more severe NEB, thus compromising their
reproductive performance [9]. To these ends, routinely monitoring the DMI could provide
an earlier warning than monitoring change in bodyweight or other health indicators such
as when the body condition score falls below or above a critical threshold. Accurately
adjusting the diet to the animal’s actual intake makes it possible to adapt rations reasonably
and efficiently, thus limiting losses. Besides, feed-efficient cows eruct less methane [10] and
produce more milk [11], profiting both farm revenue and the environment [12].

The equipment to weigh the ingested food at an individual level is not broadly avail-
able. Indeed, only some research and large-scale commercial farms have such technology.
The lack of data acquisition limits the use of DMI for the development of genetic and
management tools. However, the National Research Council proposes a non-linear equa-
tion allowing DMI prediction from the week of lactation (WOL), fat corrected milk, and
bodyweight, with a root mean square prediction error of 1.82 kg [1,13]. More recently,
authors tried to model linear equations to predict DMI by considering new features, such
as the milk mid-infrared (MIR) spectrum. The predictive performance of cross-validation
and the structure of the most recent published equations of DMI are summarized in
Table 1 [11,14–16].

With accuracy standing between 1.46 and 3.44 kg and a ratio of performance to devia-
tion (RPD) ranging from 1.00 to 2.36 (Table 1), the predicted DMI should be considered
an indicator of the reference trait. Despite its limited accuracy, such an indicator could
be instructive enough to provide a piece of valuable information for management and
genetic purposes. The error variation between studies might be related to the datasets
variability, quality of measurement or treatment than to the cross-validations carried out,
which were roughly the same: cow-independent (75/25) for Lahart et al. (2019) [14], and
cow-independent (80/20) for Wallén et al. (2018) [15], and Shetty et al. (2017) [11], repeated
50 times for the latter. To assess model performance in the present study, we supplemented
the cow-independent cross-validation with fully out-of-sample country-independent vali-
dation sets comprising cows from other geographical locations and production systems.
The underlying thought was that the more substantial the data independence, the more
reliable the performance statistics and the evaluation of model robustness. The predictive
model’s accuracy and generalization are directly related to the training dataset’s qual-
ity and representativeness, with greater variability bringing robustness [17]. Combining
data involving different breeds, diets, and coming from different countries, which already
demonstrated scientific achievement while predicting methane [18], fatty acids [19], or
lactoferrin contents [20], for instance, was in line with this generalized perspective. Using
various datasets from different geolocated farms, we aimed to increase the calibration set
variability comparatively to studies presented in Table 1.
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Table 1. Structure and prediction performance of recent literature models predicting the dry matter intake of dairy cows.

Authors Model 1 Regression Type 2 R2
cv

3 RMSEcv
4 (kg) RPD 5

Grelet et al.
(2020) [16] MIR + PRT + MY SVM 0.66 2.71 1.67

Lahart et al.
(2019) [14]

MY + fat + prot + BW + DIM + PRT OLS 0.71 1.67 1.85

MIR PLS 0.48 2.24 1.38

MY + fat + prot + BW + DIM + PRT + MIR PLS 0.76 1.51 2.04

Wallén et al.
(2018) [15]

fat + prot + lact OLS 0.01 3.52 1.00

MY OLS 0.24 3.07 1.15

MY + fat + prot + lact OLS 0.25 3.06 1.15

MIR PLS 0.14 3.27 1.08

fat + prot + lact + MIR PLS 0.06 3.44 1.02

MY + MIR PLS 0.27 3.01 1.17

MY + BW OLS 0.29 2.97 1.18

MY + BW + MIR PLS 0.29 2.98 1.18

Shetty et al.
(2017) [11]

MY PLS 0.58 2.22 1.55

MY + BW PLS 0.72 1.82 1.89

MY + BW + MIR PLS 0.82 1.46 2.36

MY + fat + BW PLS 0.79 1.60 2.15

MY + fat + prot + BW PLS 0.78 1.61 2.14

MY + fat + prot + lact + BW PLS 0.77 1.64 2.10

MIR PLS 0.31 2.86 1.20
1 Milk yield (MY), bodyweight (BW), days in milk (DIM), parity (PRT), lactose (lact), protein (prot). 2 Partial least square (PLS), ordinary
least square (OLS), and support vector machines (SVM) regressions. 3 Cow-independent R-squared of cross-validation (R2

cv). 4 Cow-
independent root mean square error of cross-validation (RMSEcv). 5 RPD = Ratio of performance to deviation. This value was approximated
for Wallén et al. [15] and Shetty et al. [11] using the published global standard deviation.

While features such as milk yield (MY), parity (PRT), week of lactation (WOL), and
milk MIR spectrum benefit from their large-scale availability, the bodyweight (BW) and
the milk composition (MC, fat, protein, lactose), which seemed to be other features of
interest according to, were predicted (pBW, pMC respectively) using equations developed
by Soyeurt et al. [21,22], to get around their lack of measurement available from Dairy Herd
Improvement (DHI) centers. In addition to the features used by the authors in Table 1,
we investigated the contribution of fatty acids (FA) with the underlying rationale that as
relationships exist between fatty acids profile in fat and the bodyweight loss [23], which is
also related to the DMI [1], a relationship might exist between FA and DMI.

Another innovative aspect of this research was comparing predictive models from
Partial Least Square (PLS), one-hidden-layer Artificial Neural Network (ANN) regressions,
and the equation provided by the National Research Council [1,13] (NRC2001) through
their performance, and respective behaviors on large-scale weekly averaged predicted DMI
(pDMI). ANN used all the same predictors as the PLS model but replaced the spectra by
their projections to the 25 first PLS factors, explaining 99% of their spectral variability.

By construction, PLS decreases the dimensionality of a dataset by making linear
combinations of the independent variables to create a new set of variables called factors (or
pls components, or latent variables). The linear combinations are constructed to reduce
the correlation between them while explaining the maximum variance of the dependent
variable. The independent variables are then projected to the new coordinate system whose
axes are the PLS factors. A PLS regression could then be calibrated using the projected
dataset. While dealing with MIR spectra, dimensionality reduction is a crucial asset for a
regression model to have. Indeed, because some contiguous MIR spectral points brought
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quite similar information, ordinary least square regression without any regularization
would fail due to (multi)collinearity.

However, unlike PLS regression, ANN can model non-linear relations. ANN, initially
proposed by McCulloch and Pitts (1943) [24], presents an input, output, and some hidden
layers comprised of several units, also called nodes. The numbers of hidden layers and
units that make them up are hyperparameters to be estimated. ANN model calibrates by
computing the weights of each relation among units applying a decay hyperparameter
for regularization. The hyperparameters should be assessed to increase the prediction
ability of the ANN model while reducing overfitting. The ANN model we implemented
was bounded to a single layer with as many units as requested. We, therefore, trained the
ANN model to find an optimal combination for the hyperparameters decay and number
of nodes.

Conclusively, the study’s objectives were (i) to measure to which extent DMI predic-
tive models could improve their robustness while increasing data variability, applying a
multiple countries approach, and (ii) to assess the impact of fatty acids predictions and
(iii) the performance of a non-linear ANN model in predicting DMI.

2. Materials and Methods
2.1. Data

Before any cleaning, the modeling dataset comprised 10,963 records representing
536 distinct Holstein cows, arguably covering four different populations. Australian Hol-
stein cows (AUS) were provided by the Ellinbank Research Farm belonging to Agriculture
Victoria Research (Australia, n = 5743; n(cows) = 231). Faculty of Agricultural, Life and
Environmental Sciences, from University of Alberta (Canada), provided Canadian cows
(CAN, n = 4105; n(cows) = 175). Danish and Irish animals’ records (GPE) coming from
Aarhus University (AU, Denmark, n = 329; n(cows) = 35), The Agri-Food and Biosciences
Institute (AFBI, Ireland, n = 598; n(cows) = 58), and University College Dublin (UCD,
Ireland, n = 188; n(cows) = 37) were collected for and supplied by the European Inter-
reg Genotype plus Environment project (GplusE) (http://www.gpluse.eu, accessed on
29 April 2021).

The variables of interest, kept in joint for the whole merged dataset, were the week
of lactation (WOL), parity (PRT), milk yield (MY, kg/day), milk MIR spectral points
(log(1/Transmittance)), and the dry matter intake (DMI, kg). We first turned the numeric
variables WOL and PRT into ordinal qualitative data with one category per week for WOL
and three parity levels (i.e., first, second, and third+). Each of these ordinal variables was
then replaced by k − 1 orthogonal polynomial contrasts, with k being the number of the
respective variable categories.

AUS individual cow DMI was measured using feed bins mounted on load cells that
were electronically monitored by linking the bin-weight data to individual cows’ electronic
identification (Gallagher Animal Management Systems, Hamilton, New Zealand). While
the AUS animals disposed of ad libitum access to feed and water, the diet consisting
of cubes with a dry matter basis of about 74% alfalfa hay, 25% crushed barley grain,
and 1% minerals (calcium, phosphorus, and magnesium), provided by Multicube Ltd.
(Yarrawonga, Victoria, Australia). The estimated metabolizable energy and crude protein
were 10.6 ± 0.3 MJ/kg and 19.3 ± 1.1% of dry matter [25]. CAN and GPE Daily DMI
were computed for each individual cow based on daily feed intakes (DFI) and dry matter
content of diets. CAN DFI of individual cows was measured from the difference between
the amount of feed provided and the animal refused. The assumption was made that the
diet and the refusal contained similar dry matter percentages. The daily ration was offered
as a total mixed ration (TMR) for ad libitum intake to allow approximately 5% feed refusals
throughout the experiment, achieved by offering cows a measured amount of feed using a
Calan Super Data Ranger (American Calan, Northwood, NH, USA). The amount of feed
that was offered increased when the cows ate more, and the refusal was less than 5%, while
it decreased when the refusal was more than 5%. GPE DFI was recorded by automated

http://www.gpluse.eu
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recording systems, Insentec (Markneesse, The Netherlands) in AU and UCD, and Calan
gates linked to an automatic cow identification system (American Calan, Northwood, NH,
USA) in AFBI. GPE’s cows were fed with 3 isonitrogenous diets comprising mixtures of
grass silage and different proportions of concentrate (C) (i.e., 18 cows with 30%, 20 with
50%, and 20 with 70% of C) for AFBI, with 3 isonitrogenous and isocaloric diets comprising
grass silage, maize silage, sugar beet pulp pellets, and standard level of concentrate (i.e.,
14 cows with 49% of C), or concentrate including a high level of barley (27%) in the high-
starch diet (11 cows with 54% of C) and a high level of dextrose (17%) in the high-sugar
diet (10 cows with 54% of C) for AU, and using a standard diet comprising grass silage,
maize silage, sugar beet pulp pellets, mixed with 39% of concentrate for UCD. Additionally,
8 kg of concentrate was offered per day to each UCD cow at milking. Individual diet
components were sampled weekly at AU and UCD and daily at AFBI, dried at 85 ◦C
for dry matter content determination, and analyzed for chemical composition in Cvas
ForageLab (Waynesboro, PA, USA) by near-infrared (NIR) spectroscopy [16].

Regarding the MIR spectral points, GPE and CAN data formerly came from FT2
and FT6000 spectrometers (Foss Analytics, Hillerød, Denmark) or a Standard Lactoscope
FT-MIR automatic (PerkinElmer, Waltham, MA, USA), with the standardization of the GPE
spectral records made according to the procedure given in [26]. AUS spectra were output
from a spectrometer model 2000 (Bentley Instruments, Chaska, MN, USA). Frequencies
and ranges measured by Bentley, Foss, and PerkinElmer instruments differ. Therefore, we
only kept the largest common range of values between them (925.66 cm−1 to 3995.78 cm−1)
and interpolated the spectral data into common frequencies (totalizing 797 points), using
the interpolation technique described in [26]. Some of the retained 797 spectral points are
pointless, for they bring noisy information related to H2O absorbance [19,20]. Such as
described in Soyeurt et al. (2019) [21], we only kept the 277 points closely related to milk
composition, with spectral zone located in (950 cm−1, 1600 cm−1) U (1750 cm−1, 1800 cm−1)
U (2600 cm−1, 3000 cm−1).

In addition to these variables, the predictions of fat (pfat, g/dL), protein (pprot, g/dL),
lactose (plact, g/dL), bodyweight (pBW, kg), and fatty acids (pFA, g/dL) content in milk
were estimated using predictive equations [19,21,22]. We ultimately transformed each pFA
to indicate their respective proportion (%) in milk fat content.

2.2. Data Cleaning

We chose to remove records with DMI < 10 kg, DMI > 34 kg, and those with MY < 10 kg
because of their lack of representativeness. Similar filtering methods were carried out by
Wallén et al. [15]. Records with spectral Mahalanobis distance (MD) [27,28] too far away
from the barycenter were considered outliers [21,29,30] and dropped. We computed MD
using the principal components (PCs) with a spectral variability explanation of 99%. We
ultimately divided each record’s spectral MD by the number of PCs involved to obtain the
standardized global H distance (GH). Records with GH greater than five were removed for
subsequent analysis.

2.3. Predictive Models

We split the predictors into seven groups comprising one or more variables: (i) the
277 MIR spectral points (MIR), (ii) parity (PRT), (iii) predicted fatty acids (pFA) [19],
(iv) predicted BW (pBW) [21], (v) milk yield (MY), (vi) week of lactation (WOL), and
(vii) predicted milk composition (pMC: fat, protein, lactose) [22]. We made combinations
of these groups to analyze their marginal contributions. To that end, 22 different model
constructs were tested: MIR (M1), PRT (M2), pFA (M3), pBW (M4), MY (M5), WOL (M6),
pMC (M7), PRT + MIR (M8), pBW + MIR (M9), MY + MIR (M10), pFA + MIR (M11),
M8 + pBW (M12), M8 + MY (M13), M9 + MY (M14), M13 + pBW (M15), M15 + WOL (M16),
M15 + pFA (M17), M15 + pMC (M18), M16 + pFA (M19), M16 + pMC (M20), M17 + pMC
(M21), M16 + pFA + pMC (M22).
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As a first step, we calibrated each model with AUS, CAN, and GPE datasets separately,
with the remaining samples being used as out-of-sample country-independent validation
sets. Then, we kept the models with the best cross-validation and validation metrics
to recalibrate them by regrouping the variables such as {AUS U CAN}, {AUS U GPE},
{CAN U GPE}, and {AUS U CAN U GPE}. For each model, we computed the cross-validated
coefficient of determination (R2

cv), RMSEcv, and RPDcv. The cross-validation partitions
were randomly created with the constraints that the same cow was prohibited from being
simultaneously inside both calibration and validation sets for a given partition and that
each calibration set contained 90% of the data. To do so, for each set of data (AUS, CAN,
GPE, {AUS U CAN}, {AUS U GPE}, {CAN U GPE}, and {AUS U CAN U GPE}), we created
ten folds containing 10% of the total amount of the dataset, with each of these subsets
meeting the specification of cow-independence. We then combined these subsets to get
ten partitions, comprising 90% for calibration and 10% for validation, as recommended by
Kohavi (1995) [31]. To ensure enough cows being tested, we repeated the process ten times
to finally end up with 10 × 10-fold cow-independent cross-validation sets for each dataset.
Besides, we estimated models’ performance using out-of-sample country-independent
data when it was possible (i.e., for the calibration sets AUS, CAN, GPE, {AUS U CAN},
{AUS U GPE}, and {CAN U GPE}.

We used the PLS model construct with the best validation statistics to calibrate a
one-hidden-layer ANN. To limit the network’s number of features, we replaced the milk
MIR spectra with their projections on a new coordinate system whose axes were defined as
the DMI~MIR model’s PLS factors. We choose the number of PLS factors that explained
99% of the spectral variability.

We used R software [32] and the plsr function of the pls package [33] to calibrate the
PLS regression models. We initially set up the number of PLS components to 20 maximum
and then using the caret [34] package’s train and trainControl functions to pick an optimal
model. We fixed the selectionFunction argument of the trainControl function to “oneSE”
so that the train function would select the most parsimonious model within one standard
error of the empirically best model. The application of that one-standard-error rule was
suggested by Breiman et al. (1984) [35] with the main argument of limiting possible
overfitting associated with the best performing model.

We used the nnet package [36] to calibrate ANNs. The nnet function supported the
creation of a single-layer ANN with as many nodes as desired. For the sake of parsimony,
we limited the number of nodes to 5, and we defined a parameterization grid, using the R
package caret [34], to fit the hyperparameter weight decay within the interval (1 × 10−2,
1 × 10−4), as suggested in [36]. We picked the ANNs with hyperparametrization scheme
optimizing RMSEcv within a tolerance of one standard deviation.

To assess the predictors’ relevancy, we computed and compared the Variable Im-
portance in Projection (VIP) scores from PLS model outputs. We considered the feature
relevant if its VIP score was greater than one [37,38].

2.4. Implementation on Dairy Herd Improvement Database

We compared PLS and ANN models offering the best statistics on a DHI database
from the Southern part of Belgium and managed by the Walloon Breeding Association
(Awé, Ciney, Belgium). This dataset represented 1,558,997 records for 147,693 Holstein
cows divided into 1149 herds limited in their three first parity collected from November
2012 to February 2020. The MIR analysis of milk was provided by the milk laboratory
“Comité du Lait” (Battice, Belgium) using FT6000 and FT + spectrometers (Foss Analytics,
Hillerød, Denmark).

Although no measured DMI existed, we compared the averaged predictions’ trends
along the lactation period and months of the year to the expected evolutions. We paid
particular attention to early lactation and monthly averaged predicted DMI. After calving,
dairy cows cannot fully feed themself to meet the energy required for milk production
because of rumen reduction [5]. During this challenging period for the animal, a low feed
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intake is expected to be observed at the very beginning, slowly increasing until reaching a
peak at 10 to 14 weeks [1]. Furthermore, months of grazing were expected to show lower
DMI [39,40].

3. Results and Discussion
3.1. Descriptive Statistics

Figure 1 shows the distribution of data before cleaning. The corresponding tabular
form of the descriptive statistics is provided in Appendix A Table A1.

The 536 cows were unevenly distributed over 43 weeks of lactation and the three parity
categories (first, second, and third+). Cows from GPE, AUS, and CAN were concentrated
at the beginning (week 1–8), middle (week 6–23), and throughout the lactation period
(week 1–43), respectively. Significant differences appeared, especially on milk yield and
MIR spectral data, which directly affected the predictions of bodyweight, fatty acids, and
milk composition (protein, fat, and lactose).

Regarding the differences in the milk analysis data, AUS dairy cows’ lower milk
production may affect the milk composition and indirectly the MIR spectra. Besides, since
the AUS dataset spectral measurement was not made at the same absorbance points as GPE
and CAN, due to the use of different spectrometers (i.e., model 2000 (Bentley Instruments,
Chaska, MN, USA) for AUS; FT2, or FT6000 spectrometers (Foss Analytics, Hillerød,
Denmark), or standard lactoscope FT-MIR automatic (PerkinElmer, Waltham, MA, USA)
for {CAN U GPE}), we performed a linear interpolation of the AUS spectral data to make
the measurement coincide. Additionally, we standardized the interpolated AUS data with
an imperfect and far-in-time conversion table. These combined factors explained why the
concentration of AUS spectral points projected onto the first two principal components in
Figure 1f, calculated from a principal component analysis on the {AUS, CAN, GPE} data,
was so far apart.

Regarding the DMI, as suggested by Figure 1, an F-test confirmed that the three
samples’ DMI means were significantly different (p-value < 0.0001). An unpaired t-test
revealed that AUS and CAN shared a similar DMI mean value (p-value = 0.37) while the
mean values for both combinations AUS vs. GPE and CAN vs. GPE were significantly
dissimilar (p-value < 0.0001). After cleaning the dataset (i.e., spectral outliers and MY, and
DMI out of ranges), there were 10,711 records (−2.30%) remaining, of which 5629 AUS
(−1.99%), 4063 CAN (−1.02%) and 1019 GPE (−8.61%), for a total of 534 cows.

3.2. Fatty Acids Variable Selection

The pFA conserved as explanatory variables for DMI predictive model were those
whose VIP score exceeded 1. To that end, we performed a PLS regression using the whole
dataset, gathering all countries. The predictors involved in the PLS were the pFA presented
in the y-axis of Figure 2, while the target variable was the DMI. Figure 2 shows the results
obtained for all pFA. According to the aforementioned rule, only 6 of them were retained
(i.e., C8:0, C10:0, C12:0, C14:0, C18:0, and C18:1 cis-9).

3.3. Between Datasets Prediction Performances

Models M1 to M7 (Table 2) considered each group of predictors individually to
measure their contribution in explaining DMI variance. The coefficient of determination
(R2), which indicates the square of linear correlation between the reference values and
their predictions, is a good indicator for estimating the underlying model’s contribution.
We thus examined the cross-validated R2 (R2

cv) to select the best contributors among the
groups of predictors. For each of those models, R2

cv varied depending on the underlying
training dataset (AUS, CAN, or GPE). Nevertheless, when taken individually to explain
the DMI variance, the highest contributor on average was milk MIR (26%) following by
MY (23%), pBW (23%), PRT (19%), and pFA (18%) (Table 2).
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Figure 1. Descriptive statistics of the training datasets (red = AUS, blue = CAN, orange = GPE). (a) Measured dry matter
intake; (b) Parity; (c) Milk yield; (d) Bodyweight predicted from regression involving milk mid-infrared spectra, parity,
days in milk, and milk yield; (e) Week of lactation; (f) Projection of the milk mid-infrared spectra to their first two principal
components computed from a principal component analysis involving 277 spectral points; (g) Prediction of short chains
fatty acids from milk mid-infrared spectra; (h) Prediction of medium chains fatty acids from milk mid-infrared spectra;
(i) Prediction of long chains fatty acids from milk mid-infrared spectra; (j) Prediction of fat content in milk from milk
mid-infrared spectra; (k) Prediction of protein content in milk from milk mid-infrared spectra; (l) Prediction of lactose
content in milk from milk mid-infrared spectra.
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Figure 2. Scores for the variable importance of MIR fatty acids contents (g/100 g of fat) to predict dairy cows’ dry
matter intake.

Table 2. Cow-independent cross-validation and out-of-sample country-independent performance for partial least squares
regressions predicting the dry matter intake (in kg) of dairy cows from datasets with different origins (AUS = Australia
(number of records (N) = 5629), CAN = Canada (N = 4063), GPE = GplusE project (N = 1019)).

M Features 1

RMSEcv (kg) 2 R2
cv

3 RMSEv (kg) 4

AUS CAN GPE AUS CAN GPE
CAUS CCAN CGPE

(VCAN, VGPE) (VAUS, VGPE) (VAUS, VCAN)

M1 MIR 3.86 3.48 3.69 0.20 0.24 0.35 (6.65, 11.13) (19.5, 4.88) (18.78, 8.11)

M2 PRT 4.07 3.38 4.13 0.11 0.28 0.19 (4.19, 5.28) (3.54, 5.03) (5.8, 5.74)

M3 pFA 4.07 3.65 3.94 0.11 0.16 0.26 (7.69, 4.39) (5.53, 5.49) (4.52, 6.45)

M4 pBW 3.95 3.31 4.05 0.16 0.31 0.22 (6.2, 6.58) (5.11, 4.25) (7.3, 4.7)

M5 MY 4.02 3.54 3.62 0.13 0.20 0.37 (4.72, 7.32) (5.72, 4.25) (7.18, 4.56)

M6 WOL 4.29 68.19 4.39 0.02 0.06 0.07 (4.32, 3 × 105) (6 × 1013, 5 × 107) (1 × 1014, 5.01)

M7 pMC 4.20 3.96 4.42 0.06 0.02 0.07 (4.33, 8.41) (4.72, 5.13) (4.83, 5.56)

M8 PRT + MIR 3.69 3.13 3.33 0.27 0.38 0.46 (4.98, 10.52) (11.37, 4.22) (13.83, 6.54)

M9 pBW + MIR 3.60 3.04 3.30 0.30 0.42 0.46 (5.92, 10.45) (6.54, 4.02) (9.94, 7.44)

M10 MY + MIR 3.42 3.01 3.05 0.36 0.42 0.53 (4.86, 8.47) (23.79, 3.7) (22.01, 5.14)

M11 pFA + MIR 3.89 3.48 3.70 0.19 0.24 0.34 (14.3, 6.08) (13.28, 4.66) (14.37, 10.46)

M12 PRT + MIR + pBW 3.56 2.98 3.31 0.32 0.44 0.46 (5.23, 10.47) (5.11, 3.77) (6.46, 5.22)

M13 PRT + MIR + MY 3.39 2.87 3.06 0.37 0.48 0.53 (4.54, 9.36) (20.57, 3.61) (20.26, 4.98)

M14 pBW + MIR + MY 3.38 2.89 3.07 0.38 0.47 0.53 (4.37, 9.4) (17.42, 3.64) (17.55, 5.33)

M15 PRT + MIR + pBW + MY 3.38 2.86 3.06 0.38 0.48 0.53 (4.45, 9.98) (13.51, 3.5) (13.73, 5.01)

M16 PRT + MIR + pBW + MY + WOL 3.41 2.86 3.09 0.37 0.48 0.53 (4.33, 13.14) (5.91, 6.8) (5.95, 3.93)

M17 PRT + MIR + pBW + MY + pFA 3.38 2.86 3.07 0.38 0.48 0.53 (4.55, 10.67) (10.52, 3.48) (11, 5.66)

M18 PRT + MIR + pBW + MY + pMC 3.38 2.86 3.06 0.38 0.48 0.53 (4.51, 9.99) (13.59, 3.49) (13.87, 4.88)

M19 M16 + pFA 3.41 2.86 3.10 0.37 0.48 0.52 (4.79, 11.94) (4.43, 5.69) (4.55, 3.64)

M20 M16 + pMC 3.41 2.86 3.09 0.37 0.48 0.53 (4.35, 13.14) (5.83, 6.78) (5.89, 3.89)

M21 M17 + pMC 3.38 2.86 3.07 0.38 0.48 0.53 (4.59, 10.66) (10.41, 3.48) (11.02, 5.55)

M22 M16 + pFA + pMC 3.41 2.86 3.10 0.37 0.48 0.52 (4.81, 11.93) (4.43, 5.69) (4.55, 3.63)
1 Milk yield (MY), predicted bodyweight (pBW), days in milk (DIM), parity (PRT), milk mid-infrared spectra (MIR), predicted fatty acids
(pFA), predicted milk composition (pMC: fat, lactose, protein). 2 Cow-independent root mean square error of cross-validation (RMSEcv),
whose calibration was made either on AUS, CAN, or GPE dataset. 3 Cow-independent R-squared of cross-validation (R2

cv), whose
calibration was made either on AUS, CAN, or GPE dataset. 4 Out-of-sample country-independent root mean square errors of validation
(RMSEv), whose validation was made either on AUS (VAUS), CAN (VCAN), or GPE (VGPE) dataset; while calibration either made on AUS
(CAUS), CAN (CCAN), or GPE(CGPE).
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Shetty et al. (2017) [11] and Lahart et al. (2019) [14] both achieved higher contributions
for MY and MIR (Table 1), while those obtained by Wallén et al. (2018) [15] were lower
than those observed in Table 2. However, they all showed how relevant those variables
were for DMI prediction. In a predictive model, the data quantity and structure, such
as homogeneity, processing, or quality of measurement, might directly impact the inner
volatility and, consequently, the coefficient of determination [41]. Such differences existed
between the studies previously mentioned and ours, Shetty et al. (2017) [11] smoothed
their data by computing week-of-lactation averaged variables (DMI and every other related
explicative variable), while Lahart et al. (2019) [14] used an adapted n-alkane C33-C32
technique [42] to estimate animals’ DMI.

Specifically for the GPE data, Table 2 shows a strong relationship between DMI
and MY (R2

cv = 37%), directly related to the animal’s production function. GPE data
focused on early lactation (weeks 1 to 8) while the animal experienced mechanical feeding
difficulties due to a post-gestation rumen reduced in size [5]. While the rumen was
regaining its size, the animal, which slowly improved its ability to feed, moved towards its
lactation peak, increasing its milk production. Therefore, even if the cow met a negative
energy balance [5,6], drawing on its resources to produce [7], its quantity of DMI and milk
production evolved in the same linear direction in early lactation, since the peak of lactation
arises between 4 and 8 weeks postpartum, while the DMI usually peaks between 10 and
14 weeks [1]. Consequently, the M5 regression lines’ slopes (β1) were positive for GPE data
(β1,MY

GPE = 2.75) and weaker for AUS and CAN data (β1,MY
AUS = 1.52, β1,MY

CAN = 1.79),
which covered lactation periods spreading out beyond the peak (Figure 1), thus mitigating
the relationship between DMI and early lactation effect, such as the MIR contribution, which
were lower for AUS (R2

cv = 0.20) and CAN (R2
cv = 0.24) relatively to GPE (R2

cv = 35%).
The magnitude of such variability was observed across previous studies (Table 1),

where R2
cv fluctuated between 0.14 for Wallén et al. (2018) [15], 0.37 for Shetty et al.

(2017) [11], and 0.48 for Lahart et al. (2019) [14]. For the present study, the factors making
R2

cv vary significantly between the calibrations directly related to the data structure, such
as coverage of lactation stages, parity, or the kinds of diets.

In M2 and M4, parity and predicted bodyweight were separately involved in Ordinary
Least Square (OLS) regressions. Whatever the datasets, such as for the milk yield, both
features showed a positive relationship with DMI, indicating that DMI was higher, on
average, for older and heavier animals. The National Research Council equation already
revealed the positive relationship between DMI and both milk yield and bodyweight [1,13],
while higher parity cows are heavier on average [43], they would ingest more dry matter.

Table 2 reveals that fatty acids profile in milk fat, being predicted from milk MIR
spectrometry (pFA), presented a lower R2

cv than milk MIR spectrum in predicting DMI,
which was explained by the supplementary information brought by MIR spectra such
as protein, lactose, or fat [22] content in milk. Indeed, although less important than the
other variables in the explanation of DMI, Table 2 quantifies milk composition (pMC: fat,
protein, lactose) contribution with non-zero R2

cv. Furthermore, we observed that R2
cv for

linear regressions involving MIR or pFAs were higher for GPE, whose dataset exclusively
described early lactation than for AUS or CAN datasets. From the first week postpartum
to the twelfth, short-chain C10:0 and medium-chain C12:0, C14:0, and C16:0 concentrations
in milk increase while long-chain C18:0, C18:1 cis9 decrease [23]. These changes coincide
with the rising of the DMI to its peak undergone by dairy cows in early lactation.

Models M8 to M11, in Table 2, displayed simple mixes of these predictors. R2
cv

increased for M8 to M10, showing a variables’ complementary in explaining the DMI
variability for PRT, pBW, MY combined with MIR, even if pBW were predicted using
those other features [21]. On the other hand, M11 and M1 cross-validated statistics were
very close or similar, which was explained by the redundancy of pFA compared to milk
MIR spectra.

M12 to M14 increased R2
cv for models calibrated with AUS and CAN datasets, mani-

festing synergy between pBW, MY, PRT, and MIR. Besides, M12, relatively to M13 and M14,
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provided good performance and consistency in out-of-sample country-independent vali-
dation. We sought models with good external metrics because they are essential features
linked to robustness and generalization, making M12 particularly interesting.

The combination in M15 brought little interest in terms of cross-validation metrics
compared to M16, nor did it fully increase M12 robustness. The interest of augmenting M15
with WOL, which was far from being the most important variable when taken individually,
was not to improve the cross-validation statistics but to enhance the model’s capacity to
generalize.

All other additions of variables to M16 had little or no impact on cross-validation
metrics. The interest was instead on the improvement of the out-of-sample country-
independent validation. In addition to M12, M15, and M16, the models M19, M20 and M22
seemed interesting as potential good generalizers. Conclusively, we decided to deepen the
analysis of these models.

3.4. Prediction Performance Using Multiple Country Approach

Table 3 presents the models M12, M15, M16, M19, M20, and M22 calibrated using the
data combination {AUS U CAN}, {AUS U GPE}, {CAN U GPE}, or {AUS U CAN U GPE}.
Only the cross-validation metrics were available for the latter as all the data was used for
models’ training.

Table 3. Cow-independent cross-validation and out-of-sample country-independent performance for partial least squares
regressions predicting the dry matter intake (in kg) of dairy cows from a dataset coming data coming from 3 different
origins (AUS = Australia, CAN = Canada, GPE = GplusE project).

Model 1 Statistics 2
Datasets 3

AUS + CAN AUS + GPE CAN + GPE AUS + CAN + GPE
(N = 9692) (N = 6648) (N = 5082) (N = 10,711)

M12 RMSEcv (kg) 3.39 3.62 3.12 3.42
R2

cv 0.34 0.35 0.47 0.37
RMSEv (kg) 5.05 4.26 5.41 NA

M15 RMSEcv (kg) 3.27 3.45 2.95 3.28
R2

cv 0.38 0.41 0.53 0.42
RMSEv (kg) 4.45 3.75 6.34 NA

M16 RMSEcv (kg) 3.27 3.43 2.94 3.27
R2

cv 0.38 0.41 0.53 0.42
RMSEv (kg) 4.63 3.8 5.49 NA

M19 RMSEcv (kg) 3.27 3.43 2.94 3.27
R2

cv 0.38 0.42 0.53 0.42
RMSEv (kg) 4.4 3.73 6.03 NA

M20 RMSEcv (kg) 3.27 3.43 2.94 3.27
R2

cv 0.38 0.41 0.53 0.42
RMSEv (kg) 4.59 3.81 5.43 NA

M22 RMSEcv (kg) 3.27 3.43 2.94 3.27
R2

cv 0.38 0.42 0.53 0.42
RMSEv (kg) 4.39 3.73 5.99 NA

1 M12 = PRT + MIR + pBW, M15 = M12 + MY, M16 = M15 + WOL Milk, M19 = M16 + pFA, M20 = M16 + pMC, and M22 = M19 + pMC, with
milk yield (MY), predicted bodyweight (pBW), days in milk (DIM), parity (PRT), milk mid-infrared spectra (MIR), predicted fatty acids
(pFA), predicted milk composition (pMC: fat, lactose, protein). 2 Cow-independent root mean square error of cross-validation (RMSEcv),
whose calibration was made either on AUS, CAN, or GPE dataset. Cow-independent R-squared of cross-validation (R2

cv), whose calibration
was made either on AUS, CAN, or GPE dataset. Out-of-sample country-independent root mean square errors of cross-validation (RMSEv),
whose validation was made either on AUS, CAN, or GPE dataset whenever these datasets did not participate in the calibration process. NA
if no data left for out-of-sample country-independent validation. 3 Calibration datasets, with N being the number of records of each dataset.

Regarding the statistics reported in Table 3, the advantage of moving from model
M12 to M15 by adding variable MY was straightforward because (i) every metrics were
improved and (ii) MY’s VIP score was above 1 (VIPMY = 4.41), meaning that the variable
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was important enough for the modelization to be kept [44]. The advantage of adding
the ordinal variable WOL was not so evident as it was with MY. The cross-validation
statistics barely stayed unchanged, while out-of-sample country-independent validation
went wrong except for the calibration {CAN U GPE}. The analysis of the VIP score indicated
that some polynomial transformations of WOL were above 1, especially the first three
(VIPwol.L = 1.74, VIPwol.Q = 2.00, VIPwol.C = 1.54, with L, Q, and C respectively standing for
linear, quadratic and cubic), suggesting an interest of going forward with WOL.

By analyzing M19 and M20, the advantage of adding pFA or pMC to M16 was not
directly apparent (Table 3). Indeed, RMSEcv did not change, and R2

cv were quite roughly
the same, which meant neither pFA nor pMC added some value to model calibration
regarding the cross-validated statistics, mainly because spectra contain all the information
regarding milk FA and main components, making those variables redundant and less
informative. However, the out-of-sample country-independent performance was better
for M20 than M16, suggesting that pMC made the model M20 more generalizable than
M16. However, M19 VIP score for pFA were all greater than one (1.25 ≤ VIPFA ≤ 2.37)
while only protein and lactose were greater than, or approached one in M19 (VIPfat = 0.699,
VIPprotein = 1.27, VIPlactose = 0.989). Furthermore, the analysis of M22 revealed that VIP
scores for pFA (1.26 ≤ VIPFA ≤ 2.38) systematically outweighed pMC scores (VIPfat = 0.679,
VIPprotein = 1.19, VIPlactose = 1.06) when taken simultaneously in modelization to predict
DMI, suggesting that it was more relevant to consider pFA rather than pMC in a model
already involving MY, pBW, WOL, PRT, and MIR.

With equivalent performance, both in out-of-sample country-independent and cross-
validation, we preferred M19 to M22 because it was the most parsimonious. Consequently,
we chose to keep model M19 (PRT + MIR + pBW + MY + WOL + pFA) for ANN regression.

3.5. Artificial Neural Network Regression Models to Predict the Dry Matter Intake

Table 4 describes the results obtained for the calibration of ANN models incorporating
the predictors of M19. However, to reduce the number of features, MIR spectral data were
replaced by their PLS factors (DMI~MIR), explaining 99% of the spectral variance.

Table 4. Performance of cow-independent cross-validation and out-of-sample country-independent
validation for artificial neural networks predicting the dry matter intake (in kg) of dairy cows.

Model 1 Dataset 2 Size 3 RMSEcv
4 R2cv

5 RPDcv
6 RMSEv

7

M19

AUS U CAN 3 3.25 0.39 1.28 4.2
AUS U GPE 3 3.46 0.41 1.30 3.69
CAN U GPE 2 3 0.51 1.43 5.08

AUS U CAN U GPE 2 3.25 0.43 1.33 NA
1 M19 = PRT + MIR + pBW + MY + WOL + pFA with milk yield (MY), predicted bodyweight (pBW), days in milk
(DIM), parity (PRT), milk mid-infrared spectra (MIR), predicted fatty acids (pFA). 2 Calibration datasets. 3 Number
of nodes of the hidden layer of the Artificial Neural Network. 4 Cow-independent root mean square error of
cross-validation (RMSEcv). 5 Cow-independent R-squared of cross-validation (R2

cv). 6 Ratio of performance to
deviation of cross-validation (RPDcv).7 Out-of-sample country-independent root mean square errors of cross-
validation (RMSEv), whose validation was made either on AUS, CAN, or GPE dataset whenever these datasets
did not participate in the calibration process. NA if no data left for out-of-sample country-independent validation.

With a maximum number of nodes settled to 5, the ANN converged to a two-node
single-layer perceptron for {CAN U GPE}, {AUS U CAN U GPE}, and to a three-node single-
layer perceptron for {AUS U CAN}, and {AUS U CAN}. With R2

cv interval of (0.39 ± 0.04,
0.51 ± 0.06) and RMSEcv within (3.00 ± 0.17 and 3.46 ± 0.15) kg, the cross-validation
metrics were almost identical between PLS (Table 3) and the ANN (Table 4). However, the
out-of-sample country-independent validation metrics were systematically better for the
ANN, with values ranging from 3.69 to 5.08 versus 3.73 to 6.03 kg for PLS M19 (Table 3).
For the model including the entire dataset, the final RMSEcv was of 3.25 ± 0.13 kg.

The PLS M19 and ANN M19 models’ predictions were highly correlated (95%). How-
ever, the DMI predicted using the NRC equation (NRC2001) [1,13] were moderately cor-
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related with the predictions obtained from PLS M19 (0.60) and ANN M19 (0.57). While
NRC2001 featured an accuracy of 1.84 kg [1], it output an RMSE of 4.84 kg when applied
on {AUS U CAN U GPE}. It would tend to show that the error associated with NRC2001
was higher than those of models PLS M19 (RMSEcv = 3.27 ± 0.08 kg) and ANN M19
(RMSEcv = 3.25 ± 0.13 kg). However, although the validation of PLS M19 and ANN M19
was conducted as cow-independent 10-fold cross-validation repeated ten times, in order to
reduce overfitting associated with an overly complacent model with the calibration data,
the validation sets still retained nuances belonging to the whole sample that benefited the
internal evaluation of the models’ performance. A fairer comparison would have compared
PLS M19, ANN M19, and NRC2001 on a fully independent dataset. To this end, we used the
out-of-sample country-independent RMSE (RMSEv) of PLS M19 and ANN M19 obtained
when calibrated with {AUS U CAN}, {CAN U GPE} and {AUS U GPE} and those of the
NRC2001 equation out of the same datasets. Table 5 shows the results‘achieved.

Table 5. Comparison of out-of-sample country-independent performance between models M19,
M19b and NRC, 2001 equation.

Validation Data RMSEv, nrc2001
1 RMSEv, PLS M19

2 RMSEv, ANN M19
3

AUS 4.72 6.03 5.08
CAN 4.29 3.73 3.69
GPE 3.96 4.4 4.2

1 Out-of-sample country-independent root mean square errors of cross-validation (RMSEv) for the equation
provided by the National Research Council [1], whose validation was made either on AUS, CAN, or GPE dataset.
2 Out-of-sample country-independent root mean square errors of cross-validation (RMSEv) for the equation
provided by the partial least square M19 model (M19 = PRT + MIR + pBW + MY + WOL + pFA), whose validation
was made either on AUS, CAN, or GPE dataset, with milk yield (MY), predicted bodyweight (pBW), days in
milk (DIM), parity (PRT), milk mid-infrared spectra (MIR), predicted fatty acids (pFA). 3 Out-of-sample country-
independent root mean square errors of cross-validation (RMSEv) for the equation provided by the artificial
neural netword M19 model (M19 = PRT + MIR + pBW + MY + WOL + pFA), whose validation was made either
on AUS, CAN, or GPE dataset, with milk yield (MY), predicted bodyweight (pBW), days in milk (DIM), parity
(PRT), projections of the milk mid-infrared spectra to the 25 first PLS factors explaining 99% of their spectral
variability (MIR), predicted fatty acids (pFA).

The ANN M19 performance was better than PLS M19. This result was in line with
the interest in using ANN regression rather than a linear model such as PLS to predict
DMI with the data at hand, as showed by Soyeurt et al. in predicting the lactoferrin
content in milk [20]. The differences between NRC2001 and ANN M19 were more nuanced.
Sometimes the out-of-sample country-independent performance was definitely in favor of
ANN M19, sometimes in favor of NRC2001.

The worst out-of-sample country-independent performance was achieved when pre-
dicting DMI of AUS data using ANN M19 calibrated with {CAN U GPE}. The explanation
lay in the difference in the MIR spectra and milk yield distributions between the calibration
and the validation data (AUS). Regarding milk analysis, to make the output of the different
devices coincide (i.e., model 2000 (Bentley Instruments, Chaska, MN, USA) for AUS; FT2 or
FT6000 spectrometers (Foss Analytics, Hillerød, Denmark), or standard lactoscope FT-MIR
automatic (PerkinElmer, Waltham, MA, USA) for {CAN U GPE}), we performed a linear
interpolation of the {AUS} spectral data to get it in the same absorbance domain than {CAN
U GPE}. Besides, we did not conduct rigorous standardization of MIR spectra such as de-
scribed by Grelet et al. [26], but instead, we approached it using a delayed standardization
table. Both approximations in milk analysis measurement largely explained the difference
between {CAN U GPE} and AUS spectral points (Figure 1). Conclusively, the discrepancy
between both datasets’ milk yield and spectral points harmed the out-of-sample country-
independent performance even more as these predictors’ contributions were among the
most important (Table 2). On the other hand, the NRC2001 equation did not suffer from
this lack of representativeness since the model’s evaluation was established on a dataset
covering various horizons, eight years of collection, and a variety of 100 different diets,
whose data were selected from 25 papers of which 23 used Holsteins [1].
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The out-of-sample country-independent performance of ANN M19 when validated on
GPE was also to be contrasted. Indeed, the calibration data {AUS U CAN} covered 43 weeks
of lactation with little data at the beginning. However, the validation (GPE) included early
lactation data when the milk’s fatty acids profile changed due to NEB [23]. Regarding
the calibration data, Figure 1 shows a shift of the medium-chains pFA distribution mean,
whose representatives in ANN M19 were C12:0, and C14:0, being among the three fatty
acids with the most significant contribution to DMI, the other being the long-chain C18:1
cis-9 (Figure 2). Besides, it was interesting to see that the calibration of a variant ANN M19
model with {AUS U CAN} data, whose constructs were identical to ANN M19 but without
pFA, revealed an RMSEv similar to NRC2001, of 3.90 kg (results not shown).

Ultimately though their dissimilarity, the calibration using {AUS U GPE} featured an
RMSEv of 3.69 kg despite the CAN data spread out over 43 weeks of lactation while the
calibration stopped 23 weeks. The previous result suggested that the end of the lactation
DMI curve was monotonic and somewhat linear since the linear extrapolation on out-of-
domain WOL data fitted well, according to RMSEv.

3.6. Large Scale Dry Matter Intake Prediction

The current study’s DMI prediction should be considered an indicator, bringing valu-
able information for management or genetic purposes based on the observed performance.
To assess the relevancy, we implemented PLS M19 and ANN M19 on a large-scale DHI
database to compare the observed trends with those found in the literature. Figure 3
presents the DMI predictions averaged by weeks of lactation or by test months. Figure 3a
shows the evolution of these averaged predictions per week of lactation, all parity in-
cluded. Figure 3b displays the evolution of averaged DMI predictions throughout the year,
from January to December. Figure 3 also describes the evolution of fat proportion in milk
(Figure 3c) and the monthly averaged milk yield (Figure 3d, blue) and 4% fat-corrected
milk yield (Figure 3d, yellow) of DHI data.

Figure 3. Evolution of the predicted dry matter intake for Walloon Holstein cows with (a) lactation and (b) year. Predictions
related to partial least square regression model M19 in blue and artificial neural network M19 in red. Evolution of
(c) predicted fat content in milk and (d) milk yield and 4% fat corrected milk yield with year.
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According to the smoothing curves in Figure 3a, for each model, the minimum values
of the average predicted DMI appeared in the very early lactation (first week), and the
peak arose between weeks 15 and 20, to then decrease until the end of lactation. This shape
corresponded to the expected trend, although the peak DMI should have occurred around
weeks 10 to 14 [1]. Unlike the trends, the models’ amplitudes widely varied between
the NRC2001 and M19 models (ANN or PLS). This magnitude might originate from the
underlying calibration data. Those used to evaluate the NRC2001 equation ranged from
about 12.5 to 25 kg [1] against 18 to 23 kg on average for the {AUS U CAN U GPE} data.
The bigger opening between early-lactation DMI and its peak for NRC2001 data explained
the more extensive range of DMI predicted by NRC2001 than M19 (PLS or ANN).

It was expected that the yield of milk and its solids such as fat, protein, or lactose
increase on average when cows were offered indoors mixed ration than when they were
grazing outdoor in pasture [45]. Besides, higher milk production was associated with higher
DMI [39]. Conclusively outdoor grazing would imply lower milk and fat yield, which in
turn would indicate lower DMI. These effects were observed through Figure 3b–d, with the
monthly averaged predicted DMI (b) that dropped in conjunction with fat content (c) and
milk yield (d). The monthly averaged fat curve started to decrease slowly around February-
March, indicating a diet change. M19 models (ANN and PLS) showed the same trend
starting between February–March in Figure 3b, while the averaged predicted NRC2001
DMI started to decline from April, driven by a fall in the 4% fat corrected milk. We could
associate this difference between the equations with the use of MIR spectra in PLS and
ANN M19, in which fat, lactose, and protein were highly related [22]. Furthermore, M19
models also used fatty acids in their predictive equations of which their proportions in
milk fat related to the use of pasture or diet in general [40].

4. Conclusions

The equations developed showed that the combination of parity, weeks of lactation,
milk yield, bodyweight (predicted from parity, days in milk, milk yield, and test-d MIR
spectra), fatty acids (predicted from MIR spectra), and MIR spectra explained about 50%
of the variance of measured DMI, with out-of-sample country-independent root mean
square error (RMSEv) ranging between 3.68 to 5.08 kg for the best performing model (ANN
M19). These results were related to the data used, i.e., their structure, representativeness,
and measurement quality. Furthermore, the development of a non-complex ANN model
limited to a maximum of 5 nodes showed this method’s benefit compared to a linear
regression such as PLS, mainly at the out-of-sample country-independent validation level.
Although the cross-validation statistics obtained were not as good as other models out of
the literature, the repeated cow-independent cross-validation technique and the model’s
selection provided with the best RMSEcv within a standard error reduced the overfit.
Besides, the PLS and ANN models developed showed that the averaged predicted DMIs
whose evolutions along the lactation curve and the year’s months followed the literature’s
observations. The models developed in this study could help assess feed efficiency to better
forecast farm revenues or select feed-efficient cows because they prove to be less impacting
the environment. Nevertheless, to make these models more valuable, it is necessary to
increase the variability of the calibration set by adding cows from other countries with
other diets and genetics and with other breeds.
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Appendix A

This appendix Table A1 presents the descriptive statistics associated with the original
datasets before any cleaning.
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Table A1. Descriptive statistics of the original datasets.

Variables 1 Measure 2 Datasets 3

AUS CAN GPE

Total Number of Records 5743 4105 1115

Dry matter intake
Mean 23 23 20

s.d 5 4 5

Bodyweight
Mean 554 635 611

s.d 36 36 59

Milk yield
Mean 26 40 35

s.d 5 10 9

Parity
Primiparous 1340 1311 281

Multiparous 4403 2794 834

Week of lactation

Min 6 1 1

Q1 14 11 3

Median 15 19 4

Q3 17 27 6

Max 23 43 8

Short-chain FA
Mean 7.82 7.75 7.52

s.d 0.68 1.12 0.88

Medium-chain FA
Mean 33.44 53.66 41.74

s.d 3.06 4.25 5.50

Long-chain FA
Mean 35.08 38.16 38.81

s.d 3.26 4.51 6.34

Fat
Mean 4.69 3.73 4.79

s.d 1.07 0.96 0.85

Protein
Mean 2.59 3.06 3.05

s.d 0.24 0.29 0.35

Lactose
Mean 4.20 4.89 5.07

s.d 0.16 0.23 0.21
1 Variables in the datasets. FA = Fatty Acids. 2 Function applied to a variable or an entire dataset, per
herd. Total number of records (Total); number of records belonging to primiparous/multiparous cows (Prim-
iparous/Multiparous); average value of a specific variable (Mean); standard deviation of a specific variable
(s.d.); minimum or maximum (Min/Max); first, second, or third quartile (Q1, Median, Q3). 3 Statistics for the
corresponding datasets: AUS, CAN, or GPE.
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