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Abstract
Both sodium chloride and sodium sulfate are able to stabilize yeast frataxin, causing an

overall increase of its thermodynamic stability curve, with a decrease in the cold denatur-

ation temperature and an increase in the hot denaturation one. The influence of low concen-

trations of these two salts on yeast frataxin stability can be assessed by the application of a

theoretical model based on scaled particle theory. First developed to figure out the mecha-

nism underlying cold denaturation in water, this model is able to predict the stabilization of

globular proteins provided by these two salts. The densities of the salt solutions and their

temperature dependence play a fundamental role.

Introduction
It is widely recognized that globular proteins undergo cold denaturation in aqueous media [1],
as further confirmed in the last years by means of detailed experimental studies [2, 3]. Careful
analysis of NMR and CD investigations [4, 5] has shown that: (1) yeast frataxin, Yfh1, under-
goes cold denaturation at a temperature above 0°C, (2) the transition is exothermic and revers-
ible, (3) the two denatured states (obtained upon cold and hot denaturation, respectively) are
very similar from a structural point of view [6].

Yfh1 is a metal-binding protein and its conformational stability is strongly dependent on
the presence of salts [7, 8]. In particular, Yfh1 binds divalent cations and even very low concen-
trations of the latter have very large effects on its stability. However, it has been shown that also
low concentrations of salts of monovalent cations, not binding the protein, such as NaCl and
Na2SO4, significantly increase the conformational stability of Yfh1 [8]. Specifically: (a) the hot
denaturation temperature, Td,hot, passes from 30°C in water (10 mMHEPES buffer, pH 7.5),
to 40°C in 100 mMNaCl, and 48°C in 100 mMNa2SO4; (b) the cold denaturation temperature,
Td,cold, passes from 7°C in water (10 mMHEPES buffer, pH 7.5) to values significantly lower
than -20°C in both 100 mMNaCl and 100 mMNa2SO4; (c) there is also a marked increase in
the values of the denaturation Gibbs energy at the temperature of maximal stability, ΔGd
(Tmax) [8]. These findings suggest that both salts affect the conformational stability of Yfh1
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not only by means of ionic strength effects, but also as a consequence of a change in a basic
property of the solvent water.

An approach grounded in statistical thermodynamics has provided a consistent mechanism
for the dependence upon temperature of the conformational stability of globular proteins in
water [9, 10]. The reliability of this approach to explain the occurrence of cold denaturation
has been supported by direct MD simulations in detailed water models [11]. Two solvent prop-
erties play a fundamental role: the water density with its peculiar temperature dependence at 1
atm, and the small diameter of water molecules. This theoretical approach is able to provide,
with no ad hoc assumptions, a rationalization of the experimental findings on Yfh1, by simply
taking into account the density increase caused by the addition to water of small amounts of
NaCl and Na2SO4.

Theoretical Approach
Two macro-states are accessible to protein molecules: the ensemble of native conformations,
N-state, and the ensemble of denatured conformations, D-state. According to the theoretical
approach [9, 10, 12], the denaturation Gibbs energy change (ΔGd) in both water and aqueous
salt solutions is given by:

DGd ¼ ½DGcðDÞ � DGcðNÞ� � T � DSconf þ ½EaðDÞ � EaðNÞ þ DEaðintraÞ� ð1Þ

where ΔGc(D) and ΔGc(N) are the Gibbs energy changes associated with the creation in aque-
ous media of the cavity hosting the D-state and N-state, respectively; ΔSconf represents the
increase in conformational entropy of the protein chain upon denaturation; Ea(D) and Ea(N)
are the energies obtained by taking into account all the interactions waters and ions establish
with the protein in the D-state and N-state, respectively; ΔEa(intra) is the intra-protein energy
loss upon denaturation. It is worth noting that in Eq (1) no contribution from the structural
rearrangement of water H-bonds has been considered. For the latter process an almost com-
plete enthalpy-entropy compensation holds [13, 14]. Furthermore, it can be assumed that the
second square bracket in Eq (1), labelled ΔE, is close to zero. This assumption relies on the con-
sideration that the sum of the intra-molecular interactions in the N-state and the inter-molecu-
lar interactions of N-state with waters are almost entirely counterbalanced by the inter-
molecular interactions of D-state with waters (for a more detailed discussion, see ref. [10] and
S1 Text). This assumption is considered to hold also in the case of aqueous solutions of NaCl
and Na2SO4. It is firmly established that the Na+, Cl- and SO42- ions preferentially interact
with waters [15, 16], and so should be excluded from the protein solvation shell of both the N-
state and D-state. Indeed, the analysis of several frataxin X-ray structures, from different
sources (pdb id: 2fql [17], 1ekg [18], 1ew4 [19]), revealed no interaction between the N-state of
the protein and sulfate, chloride or sodium ions, even though these ions are very abundant in
the crystallization conditions. Since the protein-solvent interactions involve always water mole-
cules, the same assumption made in the case of pure water should hold in aqueous solutions of
NaCl and Na2SO4. It is well known that also the Na+, Cl- and SO42- ions can be bound by
some globular proteins due to specific structural and electrostatic features of the binding sites
[20]. The present approach, however, cannot account for such binding effects on the confor-
mational stability of globular proteins.

As a consequence of the above assumptions, the ΔGd expression, in both water and aqueous
salt solutions, becomes:

DGd ¼ DDGc � T � DSconf ð2Þ

Eq (2) looks like the protein stability scenario proposed by Kauzmann [21]. ΔΔGc is an
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entropic quantity [22] and it represents the loss in translational freedom of solvent molecules
due to the solvent-excluded volume increase upon denaturation. Thus, it is always a stabilizing
factor for the N-state [9, 10]. The increase in solvent-excluded volume is strictly correlated to
the increase in water accessible surface area, WASA [23], upon denaturation [24]. Numerical
estimates for the quantities appearing in Eq (2) have to be provided to shed light on the confor-
mational stability increase caused by the addition of NaCl or Na2SO4 to water.

Calculation Procedure
A sphere of radius a = 15 Å is selected to model the N-state, whereas three prolate spherocylin-
ders, with different values of radius (a) and cylindrical length (l), are selected to model the D-
state (this should be important to test the “robustness” of the model). The spherocylinder sizes
are: (1) a = 6.0 Å and l = 117.0 Å for D-state I; (2) a = 5.34 Å and l = 150.7 Å for D-state II; (3)
a = 5.0 Å and l = 173.3 Å for D-state III. All these objects (representing the N-state and D-
states) have the same van der Waals volume (VvdW = 14137 Å3), but a markedly different
water accessible surface area (WASA). A summary of the geometric properties of the sphere
and the spherocylinders is reported in Table 1 (see also S2 Text). These numbers correspond to
a 138-residue globular protein, since the van der Waals volume of an average residue is 102.5
Å3 [9], and should be reliable for a comparison with Yfh1, that consists of 123 residues. It is
worth noting that detailed Monte Carlo simulations by Tran and Pappu (accounting exclu-
sively for the repulsive interactions among residues) indicate that average shapes of the D-state
for 23 globular proteins are consistent with prolate ellipsoids [25]. The latter are similar to the
prolate spherocylinders considered in the present work [9, 10, 16].

[9]Once the dimensions of the sphere and of the spherocylinder have been fixed, the ΔΔGc
quantity is calculated using classic scaled particle theory (SPT) [26, 27]. The ΔΔGc quantity
proves to be always a large and positive number, stabilizing the N-state [9, 10, 16, 24], because
the two cavities, even possessing the same VvdW, cause a markedly different solvent-excluded
volume effect. This effect is markedly larger for the D-state simply because WASA(D-state)>
WASA(N-state). Calculations have been carried out at P = 1 atm, over a large temperature
range (from -30°C to 70°C), for water, 0.05 m and 0.1 m NaCl, 0.05 m and 0.1 m Na2SO4 aque-
ous solutions. Experimental values of the density have been used [28, 29]. Actually, the numeri-
cal equations provided by Millero and co-workers for the two salt solutions, representing
experimental data above 0°C, have been considered correct down to -30°C [28, 29]. A compari-
son between the density of water and that of the two 0.1 m salt solutions is reported in Fig 1
(note that molality is preferred to molarity because the solution density depends upon temper-
ature). Since the density of aqueous salt solutions plays a fundamental role in the present
approach, it is necessary to take into account the uncertainty associated with experimental den-
sity values. The latter uncertainty amounts to 0.05% of the reported average values [29]. Classic
SPT calculations have also been performed at the two density extremes for each temperature to
test the “robustness” of the results.

Table 1. Main geometric properties of the sphere representing the N-state and the three spherocylinders approximating the D-state.

radius, a (Å) cylindrical length, l (Å) Vvdw (Å3) WASA (Å2)

N-state 15 - - 14137 3380

D-state I 6.00 117.0 14137 6128

D-state II 5.34 150.7 14137 6952

D-state III 5.00 173.3 14137 7485

doi:10.1371/journal.pone.0133550.t001
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Moreover, the following hard sphere diameters, assumed to be temperature-independent,
have been used: σ = 2.80 Å for H2O molecules; 2.02 Å for Na+ ions; 3.62 Å for Cl- ions; 4.60 Å
for SO42- ions [15, 30–33].

Assuming that the D-state conformational features are not affected by the presence of salts,
the magnitude of the T ΔSconf contribution should not to change in passing from water to
aqueous salt solutions. If each residue of the protein chain gains an average, temperature-inde-
pendent conformational entropy upon denaturation [9, 10, 16], it is possible to write:

T � DSconf ¼ T � Nres � DSconf ðresÞ ð3Þ

Fig 1. Pure water and solution densities. Density of pure water (circles), 0.1 m NaCl solution (squares), and 0.1 m Na2SO4 (rhombi) as a function of
temperature.

doi:10.1371/journal.pone.0133550.g001
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where Nres = 138, and the T ΔSconf contribution proves to be a straight line. The following val-
ues have been selected for ΔSconf(res): 19.1 J K-1 mol-res-1 for D-state I, 24.4 J K-1 mol-res-1
for D-state II and 27.8 J K-1 mol-res-1 for D-state III. The ΔSconf(res) term is considered to
increase on lengthening the spherocylinder that models the D-state since the conformational
freedom of the chain should increase (i.e., keeping VvdW fixed, the length of the spherocylin-
der is a measure of the D-state compactness, and the latter should be a measure of the confor-
mational freedom of the chain). In this respect, it is worth noting that Sosnick and co-workers
[34] have recently been able to obtain a direct estimate of ΔSconf(res) for ubiquitin producing
reliable statistical ensembles for both the N-state and D-state, by means of very long MD trajec-
tories. The average value obtained by Sosnick and co-workers is 19.5 J K-1 mol-res-1 at 300 K.
The numbers used in the present analysis are in line with the latter value and other literature
estimates [35–37].

Results
The profile of the functions ΔΔGc(H2O), ΔΔGc(0.1 m NaCl), ΔΔGc(0.1 m Na2SO4) and T
ΔSconf, calculated in the temperature range from -30 to 70°C, is shown in Fig 2 for all the con-
sidered cases. A qualitatively similar trend is obtained in the 0.05 m salt solutions; data not
shown. The larger is ΔWASA (defined as WASA(D-state)—WASA(N-state)) the larger is the
value of ΔΔGc; ΔWASA is in fact a measure of the rise in solvent-excluded volume effect asso-
ciated with chain unfolding. More importantly, the Gc functions show a parabola-like profile,
which originates from the peculiar temperature dependence of aqueous solution densities (see
Fig 1 for the densities of pure water and 0.1 m salt solutions). Indeed, while the density of a
common liquid increases on decreasing the temperature, water shows a temperature of maxi-
mum density (TMD) at 4.0°C. The TMD value of salt solutions depends upon the salt type and
concentration and it is always lower than that of pure water [38, 39]. In particular, TMD is
2.5°C for the 0.1 m NaCl solution, and 1.0°C for the 0.1 m Na2SO4 solution [39]. The TMD val-
ues of all the considered solutions are listed in Table 2. All the ΔΔGc functions decrease on low-
ering the temperature as a direct consequence of both the density decrease and the decrease in
random thermal energy of the solvent particles bombarding the cavity surface (i.e., the RT fac-
tor present in all the formulas to calculate the work of cavity creation [26, 27]).

Fig 2. ΔΔGc curves for the three D-state cases. The curves ΔΔGc = ΔGc(D-state)—ΔGc(N-state) for pure water (circles), 0.1 m NaCl (squares), and 0.1 m
Na2SO4 (rhombi) as a function of temperature are shown together with the T ΔSconf straight line calculated fixing Nres = 138. (A) D-state I with ΔSconf(res) =
19.1 J K-1 mol-res-1. (B) D-state II with ΔSconf(res) = 24.4 J K-1 mol-res-1. (C) D-state III with ΔSconf(res) = 27.8 J K-1 mol-res-1. The dimensions of the
three D-states are reported in Table 1.

doi:10.1371/journal.pone.0133550.g002
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The two points of intersection between the–T ΔSconf straight line and the ΔΔGc curves
correspond to Td,cold (on the "cold side") and to Td,hot (on the "hot side"), respectively.
Cold and hot denaturation temperatures for all the investigated solutions, together with the
ΔGd(Tmax) values, are reported in Table 2 for the D-state II case. The calculated thermody-
namic stability curves, ΔGd versus temperature, are shown in Fig 3A for the 0.05 m salt solu-
tions, and in Fig 3B for the 0.1 m salt solutions, in comparison to that holding in pure water,
referring to the D-state II case. These curves also show the effect due to the uncertainty asso-
ciated with the density of salt solutions (no error is associated with water density in view of
the precision of the data reported by Kell [28]). The stability curves referring to the case of
D-state I and D-state III are qualitatively similar and are reported as Supporting Information.
The main features of these curves prove to be “robust” to density uncertainty, to the different
D-state spherocylinders and to ΔSconf(res) numbers. The shift of the cold and hot denatur-
ation temperatures and of the ΔGd(Tmax) value increases on passing from 0.05 m to 0.1 m
aqueous salt solutions. The values reported in Table 2, always referring to the case of D-
state II, indicate that, even small concentrations of the two salts, lead to a significant stability
increase of the model protein. Specifically: (a) Td,cold = -28°C in water, -31°C in 0.1 m NaCl,
-34.5°C in 0.1 m Na2SO4; (b) Td,hot = 53.5°C in water, 58°C in 0.1 m NaCl, 64°C in 0.1 m
Na2SO4; (c) ΔGd(Tmax) = 30 kJ mol-1 in water, 36 kJ mol-1 in 0.1 m NaCl, and 45 kJ mol-1
in 0.1 m Na2SO4. The obtained value of ΔGd(Tmax) in water is absolutely consistent with a
stable globular protein, corresponding to a stabilization Gibbs energy of about 220 J mol-res-
1, in line with experimental data [40]. Also the obtained Tmax value, about 8°C in all the
investigated cases (see Fig 3), is in agreement with the average value determined over a large
set of globular proteins, Tmax = 283 ± 20 K [40]. The present results are in line with experi-
mental findings on Yfh1 [8].

As a final check, it is important to assess the effect of removing the assumption ΔE = 0 on
the obtained results. The ΔE term should be a positive quantity in order to stabilize the N-state
and should not be affected by the presence of NaCl or Na2SO4 because the corresponding ions
interact preferentially with water molecules, not with protein surface groups. By fixing ΔE = 5
kJ mol-1, temperature-independent and salt-independent, the obtained stability curves are
shown in Fig 4 for the case of D-state II and 0.1 m salt solutions. It is evident that the qualitative
trend does not change because the positive and constant ΔE quantity causes a lift-up of all the
parabola-like curves. It is worth noting that the ΔE quantity should depend slightly on temper-
ature because the strength of both protein-water and intra-protein interactions changes little
with temperature. This strength, in fact, depends upon the distance between the interacting
groups, and this distance should change slightly in view of the very small temperature depen-
dence of the density of both water and aqueous salt solutions [28, 29].

Table 2. Some features of all the considered solutions at 25°C and 1 atm, and their TMD values are reported. Cold and hot denaturation temperatures,
together with the ΔGd at the temperature of maximal stability, for the D-state II case, are listed in the last three lines.

Water NaCl 0.05 m NaCl 0.1 m Na2SO4 0.05 m Na2SO4 0.1 m

density at 25°C [g mL-1] 0.9970 0.9991 1.0011 1.0034 1.0097

ξ3 at 25°C 0.3831 0.3836 0.3842 0.3846 0.3861

total number density at 25°C [mol L-1] 55.34 55.40 55.43 55.45 55.55

TMD [°C] 4.0 3.5 2.5 2.5 1.0

Td,cold [°C] -28 -29.5 -31 -31.5 -34.5

Td,hot [°C] 53.5 56 58 59 64

ΔGd(Tmax) [kJ mol-1] 30 33 36 38 45

doi:10.1371/journal.pone.0133550.t002
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Fig 3. Stability curves for D-state II case. Thermodynamic stability curves of the model globular protein,
considering the D-state II case, and taking into account the uncertainty in the density of the salt solutions; see
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Discussion
To the best of our knowledge, the salt effect on cold denaturation has been investigated only
in the case of yeast frataxin, Yfh1 [8]. Therefore, the experimental results on Yfh1 motivated
the present analysis. The latter, however, having a statistical mechanical ground, is not aimed
to quantitatively reproduce the results obtained in the case of Yfh1, but to provide a general
and qualitative rationalization of the stabilization afforded by small concentrations of NaCl or
Na2SO4. In this respect, it is worth noting that these two salts have shown a similar shift of the
collapse transition temperature (akin to the cold denaturation temperature) in the case of the
uncharged poly(N-isopropylacrylamide), PNIPAM, and elastin-like polypeptides [41].

The stability increase of the model protein is due to the ΔΔGc magnitude that is larger in the
aqueous salt solutions with respect to the pure water case (see Fig 2). The liquid density and
the liquid particle size are the fundamental quantities to determine the ΔGc magnitude, accord-
ing to both classic SPT and computer simulations [9, 10, 15, 16, 42–48]. In the present case, the
size does not play a role because the average diameter of liquid particles is 2.8 Å in both water
and all the considered aqueous salt solutions. In contrast, the experimental densities of 0.05 m
and 0.1 m aqueous solutions of both NaCl and Na2SO4 are larger than that of water over the
whole considered temperature range (see Fig 1, for instance). As a consequence, the values of
the volume packing density, ξ 3, which is the fraction of the liquid volume really occupied by
solvent molecules and ions, of both aqueous salt solutions prove to be larger than that of
water at any temperature (i.e., ξ3 = 0.3831 in water, 0.3842 in 0.1 m NaCl, and 0.3861 in 0.1 m
Na2SO4, at 25°C). An increase of ξ 3 leads to (a) a decrease in the fraction of void volume in the
liquid, (b) a decrease in the probability of finding a molecular-sized cavity in the liquid volume,
and (c) an increase in the ΔGc magnitude [15, 16]. In addition, the higher density of aqueous
salt solutions translates in a higher total number density (i.e., number of moles per liter), lead-
ing to an increase in the magnitude of the solvent-excluded volume effect. This is why, even
though the ξ 3 values are very close, such as in the case of water and 0.05 m NaCl, the ΔΔGc
contribution is larger in the salt solution. Although the difference in total number density and
in ξ3 values is small, the impact on the ΔΔGc magnitude is significant because the effect is
amplified by the large difference in WASA of the considered cavities. The electrostatic charge-
dipole interactions, strengthened by the high charge density of the considered ions, are respon-
sible, at a molecular level, of the density increase caused by the addition of NaCl or Na2SO4 to
water.

The assumption that the structural-geometric features of both the N-state and D-state are
not affected by the presence of small concentrations of NaCl or Na2SO4 implies that the
ΔSconf(res) magnitude should not depend upon the presence of such salts. Of course, the out-
comes of the approach are very sensitive to the value assigned to ΔSconf(res), but this should
not detract from the general qualitative nature of the emerged stabilization mechanism.

The simplified nature of the present geometric models of both the N-state and D-state
should not be forgotten. No charge is considered to exist on the surface of the models (in
contrast, an important and peculiar feature of Yfh1 [20]) and this implies that the present
approach cannot take into account: (a) the effect of attractive-repulsive charge-charge interac-
tions; (b) the screening effect of electrostatic interactions provided by a high ionic strength in
aqueous salt solutions. However, the approach has been used to devise a rationalization of the
effect that small concentrations of NaCl or Na2SO4 have on the stability of the model protein.

text for further details. (A) pure water (circles), 0.05 m NaCl (squares) and the shaded area, 0.05 m Na2SO4

(rhombi) and the shaded area. (B) pure water (circles), 0.1 m NaCl (squares) and the shaded area, 0.1 m
Na2SO4 (rhombi) and the shaded area.

doi:10.1371/journal.pone.0133550.g003

Cold Denaturation and Salt Solutions

PLOS ONE | DOI:10.1371/journal.pone.0133550 July 21, 2015 8 / 13



Fig 4. Effect ofΔE on stability curves. Thermodynamic stability curves of the model globular protein,
considering the D-state II case, with (A) ΔE = 0 and (B) ΔE = 5 kJ mol-1. See text for further details.

doi:10.1371/journal.pone.0133550.g004
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The NaCl and Na2SO4 effect on the conformational stability of the model protein follows
the Hofmeister series [49], which sorts ions on the basis of their ability to increase the stability
of globular proteins [50]. In particular, Na+, Cl- and SO42- are classified as stabilizing ions, the
latter being one of the most stabilizing anions of the series. The molecular-level origin of the
Hofmeister series is still not clear and contrasting ideas have been proposed [51–54]. The pres-
ent theoretical approach indicates that: (a) the stability increase of the model protein is a direct
consequence of the higher density of salt solutions, which originates from the strong electro-
static interactions between ions and water molecules; (b) there is no need to consider the effects
of ions on the structural features of water (i.e., no need to classify ions in structure-breaking,
chaotropic, or structure-making, kosmotropic, ones) [53].

A final point. Several authors [55, 56] have claimed that ΔGc is directly proportional to the
liquid-vapor surface tension, γ1, of the solvent. The addition of either NaCl or Na2SO4 to
water causes an increase of γ1 [50], and so also this explanation seems to be right. However,
the experimental values of γ1 of water show a continuous decrease over the temperature
range from -25 to 100°C [57]. This continuous decrease markedly contrasts with the parabola-
like temperature dependence of water density that translates in the parabola-like temperature
dependence of ΔGc in water. The latter is a feature of water emerged both in classic SPT calcu-
lations [9, 10, 24], and molecular dynamics simulations in reliable water models [58, 59].

In conclusion, the present approach is able to explain the ability of NaCl and Na2SO4 to
stabilize globular proteins, causing an overall increase of the thermodynamic stability curve,
leading to a lower Td,cold and a higher Td,hot. The theoretical model works well without the
need to introduce ad hoc assumptions for the ion effects, confirming its reliability. A funda-
mental role is played by the solution density increase upon addition of salts to water, which
leads to an increase in the stabilizing ΔΔGc contribution. The higher the solution density, the
more amplified the solvent-excluded volume effect will be.

Supporting Information
S1 Fig. Stability curves for D-state I case. Thermodynamic stability curves of the model
globular protein, considering the D-state I case, and taking into account the uncertainty in the
density of the salt solutions; see text for further details. (A) pure water (circles), 0.05 m NaCl
(squares) and the shaded area, 0.05 m Na2SO4 (rhombi) and the shaded area. (B) pure water
(circles), 0.1 m NaCl (squares) and the shaded area, 0.1 m Na2SO4 (rhombi) and the shaded
area.
(TIF)

S2 Fig. Stability curves for D-state III case. Thermodynamic stability curves of the model
globular protein, considering the D-state III case, and taking into account the uncertainty in
the density of the salt solutions; see text for further details. (A) pure water (circles), 0.05 m
NaCl (squares) and the shaded area, 0.05 m Na2SO4 (rhombi) and the shaded area. (B) pure
water (circles), 0.1 m NaCl (squares) and the shaded area, 0.1 m Na2SO4 (rhombi) and the
shaded area.
(TIF)

S1 Text. On the ΔE = 0 assumption.
(DOCX)

S2 Text. Volume change upon protein denaturation.
(DOCX)
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