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Computational modeling of the olfactory receptor
Olfr73 suggests a molecular basis for low potency
of olfactory receptor-activating compounds

Shuguang Yuan® %3, Thamani Dahoun?, Marc Brugarolas?, Horst Pick?, Slawomir Filipek® & Horst Vogel?

The mammalian olfactory system uses hundreds of specialized G-protein-coupled olfactory
receptors (ORs) to discriminate a nearly unlimited number of odorants. Cognate agonists of
most ORs have not yet been identified and potential non-olfactory processes mediated by
ORs are unknown. Here, we used molecular modeling, fingerprint interaction analysis and
molecular dynamics simulations to show that the binding pocket of the prototypical olfactory
receptor Olfr73 is smaller, but more flexible, than binding pockets of typical non-olfactory G-
protein-coupled receptors. We extended our modeling to virtual screening of a library of 1.6
million compounds against Olfr73. Our screen predicted 25 Olfr73 agonists beyond tradi-
tional odorants, of which 17 compounds, some with therapeutic potential, were validated in
cell-based assays. Our modeling suggests a molecular basis for reduced interaction contacts
between an odorant and its OR and thus the typical low potency of OR-activating compounds.
These results provide a proof-of-principle for identifying novel therapeutic OR agonists.
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ability of sensing and distinguishing a huge variety of

chemical compounds, often with a considerable sensitivity
and specificity! 3. The perception of smell of volatile molecules
starts with the activation of olfactory receptors (ORs), translating
the environmental chemical signals with the involvement of
heterotrimeric G proteins into neuronal electrical responses. ORs
are assumed to fold into a seven-transmembrane (7TM) helix
structure establishing the largest class of G-protein-coupled
receptors (GPCRs)2. More than 1000 ORs in mice and about
350 ORs in humans are dedicated to smell3, capable of detecting
an enormous repertoire of chemical compounds by a combina-
torial coding scheme. Typically, one OR recognizes multiple
odorants and one odorant is recognized by multiple ORs, but
different odorants are recognized by different combinations of
ORsb34, Although some progress in functional identification of
ligands for ORs has been achieved in recent years, most ORs are
orphan receptors, whose ligand repertoires remain to be deter-
mined®-8. This, together with the lack of high-resolution 3D
structures of ORs, is the major reason why the fundamental
mechanistic principles of odorant recognition and discrimination
by ORs are largely unresolved at a molecular level. This is in
contrast to non-olfactory GPCRs for which an increasing number
of high-resolution 3D structures have fostered understanding of
ligand/receptor interactions, of ligand-mediated transmembrane
signaling, and of how they serve as critical templates for rational
drug design®.

In the case of missing experimental structural and functional
data, computer modeling can deliver reliable propositions on
ligand structures, which may interact and activate a specific
GPCR!0-14. As ORs share similarities with the structure and
function of class A GPCRs!?, known structures of class A GPCRs
have been used as templates for homology modelling of ORs.
Combined with functional data on odorant-induced activation of
wild-type and mutant ORs, computer modelling have generated
reliable propositions for the structure of the ligand-binding sites
and specific ligand-binding modes of particular ORs thereby
gaining insight into odorant selectivity!6-21.

The large number of ORs and their promiscuity in ligand-
binding related to the combinatorial code opens a huge chemical
range of OR specific agonists and antagonists”-?>23. Estimates
under discussion range from thousands to billions of OR-
activating compounds!>324-26, Decoding the large odorant library
would be of interest for several reasons. First, to understand the
fundamental principles of the combinatorial code of ligand
binding to ORs, and how ligand binding eventually activates or
suppresses signal transmission to the intracellular side of a par-
ticular olfactory receptor and finally induce neuronal responses.
Second, to understand better olfaction related diseases and to find
novel therapeutic strategies for their treatment. As an example,
the correlation between the appearance of neurodegenerative
diseases and dysfunction of the olfactory system is well known?”.
Interestingly, ORs are expressed in many non-olfactory tissues
including, testis, tongue, heart, spleen, pancreas, lung, kidney and
placenta?82%, This suggests that ORs influence non-olfactory
processes and there are indications for that in sperm chemo-
taxis®0, embryonic development and cell-cell recognition!, che-
mosensory functions in kidney32, proliferation of cancer cells33-34,
and other metabolic processes intimately linked with the endo-
crine systems3” that regulate the bodies energy balance, revealing
a connection between the appearance of diabetes and the dys-
function of the olfactory system3°-38, To date mostly synthetic
odorants have been identified to activate ectopically expressed
ORs, for instance, in wound healing processes®® or by influencing
gut motility through OR activation and the release of serotonin in
human gastrointestinal enterochromaffin cells*. In pathologic

The mammalian olfactory system has the intriguing cap-

processes synthetic odorant molecules were shown to influence
different stages of cancer development!42, More recent findings
suggest that ORs might be targetable not only by classical odorant
molecules but even by therapeutic compounds. The anesthetic
drug ketamine, which elicits various neuropharmacological
effects, including sedation, analgesia, and anti-depressant activity,
has been shown to activate odorant receptors in olfactory sensory
neurons and in the mouse brain*3. In the present study we find
that Olfr73 can also be a target of drug-like molecules. Such
findings are important to unravel the poly-pharmacology of
therapeutic agents interacting with multiple intended but also
unintended targets*4.,

On the other hand, OR-activating compounds have been found
to also activate non-olfactory receptors®>. A better understanding
of the odorant-OR structure-activity relationship will have
impact beyond medical applications, including production of
fragrances, perfumes, food and beverages, and offering new ways
of rodent and non-insect pest control, to mention a few?’-4,

Here we report on a computer-directed structure-function
study to discover fundamental principles of how odorants bind
to a prototypical olfactory receptor and to find subsequently new
receptor-activating compounds beyond traditional chemical
odorant libraries. For our study, we have chosen the mouse
eugenol olfactory receptor Olfr73, as this receptor has been
functionally expressed in heterologous mammalian cells for
compound screening!®1747, Figure 1 outlines the approach of
our study. First, we built a homology model of the structure of
Olfr73 and refined it by molecular dynamics simulations. Sec-
ond, we used ligand docking to identify interaction fingerprints
of various agonists in the receptor’s binding pocket, which
together with molecular dynamics simulations of the agonist-
receptor complexes revealed structural details on the first steps of
receptor activation following ligand binding. Finally, the struc-
tural models served as a reliable base to perform a virtual
computer screening of the ZINC library of 1.6 million drug-like
molecules. The in silico screen selected from the large compound
library considerably reduced the number of potential OR-
activating compounds out of which a high percentage showed
functional activity in cell-based assays. This result underscores
the capacity of our in silico approach for rapid identification of
potentially activating compounds out of large chemical libraries.
Combining the 25 already known agonists with the 17 newly
identified compounds establishes one of the largest collections of
active compounds for a specific OR from which substantially
improved conclusions on the characteristics of ligand-OR
interactions can be extracted.

Results

Homology models of Olfr73. To obtain a reliable 3D model of
Olfr73 through the initial homology modelling, we first compared
the sequence of Olfr73 with sequences of other class A GPCRs in
the PDB database. We found that it shared in the best case 19%
sequence identity with beta-2-adrenergic receptor (B,AR, pdb
code: 4LDE)*8 and 16% sequence identity with rthodopsin (RHO,
pdb code: 4BEY)*. Since multiple modelling templates can
considerably improve the reliability of homology models>?->2, we
used the crystal structures of both receptors as templates for
model building. 3D sequence alignment (Supplementary Fig. 1)
indicates that most highly conserved residues/motifs in class A
GPCRs? including N1, D250, DRY motif, W40, Y558, 6.4 and
NPxxY motif are also present in Olfr73°3. However, residue P>->0
and motif CWxP that are typically found in non-OR class A
GPCRs are missing in Olfr73. Moreover, one gap in TM3 is
observed between the sequence of C32° and DRY motif of Olfr73
(Supplementary Fig. 1).
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Fig. 1 Workflow of virtual screening for new agonists of Olfr73. a Homology modelling of OIfr73 based on 3D structure-sequence alignment of Olfr73 to
B2AR and Rho. b Refinement of ECL2 loop. € Molecular dynamics (MD) simulations of agonist bound Olfr73. d Docking agonist molecule into the 3D
structural model of OIfr73. e Interaction fingerprint analysis by docking 25 reported compounds. This information was subsequently used for PH4 model
building in virtual screening. f Virtual screening for Olfr73 agonists in the ZINC compound library composed of 1.58 million drug candidates. Applying
stepwise selection filtering based on shape volume, ionization penalty and polarity, downscaled the chemical library successively to 204 compounds. The
shape volume features are deduced from the results of MD simulations. Finally, quantitative structure-activity relationship evaluations reduced the
chemical library to 64 compounds with predicted potential to activate Olfr73. Out of this final list, agonist binding modes were verified manually based on
the activation mechanism deduced from MD simulations, and 25 available compounds were tested by cellular functional assays yielding 17 active

compounds

Interaction fingerprints (IFP) between agonists and Olfr73.
The final refined homology model of Olfr73 (Fig. 2) shared many
of the common features of non-OR class A GPCRs outlined
elsewhere®>%, We then docked isoeugenol, a potent agonist for
Olfr73%7, into the predicted extracellular ligand-binding pocket to
explore atomistic details of the interaction between the ligand and
its receptor. As depicted in Fig. 2, the hydrophobic moiety of
isoeugenol is surrounded by several aromatic residues including
F102330, F1053-33, F182ECL2, F203542 Y2602 which were also
found by functional analysis of mutant receptors to play a crucial
role in agonist binding?’. Furthermore, the three non-aromatic
hydrophobic residues L199°-38, 125961 and V27773 are con-
tacting the agonist molecule. The hydroxyl group in isoeugenol
forms an H-bond with Y2600-52, which in turn forms an H-bond
with E208°47 and water mediated hydrogen bonding to S113341.
Both Y2600-°2, E208°47 and S11334! had been shown elsewhere
to be important for Olfr73 activation®’.

To further validate these observations, we performed an IFP
analysis (Fig. 3a), which encodes specific interactions between a
particular ligand and specific amino acids in the binding pocket.
IFP analyses have been used for computational drug discovery for
non-olfactory GPCRs>>. Here we docked 25 previously reported
Olfr73 agonist molecules!®#> (Fig. 4) into the binding pocket of
Olfr73 and obtained the interaction fingerprints of the different
agonists with residues in the binding pocket (Fig. 3a). The IFP
analysis showed that all docked agonists could interact with five
residues in the receptor’s binding pocket including F1023-30,

F105333, 1L199°38, 1259651 and Y260652. Furthermore, C106>34
(80%), V1093-37(96%), E181ECL2(80%), F182ECL2(64%), F203°42
(60%), E208547(88%), V2777-39(52%) and T280742(52%) are also
found frequently (percentage in parentheses) contacting the
agonists (Fig. 3a, top histogram). In addition, the three residues
V110338(5%), F179ECL2(8%) and K27373°(12%) were found
sometimes in contact with the agonists. Each particular ligand
was found interacting with at least 80% of all the residues in the
binding pocket (Fig. 3a, right histogram). Most of these
mentioned residues were found by functional analysis of mutant
receptors to play a crucial role in agonist binding?’.

Structural characteristics of Olfr73 from molecular dynamics
simulations. We modelled the Olfr73 with crystal structures of
activated GPCRs. To explore reliable atomic details, we per-
formed 2 x 500 ns all-atom molecular dynamics simulations for
both the apo form of the receptor (apo-Olfr73) and the receptor
with agonist isoeugenol (iEG-Olfr73) (Fig. 2). The molecular
dynamics simulations showed that the volumes of the binding
pocket for apo-Olfr73 and iEG-OIfr73 were 190 + 3 A3 and 220 +
3 A3, respectively. This is probably because of the induced fit
effect (IFD), which has been widely observed in GPCR system
and many others>®°7,

Since the OIfr73 was modelled with low sequence identity
templates, it was necessary to restrain the backbone of the
modeled OR structure during molecular dynamics simulations to
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Fig. 2 The 3D structural model of Olfr73 (left) and enlarged view of the binding mode of the agonist isoeugenol (right). Amino acid side chains in contact

with bound isoeugenol are shown in green
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Fig. 3 Interaction fingerprints of 25 known Olfr73 agonists grouped in classes 1-5 according to Fig. 4. a In the interaction histogram, each contact of a
particular residue with the ligand is indicated by a color. The color code distinguishes the residue location in a particular TM helix. Each class of compounds
is separated by a horizontal gray line. b The pharmacophore model based on 25 known Olfr73 agonists. As a prototypical example, the position of
isoeugenol in the OIfr73 binding pocket showing the interaction fingerprint. Assignments: H-bond donor (1), H-bond acceptor (II), hydrophobic moiety (Il
IV, V, VI); polar residues (yellow), aromatic residues (cyan), hydrophobic residues (green)

keep correct secondary structure®®>2, Thus, we added a small
force constrain during all our molecular dynamics simulations
(see methods section). Transmembrane (TM) movements are a
hallmark of GPCR activation. Since the templates used for the
molecular dynamics simulations are based on receptors in
activated states, the cytoplasmic TM regions of Olfr73 have been
kept in the active open conformation by the end of molecular
dynamics simulations (Supplementary Fig. 2).

Virtual agonist screening. We established a refined 3D structural
homology model of Olfr73, the agonist-receptor interaction fin-
gerprint and the structural framework explaining the mechanism
of receptor activation. To validate these findings, we performed a
virtual screen on a large chemical compound library to find new
candidates of agonists for Olfr73 (Fig. 1) beyond classical odorant
compound libraries, which finally will be tested by cellular
functional assays.
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Fig. 4 Hierarchical clustering of OIfr73 agonist molecules. Six different classes of agonists are identified (distinguished by a color code) according to their
PH4 features. In the Hierarchical diagram, the links between the chemical compounds are represented as branched vertical lines. The height of the lines,
coupled with merging distance (numbers showed in each node), indicate the normalized dissimilarity distance between the adjacent compounds. A higher
line or a larger merging distance denotes a larger dissimilarity. A typical representative molecular structure of each class is shown below the dendrogram
together with their molecular surfaces indicating hydrophobic moieties in grey and polar moieties in red. The commonly shared atoms within a certain class
of molecules are labeled with colored dots accordingly. The molecular structures of the six classes of agonists are grouped in boxes. The 17 newly found
agonists are represented as A1-A17 in blue. The 25 previously reported agonists are represented as B1-B25 in black. The agonist isoeugenol is B3 and
p-isobutylphenol is Al. In all cases the corresponding micromolar ECsq values are indicated in brackets. Names of A- and B-compounds are listed in

Supplementary Tables 2 and 3

First, we evaluated the physicochemical properties of all
reported compounds (see Methods section on physical properties
filtering) and used them for setting the conditions for an initial
filter according to which 312,800 compounds were selected from
the initial 1.58 million drug-like compounds of the ZINC library
(Supplementary Table 1). For details about this procedure, please
see the Methods section on virtual screening).

We applied the next round of selection criteria to our
downsized chemical compound library using pharmacophore
search (PH4)%%, a screening method selecting compounds
according to their chemical shape (Fig. 3b). The PH4 screen
heavily relies on our results obtained from the IFP analysis and
the molecular dynamics simulations. According to the molecular
dynamics simulations, the oxygen at site I is crucial for agonist
binding, forming distinct H-bonds with Y260%°2 and E208>47.
IFP analysis further confirmed that the interaction with Y2602
in this position is highly conserved (Fig. 3a). Since the -OH group
could be either H-bond donor or H-bond acceptor, it was
featured allocated preferentially the PH4 selection filter further
downsized the library to 266,000 compounds.

Interestingly, the empty ligand-binding pocket of Olfr73 has a
volume of 190 A3 and is noticeably smaller than that of other
GPCRs including A,4R (270 A3)%9, rhodopsin (260 A3)!! (Fig. 5),
the 5-HT; 4% receptor (360 A3), or the p-opioid receptor®” (510
A3), and therefore acts as a size-selection filter for potential
binders. This explains why all currently reported agonists of
Olfr73 are small (MW = 130-220) and the corresponding ECs,
values are relatively high, due to the limited interactions in such
small binding pocket. On this basis we created a volume counter
along the 3D space of the sixteen superimposed ligands further
reducing the library of potential Olfr73 binders to 493
compounds. We then continued selection filtering applying first
an ionization penalty and then a molecular polarity counter,
which narrowed the library further down first to 371 and then to
204 compounds.

Finally, we selected potential agonists from the remaining 204
compounds using quantitative structure-activity relationships
(QSAR) based on comparative molecular field analysis (CoMFA)
methods®!. We docked the top 100 ranked compounds by QSAR
into the MD refined homology model and found that 64
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Fig. 5 Cross-section through several GPCRs along the membrane normal showing the vertical part of the ligand-binding pocket of (@) A,aR in complex with
ZMA, (b) rhodopsin in complex with retinal, and (¢) Olfr73 in complex with isobutylphenol. d Plot of ECsq values versus agonist volumes and agonist polar
surface areas (PSA) for Olfr73 based on all reported agonists. Highly potent agonists are located in regions al, a2, a3 and a4; agonists with medium potency
are in the regions of b1, b2 and b3; agonists with lower potency are found in regions c7 and c2. e Molecular mass distribution of OR ligands. f Molecular

mass distribution of non-olfactory GPCR ligands

compounds fitted into the ligand-binding pocket of Olfr73, close
to the activation trigger F105%33. However, only 25 out of the
64 selected compounds have been commercially available for
testing biological activity.

Cell-based functional tests. Next, we used the SEAP reporter
assay, monitoring changes in cyclic adenosine monophosphate
(cAMP) second messenger signalling as a read-out for cellular
responses of odorant-induced receptor activation and found
ligands capable of activating Olfr73 in Hana3A cells*” We tested
25 compounds of the molecules predicted from virtual screening
and identified 17 (Fig. 4, blue labelled compounds; Supplemen-
tary Table 1 and Supplementary Fig. 3) inducing a noticeable
SEAP signal in a concentration-dependent activation of Olfr73. It
would be interesting to test by additional experiments whether of
the eight compounds, which did not show agonist activity, there
are antagonists for Olfr73.

The diversity of OR agonists. In the following, we used a hier-
archical agglomerative clustering method®? to classify both the
newly found and the previously known Olfr73 agonists based on
their PH4 characteristics. As shown in Fig. 4, the 42 compounds
can be grouped into 6 different classes. The four agonists of class-
1 comprise a common phenol group with bulky hydrophobic
groups (cyclohexyl or branched methyl containing alkyl chains)
in para position. The ECs, values of class-1 agonists range from
13 to 64 uM. The agonists of class-2 share a central modified
pyrocatechol structure (primarily in form of monometoxy-phenol
or dimetoxy-phenon) with an additional linear, branched or
cyclic hydrophobic group attached. The ECs, values of these
agonists range from 7 to 240 pM. The agonists of class-3 contain a
central benzaldehyde structure. The para positions carry pri-
marily a metoxy- or ethoxy-substitute; the meta positions are
substituted mostly by methoxy groups or for one case by a methyl

group. The ECs of class-3 agonists range from 26 to 270 uM. The
16 agonists of class-4, share a central phenol structure with
oxygen carrying groups in the para and sometimes also in the
ortho position. The class-4 agonists are the most polar ones in
our collection; ten of them show ECs, values in the range of
4-100 uM, the remaining six have ECs, values between 200 and
660 uM. The class-5 agonists are quite different from the initial
four classes; they do not contain an aromatic ring but instead
carry a central cyclohexanone structure preferentially with a
linear or branched alkyl substituent at the para position. The four
class-5 agonists show ECs, values from 36 to 63 uM. Only one
agonist is listed in class-6. It is composed of a tetrahydro-2H-
pyran structure carrying two hydrophobic substitutions in the
ring and has an ECs, value of 630 pM.

Therapeutic potential of the newly discovered agonists. We
found p-isobutylphenol (4-isobutylphenol) as the most potent
ligand activating Olfr73 in our functional assay (Fig. 4). It is a
known degradation product of Ibuprofen which is widely used as
analgesic anti-inflammatory drug but p-isobutylphenol has also
been shown to exhibit antibiotic activity®>. The estrogenic
activity of the compound 4-cyclohexylphenol has been docu-
mented by in-vitro assays®4. The Olfr73 activating compound 4'-
hydroxy-3’,5'-dimethoxyacetophenone (Acetosyringone) has
anti-asthmatic and anti-inflammatory properties®>. And finally,
4’-hydroxypropiophenone is a predicted inhibitor of metallo-
proteinase 10, which has an active role in lung cancer develop-
ment (Kiresee et al., 2016). Thus, our results have revealed some
insights regarding the potential poly-pharmacological profile of
these drugs acting not only on a defined medicinal target but also
activating an OR. Similar observations of unintended interac-
tions and activation by medicinal drugs have also been docu-
mented for the bitter taste receptor TAS2R14%, The complete
list of newly discovered compounds can be found in
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Supplementary Table 2. The full list of reported compounds is in
Supplementary Table 3.

Limited volume of OR binding pocket. ORs in general and
Olfr73 in particular show some interesting structural and func-
tional differences to their class A GPCR relatives. Most of the
known OR-agonists are smaller in size than the typical agonists of
non-olfactory class A GPCRs. Considering a large panel of
reported OR ligands®” together with the new ligands (105 com-
pounds in total) from this work shows that the molecular mass
(M) of OR ligands distribute between 80 and 220 Da (maximum
around 150 Da) (Fig. 5e). In contrast, non-olfactory GPCR
ligands®® (161,083 compounds in total) distribute primarily
between 300 and 600 Da (maximum around 450 Da) (Fig. 5f).
Additionally, ECsy values for OR-agonists are usually much
higher than those of the agonists of the non-olfactory class A
GPCRs®. In our present study, this can be explained by the
volume of the ligand-binding pocket of the Olfr73 which in
the apo form is considerably smaller than comparable regions of
the non-olfactory class A GPCRs reducing the number of inter-
action points between ligand and receptor (Fig. 5). Obviously, the
ligand-binding pocket of a particular receptor acts as a size
exclusion filter for potential ligands. To test this hypothesis and to
probe the flexibility of the ligand-binding pocket for the Olfr73-
agonists, we submitted Olfr73 with bound compounds Al, A2
and A3 (Fig. 4) to additional 2x500ns all-atom molecular
dynamics simulations. Similar to the agonist isoeugenol, the
volume of the binding pocket of Olfr73 increased from 190 + 3 A3
in the empty state to 220 + 3 A3 for A1 (MW = 149) to 225 + 5 A3
for A2 (MW =166), and 240+2 A3 for A3 (MW =171),
respectively. In general, larger ligands induce a larger volume
increase in the occupied binding pocket>®. Obviously, the binding
pocket of Olfr73 is within a certain range quite flexible and
adjusts perfectly to the size of the bound ligand with volume
changes between 15 and 25%. We previously made similar
observations for non-olfactory class A GPCRs such as the P2Y,
receptor’? changing the volume of the binding pocket from 230 +
4 t0 280 + 5 A3 (22% change), the 5-HT; %0 receptor from 360 +
5 to 425+3 A3 (18%), the A,4R from 270+ 2 to 315+4 A3
(17%), and the p-opioid receptor’” from 510+3 to 575+ 5 A3
(13%). In the next step, we performed an interaction fingerprint
analysis for our newly found 17 agonists and compared the
outcome with that in Fig. 3 of the 25 known agonists (Supple-
mentary Fig. 4). The IFPs of both sets of agonists are quite
similar. Moreover, IFPs indicated that there are only two
hydrogen bond interactions between Olfr73 and its agonists,
whereas there are much more polar interactions in other
GPCRs”172, These results further confirm our conclusions that
the volume of Olfr73 is limited which is responsible for the small
size of its agonists and weak ECs, values.

Discussion
Olfactory receptors represent almost 50% of the human GPCRs
and may have additional physiological and pathological functions
in the human body beyond their role in olfaction. A critical step
allowing studies of the different functional roles of ORs relies on
the discovery of their activating ligands. By employing a combi-
nation of homology modelling, interaction fingerprint analysis
and molecular dynamics simulations to finally find novel agonists
beyond classical odorant compounds by in silico screening a large
drug compound library. We find that even drug-like molecules
can target Olfr73, and compared their OR-activation mechanism
to that mediated by classical odorant molecules.

In summary, our study revealed a structural framework for
ligand-receptor interactions. We found that the limited volume

of the binding pocket is responsible for the small size and weak
ECs, values of Olfr73 agonists, which is typical for many ORs.
Molecular fingerprint analysis discovered the principal interac-
tions between the agonists and the binding pocket comprising
many aromatic and hydrophobic residues. Interestingly, when
plotting the ECs, values vs. ligand volume and ligand polar sur-
face area (PSA), we identified four favorable regions for the most
potent agonists with the following characteristics (Fig. 5d): (al)
small volume (120-140 A3) and small PSA (20-35 A2); (a2) large
volume (140-160 A3) and medium PSA (35-40 A2); (a3) large
volume (>160 A3) and small PSA (10-20 A2); (a4) small volume
(120-130 A3) and medium PSA (42-45A2). Three regions
with moderate potencies were also identified: (bI) small or
medium volume (120-150 A3) and small PSA (10-20 A2); (b2)
large volume (150-160 A%) and small PSA (20-30 A2); (b3)
medium volume (130-150 A3) and medium PSA (35-40 A2).
Two regions with poor potencies were also found: (cI) small
volume (<130 A3) and large PSA (45-55 A2); (c2) large volume
(>145 A3) and large PSA (>50 A2).

Comparing with previous work on olfactory receptors!>4373,
we found several new aspects in this area including the structural
principles leading to higher ECs, values for OR activation and the
molecular diversity of ligands and interactions with their OR. In
conclusion, molecular dynamics simulations in combination with
structure based in silico screening offer a promising way to
deorphanize the mammalian OR repertoire and thereby con-
tribute to a better understanding of the molecular basis of
ligand-OR interactions in olfactory and non-olfactory processes.

Methods

Homology modelling of Olfr73. The initial homology models of Olfr73 were
obtained by Modeller 9.1074 using the crystal structure of two GPCRs in the active
state as templates, B,AR (pdb code: 4LDE)*8 and rhodopsin (pdb: 4BEY)%’; B,AR
shares 19% and rhodopsin 16% sequence identity with Olfr73. They share the
highest sequence identity with Olfr73. 3D multiple sequence alignments were
performed by Promals3D7> with default settings and were adjusted manually for
properly aligning conserved motifs and disulfide bridges. 25,000 structural models
(5 x 5000 with different random seeds) were created from the two template
structures for Olfr73 in Modeller with fully annealing protocol, and the optimal
model was chosen for further study based on Discrete Optimized Protein Energy
(DOPE) score. Models from Modeller were submitted to Rosetta for kinematic loop
modelling refinement’®. Over 20,000 structures for loop region were generated.
The loop refinement was done in Rosetta”®.

Refinement of structural model and protein-ligand docking. The initial
Olfr73 structure models generated from Modeller were optimally aligned with the
structure of B,AR (pdb code: 4LDE) using OPM (Orientations of Proteins in
Membranes) database’’. The pre-aligned Olfr73 structure models were imported
into the Maestro v9.3 program’8. Hydrogens were added to the structures corre-
sponding to physiological pH 7.0. For details please see our previous work!!.

Molecular dynamics simulations. We performed restrained molecular dynamics
simulations to achieve local improvement of the homology models®>7°. Using the
g_membed® tool in Gromacs®!82, the well-prepared Olfr73 structure model was
embedded into a pre-equilibrated lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine (POPC) solvated in 0.15 M NaCl. All molecular dynamics
simulations were performed in Gromacs®!82, For details please see our previous
work!1:83,

Interaction fingerprint analysis and compound clustering. Both the interaction
fingerprint (IFP) analysis and compound clustering analysis were performed in
Schrodinger software’8. Each compound was first docked into the binding pocket
of Olfr73 in Schrodinger, then the interaction fingerprint analysis was performed
using the Canvas module®“. Interaction fingerprints are calculated as a set of bits
for the presence or absence of particular types of interactions between a set of
ligands and the residues in the active site of a receptor. The IFP divides protein/
ligand interactions into four different types: hydrophobic interaction, ion-lock
interaction, and H-bond interactions. The frequency of each interaction was cal-
culated by the sum of contacts over the whole frames during molecular dynamics
simulations.

The 3D coordinates of each docked compound were imported into Canvas for
compound clustering analysis. Canvas first calculates the pharmacophore features
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(such as H-bond interaction and hydrophobic contact) of imported compounds,
then performs hierarchical agglomerative clustering on a set of structures using a
similarity matrix. The Hierarchical clustering was generated in Canvas.
Hierarchical clustering is a method of cluster analysis which seeks to build a
hierarchy of clusters. The merges and splits are determined in a greedy manner®.
The results of hierarchical clustering are usually presented in a dendrogram. In
order to decide which clusters should be combined or split, a measure of
dissimilarity between sets of observations is required. In the hierarchical clustering,
this is achieved by use of “Average distance between all inter-cluster pairs” method
in Schrodinger software8®, and the Kelley criterion®¢ was used for the linkage which
specifies the dissimilarity of sets as a function of the pairwise distances of
observations in the sets.

Virtual screening. We first considered the physicochemical properties of 25
known agonists of Olfr731747 such as molecular mass (M), calculated logP (clogP),
number of rotatable bonds (nRot) and bond valence. However, we extended the
scale of each criterium. For instance, as the molecular mass M of the reported
compounds are within 134-218 Da, we used a filter for M of 110-320 Da.

The pharmacophore (PH4) search was performed using the Phase®® module in
the Schrodinger software. PH4 is a fast and efficient tool for shape-based
superposition and similarity searching of pharmacophores. A scoring function
rank-orders potential pharmacophores by their performance in virtual screening
and ligand alignment. The PH4 models were built according to the results obtained
from both IFP analysis and molecular dynamics simulations. A H-bond donor/
acceptor featured sphere (site I) was created next to the -OH group of Y2606°2, A
H-bond acceptor descriptor (site II) was placed next to site I. Additional four
hydrophobic featured spheres (site III, IV, V and VI) were created according to the
IFP analysis.

On the basis of the outcome of the PH4 search, we created a volume counter
(230 A3) along the 3D space of the 25 docked ligands to further reduce the
compound library. Then we continued the selection filtering applying first an
ionization penalty and then a molecular polarity counter. All these steps were
performed in the Schrodinger software package.

We selected potential agonists from the remaining compound library using
quantitative structure-activity relationships (QSAR) based on comparative
molecular field analysis (CoMFA) methods in SYBYL-X 1.3%7 software. COMFA
considers steric and electrostatic interactions, which would block ligand-receptor
interations®®. As a result, each molecule is located within a three-dimensional grid
of defined dimensions. A probe calculates the energy within the bound molecule
and neighboring residues of the receptor, in all directions over the entire grid
yielding thousands of interactions®. Here we used the 25 previously reported*”
active compounds as training sets. Good correlations (R? = 0.73) were obtained
between reported experimental results from functional assays and QSAR predicted
ligands.

Cell Culture and Transfection. As described in detail elsewhere!®4547 HEK293T-
derived Hana3A cells (provided by Prof. Matsunami, Duke University, USA) were
grown in DMEM/F12 medium (Invitrogen, Netherlands) supplemented with 10%
fetal calf serum (FCS) (Invitrogen, Netherlands), maintained under selective con-
ditions with 1 pg/ml of puromycin (Sigma, Switzerland) and kept in the incubator
at 37°C and 5% CO,. Cells were transfected with plasmid DNA using Lipofecta-
mine 2000 (Invitrogen, Netherlands).

Quantification of OR responses by SEAP reporter assay. The assays were
performed as described in detail elsewhere!%4>47 twenty hours before transfection
Hana3A cells were seeded into 96 wells (Greiner, Germany) at a concentration of
3.5x 10° cells per ml of medium. 75 ng of pRTP1S, 150 ng of the cAMP response
element fused to the secreted alkaline phosphatase (pPCRE-SEAP)® and either 75
ng of pOlfr7347 or 75 ng of calf thymus DNA, used as a control, were co-
transfected. Compounds to be tested (Sigma, Switzerland) were diluted in DMEM/
F12 without FCS and added to the cells 7 h after transfection. Cells were incubated
for 16 h at 37 °C in the incubator. For the SEAP reporter assay, the culture medium
was mixed with an equal volume of 1 M diethanolamine-bicarbonate, pH 9.8,
containing 20 mM para-nitrophenyl-phosphate (pNPP) (Sigma, Switzerland) and
1 mM MgCl, (Sigma, Switzerland). Absorbance was measured at 410 nm using a
multiwell absorbance plate reader (Molecular Devices, USA) at 1- to 4-min
intervals for a period of 5 min to determine SEAP expression dependent pNPP
hydrolysis rates (A4;o /min). ECs, values were determined from dose-response
curves fitting experimental data with the Hill equation using IGOR Pro software
(WaveMetrics):

flx) = : J{ ((rifn))n f(x) is the background-corrected response signal at

concentration x of the investigated ligand, f(max) the maximal, background-
corrected amplitude of the response signal, ECs, the half maximal effective ligand
concentration, and » the Hill coefficient. Experiments were performed in triplicate.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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