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Abstract: Obstructive sleep apnea (OSA) is a highly prevalent disorder with a growing incidence
worldwide that closely mirrors the global obesity epidemic. OSA is associated with enormous
healthcare costs in addition to significant morbidity and mortality. Much of the morbidity and
mortality related to OSA can be attributed to an increased burden of cardiovascular disease, including
cardiac rhythm disorders. Awareness of the relationship between OSA and rhythm disorders is
variable among physicians, a fact that can influence patient care, since the presence of OSA can
influence the incidence, prevalence, and successful treatment of multiple rhythm disorders. Herein,
we provide a review of this topic that is intentionally broad in scope, covering the relationship
between OSA and rhythm disorders from epidemiology and pathophysiology to diagnosis and
management, with a particular focus on the recognition of undiagnosed OSA in the general clinical
population and the intimate relationship between OSA and atrial fibrillation.

Keywords: obstructive sleep apnea (OSA); atrial fibrillation (AF); continuous positive airway pres-
sure (CPAP); ventricular tachycardia (VT); atrioventricular (AV) block

1. Sleep Apnea and Cardiac Rhythm Disorders: An Introduction

Sleep apnea is a highly prevalent disorder among patients with all forms of cardio-
vascular disease. Decades of data from several large prospective patient registries have
revealed that sleep apnea—in particular, obstructive sleep apnea (OSA)—is practically
endemic in cardiology clinics and cardiac inpatient wards across the globe [1,2]. OSA
has been closely associated with prevalent and incident hypertension [3], ischemic heart
disease [4,5], heart failure [6], stroke [7], and all forms of cardiac rhythm disturbance [8].
Additionally, central sleep apnea (CSA) or combined OSA and CSA often affects patients
with heart failure and stroke [9]. Sleep apnea and cardiovascular disease are so intertwined
with respect to their epidemiology and shared pathophysiology that one can think of them
as being two components of a global, multi-system metabolic syndrome driven largely
by obesity.

In this review, we will focus on OSA and its relationship to cardiac rhythm disorders.
We do this because OSA is the most common form of sleep apnea, and its presence appears
to have a greater overall impact on cardiac rhythm disorders than other forms of sleep
apnea or sleep-disordered breathing [8]. Additionally, there is a rich and growing body of
clinical and basic scientific evidence linking OSA and cardiac rhythm disorders, particularly
atrial fibrillation, at multiple levels, which deserves a thorough review [10,11]. Lastly, OSA
risk can be readily assessed in the clinical setting by allowing for appropriate testing and
subsequent referral for a number of validated treatment options—most commonly, positive
airway pressure (PAP) device management. Appropriate treatment can have a positive
impact on a patient’s morbidity, mortality, and quality of life, irrespective of its impact on
rhythm disorders per se.
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2. Hiding in Plain Sight? The Epidemiology of Obstructive Sleep Apnea

OSA is a global health crisis that parallels the global obesity epidemic. Obesity and
OSA are associated to the extent that it is credible to think of OSA as a consequence of
obesity in a majority of cases, although there are certainly patients with OSA who are not
obese. In the United States, OSA affects 17% of adult women and 34% of adult men, and
incident cases are on the rise [12]. Across the world, OSA prevalence rates vary, but share
the trend of rising on every continent [2]. OSA is often associated with features of the
metabolic syndrome or “Syndrome X”, including insulin resistance, dyslipidemia, hyper-
tension, and central adiposity, so often so that some authors have proposed the adoption of
a “Syndrome Z” to account for the frequent presence of OSA [13]. This association with
the metabolic syndrome and its attendant effects on inflammation, oxidative stress, and
endothelial dysfunction likely accounts for a large portion of the association between OSA
and cardiovascular disease [14].

OSA is often symptomatic, with its principal symptom being excessive daytime
sleepiness or fatigue. Historical features that are strongly suggestive of OSA include
loud snoring and witnessed apneas or gasping for air during sleep. This element of
the history often requires an interview with the patient’s bed partner for confirmation.
Other symptomatic manifestations of OSA include difficult concentration, declining work
performance, depressed mood, and a heightened risk for motor vehicle accidents. There
are a number of valid and simple screening tools that can be easily applied during a
patient interview to predict the presence of OSA with fair accuracy. Of these, the STOP-
BANG questionnaire (Table 1) appears to have the best sensitivity and specificity for the
detection of OSA [15–17]. Although many patients with OSA do not volunteer that they are
symptomatic, screening for symptoms can nonetheless be helpful. The Epworth sleepiness
scale (ESS), an eight-item questionnaire administered during a clinical encounter (Table 2),
can prove useful in establishing whether significant OSA symptoms are present [18]. While
it is not solely specific to sleepiness caused by sleep apnea, the ESS scale has been well
validated in the OSA population and is a reliable gauge for symptom severity. This
matters because the presence of subjective and objective sleepiness correlates with greater
expression of pro-inflammatory biomarkers and a greater overall risk for adverse cardiac
events than the absence of OSA symptoms [19]. The presence of symptoms also justifies
OSA treatment, irrespective of any interest in cardiac risk mitigation.

Table 1. The STOP-BANG questionnaire and its accuracy in detecting moderate or severe sleep apnea (AHI ≥15/hour).
Score one point for each finding.

Snoring Typically loud and disruptive

Tiredness Tired, fatigued, or sleepy during the day

Observed apnea Often observed by bed partner

Pressure History of hypertension treatment

BMI BMI > 35 kg/m2

Age >50 years

Neck circumference >40 cm

Gender Male

STOP BANG Score Sensitivity Specificity PPV NPV

1 100 1 67 100

2 99 10 68 79

3 94 32 73 74

4 81 51 76 58

5 60 72 80 48

6 35 89 86 42

7 14 96 88 37

8 3 100 95 35
AHI, apnea–hypopnea index; BMI, body mass index, PPV, positive predictive value; NPV, negative predictive value. The table was created from data
taken from references [17] and [19].
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Table 2. The Epworth Sleepiness Scale (ESS) and its relationship to OSAS risk. Each question is
scored from 0 to 3. ESS score range is from 0–24.

Activity Likelihood of Dozing
0 = Never, 1 = Slight, 2 = Moderate, 3 = High

Sitting and reading

Watching television

Sitting inactively in a public place

As a car passenger for one uninterrupted hour

Lying down in the afternoon when able

Sitting and talking to someone

Sitting quietly after lunch with no alcohol

In a car, while stopped for a few minutes
in traffic

Mean RDI Mean ESS ESS Range Interpretation

8.8 ± 2.3 9.5 ± 3.3 1–9 No or little OSAS risk

21.1 ± 4.0 11.5 ± 4.2 10–15 Moderate OSAS risk

49.5 ± 9.6 16.0 ± 4.4 16–24 High OSAS risk
RDI, respiratory disturbance index; OSAS, obstructive sleep apnea syndrome. The table was adapted from
reference [20].

When OSA is strongly suspected after screening, the diagnosis is typically confirmed
or excluded with an attended, laboratory-based polysomnogram (PSG) or a home sleep
apnea test (HSAT). PSG is considered the gold standard for the diagnosis of sleep disorders
owing to its multi-channel data acquisition, which includes brainwave activity and cardiac
telemetry to allow for sleep staging, arousal assessment, and assessment of heart rate
variability. Major disadvantages of PSG include its limited availability despite rising
demand and lack of access in the setting of the ongoing coronavirus disease 2019 (COVID-
19) pandemic [20]. In contrast, HSAT offers a simpler dataset that includes continuous
oximetry and airflow assessment. The device is worn in the patient’s home and is often
more readily available than PSG. HSAT is most appropriate for patients with few medical
comorbidities in whom there is a high index of suspicion for OSA, rather than central
or mixed apnea. There are even algorithms that allow for the assessment of heart rate
variability based on data obtained from continuous oximetry, a feature that may prove
useful in the prediction of incident rhythm disorders, such as atrial fibrillation [21].

OSA severity may be assessed in several ways. The most commonly reported metric
of OSA severity is the apnea hypopnea index (AHI), which measures the number of times
that a patient stops breathing (apnea) or experiences a significant reduction in airflow
(hypopnea) per hour of sleep time. An apnea is defined as a lack of an air flow for at least
10 s with an associated oxygen desaturation of at least 4%. Hypopnea is defined as a 50%
or greater reduction in airflow for at least 10 s with an associated oxygen desaturation of at
least 4%. The AHI is easy to reproduce and is, without question, the most widely reported
OSA severity metric in clinical trials. However, the AHI may underrepresent OSA severity
when viewed in isolation, and there are data to support focusing more on indices of oxygen
desaturation as a gauge of OSA severity [22]. Recent studies have suggested that measures
of oxygen desaturation, such as the percentage of sleep time spent with an oxygenation
saturation below 90% (T90) or 88% (T88) or the lowest saturation achieved during sleep,
may better predict adverse cardiac events than the AHI [23].
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3. Guilt by Association or Public Enemy Number One? Obstructive Sleep Apnea and
Cardiac Arrhythmogenesis

OSA impacts the development of cardiac arrhythmias through direct and indirect
mechanisms (Figure 1). The direct effects of OSA on arrhythmia development include the
acute physiologic changes that occur as a consequence of airway collapse during sleep,
including the development of hypoxemia and hypercapnia [24], changes in sympathetic
and parasympathetic tone [25], and fluctuations in thoracic pressure [26]. Indirectly, OSA
alters the structure of the heart and is a risk factor for the development of structural
heart disease. The indirect effects include the development of cardiovascular disease,
including hypertension [3,27], heart failure, and coronary artery disease [28], which form
the underlying substrate for arrhythmia development. While atrial fibrillation is the
arrhythmia most commonly associated with OSA [29], there is evidence linking OSA to
the development of arrhythmias at the level of the sinus node [30], atrial arrhythmias [31],
ventricular arrhythmias, and sudden cardiac death [32]. In this section, we will review the
pathophysiologic impact of sleep apnea on cardiac arrhythmia and explore the relationship
with each disease entity in turn.

The basis of arrhythmogenesis includes changes in myocardial automaticity, triggered
activity, and reentrant mechanisms [33]. Abnormal automaticity refers to the formation
of cardiac impulses in normally quiescent cardiac cells and is controlled by multiple fac-
tors, including sympathetic and parasympathetic tone, acid–base status, and electrolyte
disturbances at the membrane and sub-membrane levels [34]. OSA causes repetitive,
cyclical changes in sympathetic tone. During apneic events, increased vagal tone causes
bradycardia followed by sympathetic discharge as a result of hypoxemia and hypercapnia.
Increased vagal tone has been shown to shorten the effective refractory period of the atrium
in porcine models of AF and to lead to easier inducibility of AF [35]. The following sympa-
thetic discharge, in turn, promotes increased arrhythmia formation due to beta-adrenergic
stimulation [26,36] The repetitive hypoxemia is also thought to increase reactive oxygen
species and alter potassium regulation during sleep, which affects the automaticity of car-
diac tissue [37]. OSA has also been shown to decrease the atrial effective refractory period
(ERP) in canine models, thus leaving the atria more vulnerable to automatic depolarization
and ectopy during periods of sleep-disordered breathing [38]. Triggered activity refers
to spontaneous depolarizations that are able to cross the membrane potential required to
trigger an action potential. These individual extrasystoles can precipitate tachyarrhyth-
mias in both the atrial and ventricular chambers [38]. Well-established causes of triggered
activity include hypoxemia, acidemia, and increased sympathetic tone, all of which occur
during the repetitive cycles of apnea that characterize OSA. Re-entrant mechanisms are
postulated to arise from heterogenous myocardial conduction as a result of abnormal
cardiac remodeling in the setting of structural heart disease that accompanies OSA [24].

The mechanistic link between OSA and heart failure is complex and likely bidirec-
tional, with each entity contributing to the other [39]. Obstructive apnea and hypopnea
are associated with respiratory efforts against the collapsed upper airway, with associated
changes in intrathoracic pressure as high as 60 to 80 mmHg [40] These repetitive, acute
swings have a significant impact on cardiac preload and afterload. Simulation of OSA by
means of the Mueller maneuver, which involves breathing in against a forced resistance
by means of a nose clip and mouthpiece with a 21 G needle, was shown to reproduce
changes in intrathoracic pressure in healthy human subjects [38]. This experiment showed
that the effect of these intrathoracic pressure swings includes increases in left ventricle
(LV) end-systolic volumes, decreased cardiac performance, and abrupt swings in left atrial
volumes due to mural stress on the more pliable left atrial wall. Likewise, in patients un-
dergoing cardiac catheterization with measurement of aortic and left ventricular pressures,
negative intrathoracic pressures by means of the Mueller maneuver caused increases in LV
contraction load as well as an increase in the LV relaxation coefficient (tau) [41,42]. These
pathophysiologic changes play a possible role in the observation that severe OSA is asso-
ciated with ventricular diastolic dysfunction in a dose-dependent fashion [42]. The sum
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of these interactions is that OSA predisposes one to the development of structural heart
disease and heart failure, and the development of these disease states, in turn, predisposes
one to and perpetuates the development of OSA.

Figure 1. Proposed mechanisms linking obstructive sleep apnea and cardiac arrhythmias. RAAS, renin angiotensin
aldosterone system; CRP, c-reactive protein; TNF, tumor necrosis factor; IL, interleukin; LV, left ventricle.

Sick sinus syndromes, including bradycardia with chronotropic incompetence, sino-
atrial exit block, and tachycardia–bradycardia syndromes, are recognized to be more
common in OSA patients than in the general population [43–45]. One study using Holter
monitoring of 239 consecutive patients with a new diagnosis of OSA found that brad-
yarrhythmias occurred in as many as 20% of the patients and that there was a dose–response
effect with respect to oxygen saturation nadir during sleep [46]. Early studies in using
tracheostomy as a treatment for OSA in the context of “Pickwickian Syndrome” showed
that the treatment of recurrent apneic episodes with tracheostomy normalized both sleep
patterns and bradyarrhythmias in this population [47]. These studies were among the first
to postulate that hypoxia-induced vagal tone at nighttime could be a significant cause of
bradyarrhythmias. A study of patients with excessive daytime sleepiness and sleep-related
breathing disorders showed that these patients had increased sympathetic and parasympa-
thetic surges when looking at changes in R-R intervals overnight, showing a link between
parasympathetic tone and bradyarrhythmia in this population [48]. A study of six consec-
utive patients with sleep apnea showed that bradycardia correlated with apneic events
and that the duration and severity of bradycardia correlated with the degree of hypoxemia
during the apneic events [49] These observations can be explained by the natural diving
reflex that is elicited during upper airway obstruction. During upper airway obstruction,
there is sympathetic vasoconstriction of arteries to muscles and viscera, with resultant
hypertension and vagal tone causing bradycardia [48,50]. This association between OSA
and bradycardia is also seen in reverse: Patient cohorts not known to have sleep apnea
were shown to have an excessively high prevalence of OSA, regardless of the indication
for pacing [51]. Studies of OSA patients referred for pulmonary vein isolation have shown
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slower sinus node recovery times, suggesting that OSA also impacts the structural integrity
of the sinus node [52].

Atrial fibrillation (AF) is the most common arrhythmia in the United States and is
estimated to affect more than 3 million individuals [53]. The pathogenesis of atrial fibrilla-
tion is complex and incompletely understood, but is accepted to involve both abnormal
atrial substrates and triggers of abnormal electrical activity. The initiation of abnormal
electrical activity in the pulmonary veins and their subsequent spread and activation of
the atrium has been described, and the isolation of said pulmonary veins is the mainstay
of catheter-based ablation of atrial fibrillation [54]. In addition to the pulmonary veins,
additional areas of abnormal electrical activity have been implicated in AF pathogenesis,
including the superior vena cava, the left atrial appendage, the ligament of Marshall, and
scarred areas of the left atrium [53]. Additionally, small spiral wave fronts called rotors
have been implicated in initiating atrial fibrillation from areas of the atrium outside the
traditional pulmonary vein foci [55]. The progression of structural disease, including
scarring and fibrosis of the left atrium, has also been implicated in the development and
progression of atrial fibrillation [56]. In these patients, the abnormal atrial tissue is consid-
ered an additional instigator of atrial fibrillation in addition to the pulmonary veins [57,58].
Parasympathetic tone is also thought to impact the development of atrial fibrillation, with
the ganglionated plexi of the left atrium located near the pulmonary vein ostia being an on-
going target of investigation in atrial fibrillation management [59]. The prevalence of OSA
is as high as 50–80% in atrial fibrillation patients [59–61], and conversely, the prevalence of
atrial fibrillation is higher in OSA patients compared to controls (4.8 vs. 1.9%) [44]. OSA
predisposes one to the development of atrial fibrillation both through its acute effects in
modulating autonomic tone and by acutely changing intrathoracic pressure dynamics, as
well as by modulating chronic changes in the underlying atrial substrate [62].

The impact of OSA on structural changes in the left atrium is well described in an
increasing body of literature. Studies using mice models of OSA have shown that the
repetitive induction of apneic events has direct effects on connexin protein regulation, atrial
fibrous tissue content, and structural changes, including slowed atrial conduction [63].
Similar mimics of OSA in rats were shown to selectively increase the fraction of interstitial
collagen in the atria of mice, without any similar findings in murine ventricles [64]. This
study further showed that Interleukin 6 and Antiogensin-1 Converting Enzyme were
significantly upregulated and correlated with the degree of atrial fibrosis [64]. Relating to
these laboratory findings, a study of 40 patients undergoing AF ablation showed that while
patients with OSA had no differences in baseline AF risk factors compared to controls, they
had slower conduction velocities in atrial tissue and more complex electrograms in the
atrium [54]. In a study of patients referred for pulmonary vein isolation, 43 patients with
OSA were compared to 43 control patients and were shown to have lower atrial voltage
amplitude, slower conduction velocity, and more fractionation of electrograms [65].

In addition to the chronic structural changes attributed to OSA, acute changes in
physiology account for an additional risk factor for AF development. A retrospective
review of overnight polysomnograms from the Sleep Heart Health Study showed that the
odds of an arrhythmia were 18 times higher during a period of respiratory disturbance
compared to normal breathing during sleep [66]. One acute factor that has been shown to
contribute to AF development is hypercapnia. In a study of a sheep model of hypercapnia,
there was an increase in vulnerability to the development of atrial fibrillation during
the post-hypercapnic phase of airway obstruction [67]. In this experiment, hypercapnia
caused a lengthening of the atrial effective refractory period and an increase in conduction
time, which resolved with resolution of hypercapnia. Vulnerability to atrial fibrillation
development was assessed by evaluating the response to an early electrical stimulus to the
atrium, with more development of atrial fibrillation in response to this stimulus during the
return to normal carbon dioxide levels.
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4. Why Will This Patient Not Get Better? The Impact of Obstructive Sleep Apnea on
Treatment and Outcomes in Cardiac Rhythm Disorders

As previously mentioned, the prevalence of recognized and unrecognized OSA among
patients with cardiac arrhythmias in general and atrial fibrillation in particular is quite
high. Thus, screening patients with rhythm disorders for OSA would be reasonable for
no other reason than to identify subjects with symptomatic OSA who might benefit from
treatment. While altruistic, routine screening of patients with rhythm disorders may
also provide insight regarding rhythm management as well, particularly among patients
with treatment-resistant rhythm disorders. Obesity and OSA are tightly linked to one
another, and both conditions have been recognized as contributors to the reoccurrence of
atrial fibrillation after both cardioversion and successful catheter-based ablation [68,69].
The presence of OSA has been associated with a greater rotor burden in patients with
atrial fibrillation, with a proclivity for right atrial rotors in particular [70]. OSA has
been implicated as a contributor to secondary rhythm-related complications of other
cardiovascular diagnoses, including myocardial infarction and heart failure [71,72]. Among
patients with permanent pacemakers that are largely implanted for sinus or AV nodal
diseases, the prevalence of previously unrecognized OSA is quite high, raising the question
of whether appropriate OSA treatment might have resulted in fewer device implants [73].
In patients with non-ischemic cardiomyopathies who have implanted cardiac defibrillators
for the primary prevention of sudden death, OSA has been associated with an increased
rate of inappropriate shocks [74]. Current clinical guidelines recommend screening all
patients with treatment-resistant atrial fibrillation for the presence of OSA, and one should
strongly consider screening patients with tachy-brady syndrome or ventricular tachycardia
and survivors of sudden cardiac death if OSA risk factors are present [53].

5. Do I Really Need to Wear This Mask Every Night? The Impact of Obstructive Sleep
Apnea Treatment on Outcomes in Cardiac Rhythm Disorders

Most of the research done to assess the impact of OSA treatment on outcomes in
patients with cardiac arrhythmias has focused on PAP devices. To date, there are no pub-
lished data supporting the use of mandibular advancement device therapy or hypoglossal
nerve stimulation for the express purpose of reducing arrhythmic or other cardiovascular
events. It has been observed that surgical weight loss can reduce the likelihood for AF
recurrence in a dose-dependent fashion, but large-scale randomized clinical trials with
rhythm-related endpoints are lacking [75]. While observational cohort data suggest that
PAP therapy improves outcomes in rhythm disorders such as atrial fibrillation and lessens
the burden of premature ventricular contractions and non-sustained ventricular tachy-
cardia in patients with heart failure [76–79], recent randomized controlled clinical trials
involving subjects with OSA treated with PAP or either sham PAP or no PAP have failed
to demonstrate any significant benefits in patients with atrial fibrillation or other arrhyth-
mias [80–82]. The reason for this disconnect between observational and randomized trial
data is likely multifactorial, but patient adherence to therapy selection probably plays a
large role. Current randomized controlled trials involving PAP tend to enroll asymptomatic
or minimally sleepy patients due to ethical concerns about not treating sleep patients with
PAP. These are also the patients who are less likely to adhere to PAP therapy. Many of
these studies also exclude patients with more extreme obesity. There are data linking OSA
symptoms to greater OSA morbidity and mortality, so by excluding these patients from
clinical trials, we may be testing a lower-risk population than that seen in everyday clinical
practice [83,84]. Thus, current randomized clinical trials are likely excluding patients who
would be expected to benefit the most from PAP therapy.

6. Where Do We Go from Here? Parting Thoughts and Future Directions

Based on a review of the available data, it seems clear that the presence of OSA
increases one’s likelihood for developing incident atrial fibrillation, nocturnal pauses,
bradycardia, sustained and non-sustained ventricular arrhythmias, and individual ectopic
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ventricular complexes. The growing body of basic scientific data supporting the causal role
of OSA-related events in the genesis of rhythm disorders is quite robust. Observational
data also strongly suggest that the presence of unrecognized and untreated OSA interferes
with the success of conventional rhythm management, especially in patients with AF.
What has yet to be clearly established is whether OSA treatment—and PAP treatment in
particular—actually improves rhythm-related outcomes in patients with OSA. It is well
known that the presence of objective and subjective sleepiness in OSA is associated with
poorer cardiac outcomes for reasons that are not entirely clear, but may be related to a
greater degree of oxidative stress and the expression of pro-inflammatory molecules in
these sleepy patients [83,84] While randomized clinical trial data looking at the effect of
PAP treatment on cardiac outcomes have been admittedly disappointing [80,85], these
trials enrolled patients with few or no OSA symptoms for ethical reasons, and many of
these trials studied patients who were much less obese than the average “real-world” OSA
patient. PAP compliance also remains a limitation in many clinical trials [86]. These facts
raise significant doubts about the true efficacy of PAP treatment in such patients, and future
trials should look to include sleepy patients with higher BMIs to see if this lack of treatment
effects persists. Since recent randomized clinical trials have called into question whether
PAP therapy provides any cardiovascular therapy at all, it may be time to revisit the ethics
of randomizing sleepy patients in PAP trials or to utilize different study designs to address
these questions, such as observational studies using propensity scoring [86]. In addition,
the role of a multi-faceted intervention for OSA, such as combining PAP with structured
weight loss, exercise, and lifestyle and nutritional counseling, deserves more exploration,
as there are data that suggest that these approaches may benefit patients with rhythm
disorders more than PAP therapy alone [87].
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